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since in e(F)(l) the matrix element must be anti­
symmetric under interchange of ql, and q2' Therefore 
the limit of DCB), and also of X(B), does not exist, 
and no inconsistency occurs. 

SUMMARY 

We can summarize this situation by saying that 
in the high-p limit a spin-O para-Bose field has 
(a) annihilation and creation operators and an anti-
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commutator which approach the annihilation and 
creation operators and c-number anticommutator of 
a spin-O Fermi field and (b) a Hamiltonian and a 
set of number operators which approach those of 
the spin-O Fermi field, but that, on the contrary, 
the Hamiltonian density of the high-order para-Bose 
theory does not converge to an operator in the 
Fermi theory. Analogous statements hold for the 
high-p limit of a spin-! para-Fermi field. 
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It is shown that a system of coupled harmonic oscillators can be made a model of a heat bath. 
Thus a particle coupled harmonically to the bath and by an arbitrary force to a fixed center will 
(in an appropriate limit) exhibit Brownian motion. Both classical and quantum mechanical treatments 
are given. 

1. INTRODUCTION 

OUR aim here is to study a simple mechanical 
model, a chain of coupled harmonic oscillators, 

in order to come to a deeper understanding of some 
of the phenomena associated with Brownian mo­
tion. 1

,2 With this model we are able to carry through 
the program one would like to achieve with more 

* Part of the work reported in this paper was done while 
one of us (M. K.) was H. A. Lorentz Visiting Professor at 
the University of Leiden. When this work was reported at 
Yeshiva University in the Fall of 1963 Dr. N. L. Balazs 
informed us that he had independently obtained some of 
the results concerning the classical case. 

t Supported in part by a grant from the National Science 
Foundation. 

1 There is an extensive literature on the motion of coupled 
oscillators, mostly concerned with motion in a lattice with 
nearest-neighbor interactions. Some of the more recent 
articles which have a bearing on our work are: P. Mazur and 
E. Montroll, J. Math. Phys. 1, 70 (1960); P. C. Hemmer, 
"Dynamic and Stochastic Types of Motion in the Linear 
Chain," thesis, Norges Tekniske HS!lgskoie, Trondheim, 
Norway (1959); R. J. Rubin, J. Math. Phys. 1,309 (1960); 2, 
373 (1961); M. Toda and Y. Koguri, Suppl. Progr. Theoret. 
Phys. (Kyoto) 23, 157 (1962); R. E. Turner, Physica 26, 
274 (1960). 

2 The classic papers on the phenomological theory of 
Brownian motion are: G. E. Uhlenbeck and L. S. Ornstein, 
Phys. Rev. 36, 823 (1930); M. C. Wang and G. E. Uhlenbeck, 
Rev. Mod. Phys. 17, 323 (1945). 

realistic interactions. This program, which really 
goes back to Gibbs, goes as follows3

: 

(i) Solve the equations of motion of the mechanical 
system consisting of a Brownian particle coupled to 
heat bath. The solution consists of expressions for 
the coordinates and momenta at time t in terms of 
the initial coordinates and momenta. 

(ii) Assume the initial coordinates and momenta 
of the heat bath to be distributed according to some 
statistical distribution, e.g., that of the canonical 
ensemble. 

(iii) Show that the coordinate and momentum of 
the Brownian particle, as functions of time, will 
then represent stochastic processes (whose statistical 
properties arise from the initial distribution of the 
heat bath) of the kind familiar from standard 
theories. 

This is a very ambitious program, and it is no 
wonder that it can be carried out only for the simplest 
models. 

S See the article by H. Wergeland in Fundamental Problems 
in Statistical Mechanics, edited by E. G. D. Cohen (North­
Holland Publishing Company, Amsterdam, 1962). 
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We have a good idea of what the results of this 
program should be, since, after all, Brownian motion 
is a throughly studied experimental phenomenon 
with a satisfactory phenomenological theory. In 
general we expect to show: 

(i) The approach to equilibrium. In particular, 
the distribution of momentum of the Brownian 
particle should approach the Maxwellian distri­
bution. 

(ii) The description of this approach to equilibrium 
should be contracted, i.e., should involve only a small 
number of the possible variables describing the 
system. Another way of saying this is that there 
should be a reduced description in terms of which 
the stochastic process is Markoffian. 

(iii) What changes occur when one adopts a 
quantum description of the system. Here we have less 
of an idea of what we should expect, but somehow 
the basic features of the stochastic process should 
be preserved in the quantum description. 

We can be still more explicit about what we mean 
by a contracted description of Brownian motion; 
we mean the Langevin equation of motion. For a 
Brownian particle of mass m acted upon by an out­
side force F(x) this equation is 

p = -fp/m + E(t) + F(x), (1) 

where p = m:i; is the momentum of the Brownian 
particle, f the friction constant, and E(t) is the 
random force due to the heat bath. This random force 
is a purely random Gaussian process characterized by 

(E(t» = 0, (E(t)E(t'» = 2fkT~(t - t'), 

where T is the temperature of the heat bath and k 
is Boltzmann's constant. Note that the Langevin 
equation is a contracted description in the sense 
that the heat bath is described by only two param­
eters, the friction constant and the temperature, 
and that only the first two time derivatives of the 
position x of the Brownian particle appear.4 

In Sec. 2 we discuss the dynamics of a system of 
coupled oscillators. There we formally carry through 
the program for the case of an arbitrary coupling 
of the oscillators. In Sec. 3 the arbitrary coupling 
of a linear chain is considered, and we show that 
there is a coupling for which, in the limit of an 
infinite chain, the resulting stochastic process is 
Markoffian. Taking the chain of oscillators with this 
coupling as the heat bath, we derive in Sec. 4 the 
Langevin equation for a Brownian particle. In Sec. 5 
we discuss the quantum description of the system, 
and in Sec. 6 we discuss the quantum Langevin 

4 That is, there are no memory effects. 

equation. Finally, in Sec. 7 we consider the Brownian 
motion of a quantum oscillator. 

2. DYNAMICS OF A SYSTEM OF 
COUPLED OSCILLATORS 

Consider a system of (2N + 1) coupled oscillators 
with Hamiltonian: 

1 N 2 1 N 

H = 2 i~N Pi + 2 i.2N qiAikqk' (2) 

Here qi and pj are, respectively, the canonical 
coordinate and momentum of the jth oscillator. 
The mass of each oscillator has been taken to be 
unity. The interactions of the oscillators are char­
acterized by the (2N + 1) X (2N + 1) symmetric 
matrix A, whose elements are the A jk . At present, 
we make no special assumptions about this matrix 
except that it has no negative eigenvalues. The 
canonical equations of motion may be conviently 
written in matrix notations as follows: 

q = p, P = -Aq. (3) 

Here p and q are (2N + I)-rowed column matrices 
whose elements are the pj and qj, respectively. The 
formal solution of the equations of motion is 

q(t) = cos (Ait)q(O) + A -i sin (Ait)p(O), 

pet) = -At sin (Ait)q(O) + cos (Att)p(O), 

where, e.g., 

Att - ~ ( - r An t2n 

cos - ~ (2n)! . 

(4) 

(5) 

We now assume that at t = 0 the system is in 
equilibrium at temperature T. That is, we assume 
that the qj(O) and p;(O) are distributed according 
to the canonical distribution 

D(q(O) , p(O» = (211'/,B)2N+1(det A)-ie-PH(CI(O) ,P(O», (6) 

where,B = (kT) -1 and det A is the determinant of A. 
Note that there is a difficulty here, since det A = 0 
if A has zero eigenvalues. We therefore assume for 
the time being that A has no zero eigenvalues. The 
expectation of any function F(q(O), p(O» is given by 

(F) = J ... J dq-N(O) ... dqN(O) dp-N(O) " . dpN(O) 

X F( q (0), p(O»D( q (0), p(O». (7) 

Now we ask, what are the properties of the sto­
chastic variables qi(t) and pj(t) which result from 
(4) under the distribution (6)? First of all, it is 
clear that the process is Gaussian. This follows from 
the fact that the distribution (6) is Gaussian and that 
the relation (4) is linear. That the process is sta-
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tionary follows from the Liouville theorem of me­
chanics, which states that 

D(q(t), p(t» = D(q(O), p(O». (8) 

It is well known that the statistical properties 
of such a stationary Gaussian process are completely 
described by the pair correlation functions. In our 
case these are obtained in Appendix 1; the results are6 

(Pi(t)Pk(t + Tn = kT IlcosAlTllik' 

(qi(t)Pk(t + Tn = -kT IIA-l sin AlTII;k, 

(9a) 

(9b) 

(q;(t)qk(t + T» = kT IIA- 1 cos AlTII;k' (9 c) 

Note that the position correlation (9c) involves the 
inverse of A, which does not exist if A has zero 
eigenvalues. 

If we fix our attention on a single oscillator, say 
the one with index 0, the momentum autocorrelation 
IS 

(10) 

This is the autocorrelation of a stationary Gaussian 
process in one variable. It is well known that such a 
process is Markoffian if and only if the autocorrela­
tion is an exponential, i.e., 

(Po(t)Po(t + r» = kTe- f1rl
, (11) 

where f is a positive constant. The question we turn 
to in the next section is that of finding an interaction 
matrix A for which (10) assumes the form (11). 

3. THE INTERACTION MATRIX 

In our model we assume the (2N + 1) oscillators 
are identical and that they are arranged in a chain 
with cyclic boundary conditions. This means that 
the interaction matrix A is a symmetric cyclic 
matrix.6 The elements of such a matrix can be 
written in the form 

1 N 2 

Am" = 2N + 1 k~N Wk 

X exp {i 2N2~ 1 k(m - n)}, (12) 

where the symmetry of A requires 

(13) 

The eigenvalues of this matrix are the quantities 
w~, s = -N, -N + 1, ... ,N. That is 

(14) 

i We use the notation IIMII;k for the element in the jth 
row and kth column of a matrix M. 

6 See, e.g., G. Kowalewski, Determinantentheorie (Chelsea 
Publishing Company, New York, 1948), 3rd ed., p. 105. 

where the eigenvector ~<.) is a (2N + I)-rowed 
column matrix whose elements are 

~~.) = (2N + 1)-1 exp {i[211"/(2N + 1)]sn}. (15) 

These properties follow from the elementary formula 

ktN exp (ik(m - n) 2N2~ J = Om.n, 

-N :::; m, n :::; N. (16) 

With this formula we can also readily demonstrate 
that if F(A) is a function of the matrix A, then 

1 N 2 

IIF(A) 11 ... n = 2N + 1 k~N F(Wk) 

X exp {i 2N2~ 1 k(m - n)}. (17) 

Note, incidentally, that the special case of nearest­
neighbor interactions is that for which 

W! = (;)2 sin2 [1I"s/(2N + 1)]. (18) 

Consider next the limit N -7 (X) , the infinite chain. 
If we make the additional assumption that w! is 
slowly varying function of 8, then (12) becomes 

Amn = 21 f" dO f(O)e i
<m-n)9 

11" -r 

1 fr = 211" -r dO f(O) cos (m - n)O, 

where 

f(O) = {W!}.-<2N+1)9/2r· 

The relation (17) becomes in this limit 

1 fr 1\F(A)llm.n = 211" -r dO F(f(O» cos (m - n)O. 

(19) 

(20) 

(21) 

We are now ready to turn to the problem posed at 
the end of the last section; that of finding an inter­
action matrix A for which 

(22) 

Using the result (17) we see that for a finite matrix 

1 N 

IIcosA1tli oo = 2N + 1 k~N COSWkt. (23) 

For any choice of the Wk this is a quasiperiodic func­
tion and cannot be of the form (22). However, in 
the limit of large N, we can use (21) which gives 

1 fl' IIcosA1tli oo = 211" -r dO cos {[f(O)]!t}. (24) 

Taken with our requirement (22), this becomes an 
integral equation for f(O). The answer is essentially 
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unique and is7 

1(0) = r tan2 !O. (25) 

There is a difficulty here, however; when (25) is 
inserted in the expression (19) for the matrix ele­
ments, the expression diverges! What we must do is 
employ a second limiting process (after the limit 
N -? co), defining 

IwJO) = {/2 tan
2 £, 101 < OL , (26) 

0, OL ::; 101 ::; 11'". 

Here 
(27) 

is a high-frequency cutoff in the spectrum of eigen­
frequencies which ensures that the matrix elements 
(19) are finite. This frequency cutoff corresponds to 
a "microscopic interaction time" W~' which we 
assume is very small compared with the "macro­
scopic relaxation time" r'. The result (22) holds 
strictly only in the limit WL -? co. Alternatively, 
we can say that, for WL » I the result (22) holds for 
times long compared with W~'. 

Our model, then, is that the interaction matrix 
elements are given by (19) with 1(0) given by (26) 
with WL » I. If in (24) we make the change of 
variable W = I tan iO, we find 

IjWL I 
Ilcos Attlloo = - dw 2 + r cos wt. 

7r -WL W 
(28) 

In the limit WL -? co this becomes e - f III and, there­
fore, the Gaussian process poet) becomes also Mark­
offian. 

4. THE LANGEVIN EQUATION 

Having seen that our model leads to a Gaussian 
Markoffian stochastic process for the collection of 
coupled oscillators, we are led to ask whether it also 
leads to the Langevin equation for the motion of a 
single particle coupled to a heat bath consisting of 
such oscillators. In this section we see that this is 
indeed the case. 

We select from the chain of (2N + 1) oscillators, 
the particle with index 0 to be the Brownian particle; 
the remaining 2N oscillators represent the heat bath. 
The outside force on this particle we denote by 

F(t) == F(qo(t». (29) 

If we define F(t) to be a (2N + I)-rowed column 
7 What is unique is the spectrum of eigenfrequencies: 

!l(w) = 2w/(",1'(8», where 8 is the function of w obtained by 
inverting the equation w' = f(8). For (25), !lew) = (2f/7r)' 
(w' +1')-1. 

matrix whose elements are all zero except for the 
zeroth element which is F(t), then in the notation 
of Sec. 2 the equations of motion for coupled "particle 
and heat path" are 

Ii = p, P = -Aq + F(t). 

The formal solution of these equations is 

q (t) = cos At tq (0) + A -t sin At tp(O) 

(30) 

+ { dt' sin A~ - t') F(t') , (31a) 

pet) = -At sin Attq(O) + cos Attp(O) 

+ { dt' cos At(t - t')F(t'). (3Ib) 

If, now, we take the zeroth element of Eq. (30) for p 
and substitute (31a) we get 

Po = - EllA cos Attllo; q;(O) 

- E IIAt sin At tllo; p;(O) 
; 

- {dt' IIAt sin At(t - t')llooF(t') + F(t). 

Next, we eliminate PoCO) between this equation and 
the zeroth element of Eq. (31b). The result can be 
written in the form 

Po - F(t) = -'Y(t)po + E(t) 

+ { dt' ['Y(t) - 'Y(t - t')] 

X Ilcos At(t - 1') 1100 F(t') , (32) 

where 

_ IIAt sin Attlloo _ _ !i ! 
'Y(t) - IlcosAltll oo - dt log IlcosA tlloo, (33) 

and 

E(t) = - E h(t) IIAt sin Attlloi 
; 

+ IIA cos Attllo;}q;(O) + E h(t) IlcosA!tll o; 
; 

(34) 

Note that the coefficient of PoCO) vanishes in this 
expression. Equation (32) is the equation of motion 
for the Brownian particle. The right-hand side is 
the net force exerted on the Brownian particle by 
the other particles, i.e., by the heat bath. The first 
term represents a frictional force with time-depen­
dent "friction coefficient" 'Y(t), the second term 
represents a fluctuating force E(t) depending upon 
the initial state of the heat bath, and the third 
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term represents a memory effect depending upon the 
past history of the motion of the Brownian particle. 

If we assume that the interaction between the 
Brownian particle and the heat bath is invariant 
under translations, we have 

2: Ai; = 0, (35) 

and this in turn implies that (34) may be written 

E(t) = - 2:' h(t) IIA 1 sin A! t 110; 
i 

+ IIA cosA'tll)[qj(O) - qo(O)] 

+ 2:' h(t) IlcosA!tlloi -IIA1sinAttlloj}Pi(O), (36) 
; 

where the prime on the sum denotes the omission 
of the term j = O. Thus the fluctuating force depends 
only upon the initial coordinates of the particles of 
the heat bath relative to the initial coordinate of the 
Brownian particle, and is independent of the initial 
coordinate and momentum of the Brownian particle. 

Consider now what happens when the matrix of 
interactions is that of the model discussed in Sec. 3, 
in which the matrix elements are given by (19) 
with f(O) given by (26) in the limit WL » f. For this 
model 

Ilcos Aitlloo = e- fit 
I 

and therefore, from (33) we find that 

lim 'Y(t) = f, 
which is a constant. 

(37) 

(38) 

This in turn implies that the last term on the 
right-hand side of (32) (the memory-effect term) 
becomes, in the limit, identically O! 

With these results, (32) takes the form 

Po - F(t) = -fpo + E(t), (39) 

with 

E(t) = - 2: II/AlsinAit + A cos Aitllo;q;(O) 
i 

Equation (39) is the Langevin equation. 
It remains to prove that the statistical properties 

of E(t) become (again in the limit N ~ 00, WL » f) 
those of a purely random Gaussian process. This 
depends, of course on the statistical assumptions 
concerning initial positions and momenta. 

We would like to require that at t = 0 the heat 
bath is in equilibrium at temperature T and the 
simplest way of doing this is to assume that the 
initial distribution is the canonical distribution (6). 
This however is, strictly speaking, impossible since 

(35) implies that Wo = 0 so that det A = 0 and the 
canonical distribution becomes improper. The dif­
ficulty is not serious and can be remedied, e.g., by 
slightly modifying the matrix A; i.e., replacing it by 
(1 is the unit matrix) 

(41) 

where eN, though positive for every finite N, ap­
proaches 0 as N ----t 00 (as fast as one pleases). Now 
(35) is only approximately true and the canonical 
distribution (6) is proper. We hope that the reader 
does not become unduly confused by our use of the 
symbol A to denote three different matrices. We use 
it to denote the finite cyclic matrix (12), the modifica­
tion (41), and last but not least for the infinite 
cyclic matrix (defined only with the cutoff WL)' 

Clearly, since the distribution (6) of the qj(O) and 
Pi(O) is Gaussian, E(t) is a Gaussian process. We can 
form its covariance with the help of the results of 
Appendix 1, and, in the limit considered throughout 
this paper, we find that 

(E(t)E(t'» = kT II(r + A) cos At(t - t') 1100' (42) 

But the matrix A is given by the model of Sec. 3; 
hence, using (21), we find 

(E(t)E(t') ) 

= ~~ L: dO (r + r tan
2 ~) cos f tan ~ (t - t') 

kTfJ'" = - dw cos wet - t'). 
11' _ .. 

This last integral is the well known expression for 
the Dirac delta function, so we have 

(E(t)E(t'» = 2fkTo(t - tf). (43) 

Thus E(t) is a purely random, Gaussian, stochastic 
process and Eq. (39) is the Langevin equation for 
Brownian motion. 

In order that the equation of motion (32) be­
come the Langevin equation it is necessary that (i) 
the friction constant 'Y(t) be independent of time; 
(ii) the stochastic process E(t) be a purely random 
Gaussian process; (iii) the memory effects disappear. 

We feel that it is striking that, for our model, 
these three properties are intimately related. Un­
doubtedly this fact is of much more general signifi­
cance. 

5. THE MOTION OF COUPLED QUANTUM 
OSCILLATORS 

We turn now to the question of the changes re­
quired for a quantum mechanical description of 
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the motion of coupled oscillators. The answer is 
that much of our previous discussion is, formally at 
any rate, entirely unchanged. Thus in our discussion 
of Sec. 2, the Hamiltonian (2) is unchanged, but the 
coordinates q; and momenta Pi are now operators 
whose commutation rules are 

[q,., qkJ = [p,., Pkl = 0, (44) 

[q,., Pk] = ihO ik • 

The equations of motion (3) are the equations of 
motion in the Heisenberg picture, and their solu­
tion (4) relates the Heisenberg operators at time t 
to the operators at the initial time. 

At t = 0, we assume the system is in equilibrium 
at temperature T. In the quantum description this 
means that the initial state of the system is described 
by the density matrix corresponding to the canonical 
ensemble: 

p(q(O),p(O» = exp {-,BH(q(O),p(O»}. (45) 

The expectation of any function F(q(O), p(O» of the 
operators q(O), p(O) given by 

(F) = Tr f F(q(O), p(O»p(q(O), p(O» I. (46) 
Tr {p(q(O), p(O»} 

Just as in the classical case, we now consider the 
properties of the stochastic operators qi(t) and pj(t) 
which result from the equation of motion and the 
initial density matrix. These properties we describe 
in terms of the correlation functions, the simplest 
being the pair correlation functions. These are ob­
tained in Appendix 2; the results are 

(P,.(t)Pk(t + T» 
= lin:! [ coth ;:; cos AtT + i sin AtT JII,.k (47a) 

(q,.(t)qk(t + T» 

= 1121t [coth;A; CosAiT + iSinAiTJllik (47b) 

(q,.(t)Pk(t + T» 

= jig [ -cothg~sinAiT + i cos AiTJllik' (47 c) 

Note that in the limit n = 0, these expressions be­
come identical with the classical expressions (9). 
As indicated in Appendix 2, the higher correlations 
are given by the rule: I 

Correlations of an odd number of q's and P's 
vanish. The correlation of an even number of q's 
and P's is equal to the sum of products of pair cor-

relations, the sum being over all possible pairings of 
the operators, with order preserved. 

Except for the italicized proviso that the order be 
preserved, this rule is identical with the classical 
rule for a Gaussian random process.s The stochastic 
operators also have the classical stationarity property; 
the correlations depend only upon the time dif­
ferences. There are, however, obvious differences be­
tween the properties of the stochastic operators 
and the properties of the corresponding classical 
stochastic process. The principal differences arise 
from the fact that the quantum operators do not 
commute. Thus there are many (indeed, an infinity!) 
of correlations of the quantum operators which can 
be associated with a given classical correlation, 
corresponding to different orderings of the operators. 
As a simple example, 

{Eqp + (1 - f)pq)Quanturn ~ (qp).la •• ical , 

where E is an arbitrary complex number. Another 
difficulty comes from the fact that the product of 
two noncommuting Hermitian operators is not 
Hermitian, and, therefore, does not correspond to a 
physical observable. We see this difficulty explicitly 
in the correlations (47), which are complex functions, 
whereas the expectation value of a physical observ­
able should be real. 

The difficulties we mention would be largely 
resolved if we had a conventional definition of the 
product of operators with the following properties: 

(a) The product is independent of the order of the 
operators. 

(b) The product of a number of Hermitian op­
erators is itself Hermitian. 

(c) The classical pair decomposition rule for ex­
pressing higher correlations in terms of pair correla­
tions holds. 

For our system of coupled oscillators there is such a 
conventional product, namely the ordered product 
or normal product introduced in quantum field 
theory9; it is defined as follows. In Appendix 2 we 
show how the operators q(O) and p(O) can be ex­
panded in terms of creation and annihilation opera­
tors for the normal modes; 

q(O) = i ~ ~(·)(2~)\a. - a~), 

p(O) = ~ ~(·)e;·t(a. + a~). 
(48) 

8 See, e.g., Wang and Uhlenbeck, Ref. 2. 
~ See, e.g., G.-C. Wick, Phys. Rev. 80, 268 (1950). 
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Here ~(.) is the eigenvector of the interaction matrix 
A, and w: is the associated eigenvalue 

(49) 

The operator a. is the annihilation operator for 
the sth normal mode and a~ is the corresponding 
creation operator. Their commutation rules are 

[a., a~] = 0." [a., a,] = [a~, a~] = O. (50) 

The time-dependent operators are expressed in terms 
of the a. and a~ by inserting (48) in (4). We find 

q(t) = i ~ ~(')(2:y(a,e-iW.t - a~e;w.t), 
(51) 

pet) = ~ ~(·)(~J(a,e-iW.t + a~e;w.t). 

The normal product of a number of the operators 
a, and a~ is defined to be that product in which all 
the a~ are written to the left of all the a •. Because of 
the commutation rules (50), this defines a unique 
order. The normal product of a number of operators 
q;(t) and pj(t) is the product in which the expansions 
(51) are used and each product of the a. and a~ is 
written in normal form. We denote the normal 
product by a colon placed before and after the 
product of factors. As an example, 

:q;(t,)Pk(t
2
): == i-

2
h L: L: (w')\:')~kd [a,a,e-i(".t.+w,t,) 

8 ,. Ws 

The normal product fulfills our requirements. It 
us clearly independent of the order of the factors, 
and, since a~ is the Hermitian conjugate of a., the 
normal product of a number of Hermitian operators 
is Hermitian. Using the results given in Appendix 2, 
we can show that the pair correlations of normal 
products of the q;(t) and Pk(t) are 

(:P;(t)Pk(t + 7):) = IIP(hAi/kT) COSA'711;ko 

(:qi(t)qk(t + 7):) = IIP(hA'/kT)A-' COSA'711iko (52) 

(:qi(t)Pk(t+ 7):) = -IIP(hA'/kT)A- t sinAt 71Iik' 

Here we have introduced the Planck function 

given by the well-known rule for a Gaussian random 
process: 

The correlation of the normal product of an odd 
number of q's and P's vanishes. The correlation of 
the normal product of an even number of q's and P's 
is equal to the sum of products of pair correlation 
of normal products, the sum being over all possible 
pairings. 

What we can say, then, is that the correlations of 
normal products of our stochastic operators are 
identical with those of a stationary Gaussian process 
whose pair correlations are given by (52).10 

Finally, if we fix our attention on a single oscilla­
tor, the one with index 0, the momentum autocor­
relation is 

(:Po(t)Po(t + 7):) = IIP(hA'/kT) cos At71loo. (54) 

Just as in the corresponding classical process, we can 
ask whether there is an interaction matrix A for 
which (54) is an exponential and, therefore, the 
corresponding Gaussian process is Markoffian. The 
answer is that we can, but that it is temperature­
dependent, and, therefore, not of physical interest. 
If we use the model discussed in Sec. 3, in which the 
matrix elements are given by (19) with f(8) given by 
(26) in the limit WL » f, we find (54) becomes 

(:Po(t)Po(t + 7):) 

2 f'" (nw) f =:;;: 0 d",P kT ",2 + f2 COSW7. (55) 

In the limit h ~ 0, this becomes identical with the 
classical result obtained earlier, and the process 
becomes Markoffian. 

6. THE QUANTUM LANGEVIN EQUATION 

The formal manipulations we used in Sec. 4 to 
derive the Langevin equation are unchanged when 
we interpret the q's and P's as quantum operators. 
In particular, when the matrix of interactions is 
that given by the model of Sec. 3, in which the 
matrix elements are given by (19) with f(8) given by 
(26) in the limit "'L » f, we obtain an operator 
equation of motion which is formally identical with 
Langevin equation (39). That is 

Po - F(t) = -tpo + E(t), (39') 

where 

P(x) == kTx/(eX 
- 1). (53) E(t) - L I ItA! sin At t + A cos At tll o; qi(O) 

When x = hw/kT the Planck function is the average 
energy, relative to the ground state, of a quantum 
oscillator of frequency",. As x ~ 0, P(x) ~ kT, 
the classical equipartition energy. 

The higher correlations of normal products are 

+ L Ilf cosAlt - AtsinAitlloiPi(O). (40') 
; 

'0 Essentially the same point is made in connection with 
the quantum description of statistical light beams by E. C. G. 
Sudarshan, Phys. Rev. Letters 10, 277 (1963). See also R. J. 
Glauber, Phys. Rev. Letters 10, 84 (1963). 
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The operator Langevin equation is an equation of 
motion for the time-dependent Heisenberg operators 
Po(t) and qo(t). The operator F(t) is the external 
force operator, 

(56) 

with V(qo, t) the (time-dependent) potential of the 
external force. The random-force operator E(t) is 
in fact independent of the operators PoCO) and qo(O) 
since their coefficients in the expression (40') vanish 
for our model of the interaction matrix. Because of 
the commutation rules (44), this means that 

[qo(O) , E(t») = [Po(O) , E(t») = o. (57) 

We assume that the statistical state of the initial 
coordinates and momenta of the heat bath is de­
scribed by the density matrix (45). Just as in the 
classical case, this means that at t = 0 the heat bath 
(Le., the oscillators other than the Brownian parti­
cle) is in equilibrium with a fictitious force-free 
Brownian particle. Since the random-force operator 
E(t) is independent of the initial coordinate and 
momentum of the Brownian particle, its stochastic 
properties are unaffected by the dependence of the 
density matrix upon these operators. The covariance 
of the normal product is readily obtained using the 
results (52), we find 

(:E(t)E(t + T):} 

= IICr + A)P(hA!/kT) cos AlTlloo. (58) 

But for our model, we may use the general expression 
(21), with f(8) given by (25). Hence 

1 1" (:E(t)E(t + T):) = 211" _ .. dO f2(1 + tan2 le) 

X p(~~ ltan lei) cos (fT tan le) 

211'" (hw) = - dw P -- cos WT. 
11" 0 leT 

(59) 

Correlations of higher normal products of E(t) are 
again given by the rule for a Gaussian random 
process. .Hence, the stochastic properties of the 
random operator E(t), as expressed by the correla­
tions of normal products, are identical with those of a 
stationary Gaussian process whose covariance is 
given by (59). In the limit h -l> 0, this covariance 
approaches the corresponding classical covariance 
(43), which is the covariance of a purely random 
Gaussian process. However, for finite h, (59) is the 
covariance of a Gaussian process which is not even 
Markoffian. This is the chief difference between the 

quantum and classical Langevin equations for our 
model. 

As an elementary application, consider the motion 
in a constant field of force, 

F(t) = e. (60) 

The solution of the operator Langevin equation is 

PoCt) = e-ftpo(O) + ]'e(l - e-Jt ) 

+ { dt' e-!(t-t"E(t'). (61) 

If we average this expression over the initial state 
of the heat bath, we findll 

(Po(t» = e-ftpo(O) + rIe(I - eft), (62) 

since (E(t» = O. After a long time (t » rl) we find 

(PoCt» '" riC;. (63) 

This is the analog for our model of Ohm's law. The 
left-hand side is the "current," which in the steady 
state is proportional to the applied field, and in­
versely proportional to the "resistance," i.e., the 
friction constant. 

The mean-square "fluctuation current" may also 
be obtained from (60) 

(:[Po(t) - (PoCt»]2:) 

= l' dt' e-f(t-.,) l' dt" e-!('-''')(:E(t')E(t"):). (64) 

Note that we have used the normal product in the 
definition of the squared fluctuation. Using the 
expression (58) for the covariance of E(t), we find 

(:[Po(t) - (PO(t»]2:) 

= 21 r (hw) 11 - e- U -;wltI2 
11" Jo dw P leT 1 - iw ' (65) 

where we have used the elementary result 

l' dt' l' dt" e- f (.-. 'le- l ('-' "l cos wet' - t") 

= 1(1 - e- U
-

i ",)t)/(1 - iw)12. (66) 

In the steady state, i.e., when t » rt, (65) becomes 

2 2f ('" (hw) 1 
(:[PoCt)-(Po(t»] :)=-; J

o 
dwP leT w2+r' (67) 

This is the analog for our model of the Nyquist 
formula, which relates the noise power spectrum 

11 The result of the average over the states of the heat 
bath is still in general an operator function of qo(O) and Po(O), 
We trust that our definition of this average, which involves 
an average over the initial coordinate and momentum of a 
fictitious Brownian particle, is not confusing, 
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to the resistance and the absolute temperature. I2 Here 
Note that if we had used the ordinary product in-

(73) stead of the normal product, we would find 

([Po(t) - (Po(t») ]2) 

== ([Po(t) - (Po(t))]· [poet) - (Po(t»)]) 

2 2f l"'L hw 1 = (:[Po(t) - (Po(t»)] :) + -; a dw 2 w2 + f2' (68) 

The added integral is clearly related to the zero­
point fluctuations of the heat bath. It is also diver­
gent in the limit WL ---+ a:>, so we have retained this 
cutoff explicitly. Which of the possible definitions 
of the product corresponds to an experimental 
measurement of the fluctuation spectrum? This, in 
the last analysis, must be determined by the experi­
ment itself. We tend to the opinion that the normal 
product is the physically appropriate definition, 
since it leads to a noise spectrum which vanishes at 
absolute zero. 

7. BROWNIAN MOTION OF A QUANTUM 
OSCILLATOR 

As a second application of the quantum Langevin 
equation, we consider the case of the harmonic 
oscillator, for which the external force isI3 

(69) 

where" is the natural frequency of the oscillator. 
The quantum Langevin equation (39 /) becomes 

Po + iqo = -fpo + E(t) , (70) 

to which we must append the equation 

(71) 

The solution of this pair of coupled equations is 

qo(t) = e- lf ' {[cos vt + (1/2v) sin vt]qo(O) 

+ v -I sin vtpo(O) I 

+ r' dt'e-'f<t-,·) !sinv(t - t')E(t') , Jo v 

poet) = e-v' {_(,,2/V) sin ptqo(O) 

+ [cos vt - (fj2v) sin vt]po(O) I 

+ l' dt' e-'('-")[cos vet - t') 

- (f /2v) sin v(t - t') ]E(t'). 

(72) 

12 For elementary discussion of the Nyquist formula and 
its quantum generalization see C. Kittel, Elementary Statis­
tical Physics (John Wiley & Sons, Inc., New York, 1958), 
pp. 141-153. See also J. Lawson and G. E. Uhlenbeck, 
Threshold Noise Signals (McGraw-Hill Book Company, Inc., 
New York, 1950), especially pp. 64-79. . 

13 The Brownian motion of a quantum oscillator IS con­
sidered in a paper by J. Schwinger, J. Math. Phys. 2, 407 
(1961). 

and we restrict our discussion to the underdamped 
case, where" > tt, so v is real and positive. 

The mean motion of the oscillator is described by 
the operators obtained by averaging (72) and (73) 
over the initial states of the heat bath. Since (E(l» = 
0, we have 

(qo(t») = e-'" {[cos vt + (f/2v) sin vt]qo(O) 

+ V -I sin vtpo(O) I , 
(Po(t») = e-!f' { - "VI sin vtqo(O) 

+ [cos vt - (f /2v) sin vt]po(O) }. 

(74) 

These are just the operator solutions of the average 
of the equations of motion (70) and (71). We see 
from (74) that these operators vanish for t » r\ 
the mean motion of the oscillator vanishes for times 
long compared with the "macroscopic relaxation 
time" rl. 

To see more precisely what we mean by the 
operators (74), consider the coordinate representa­
tion. The Heisenberg state of the oscillator is then 
specified by a time-independent wavefunction 
~[qo(O)], and the initial momentum operator is repre­
sented by -ih a/aqo(O). The simplest kind of ques­
tion we can ask about the Heisenberg operators is 
their expectation value, denoted by a subscript "ex" 
to the operator. For example, 

(qo(t»).~ == i: dqo(O) ~*[qo(O)]<qo(t»)~[qo(O)] 

= e-V ' {(cos /It + (f/2v) sin vt)[qo(O)Jex 

+ V-I sin vt [Po (0) Jex}. (75) 

As a simple illustration, if the wavefunction is 

then 

and 

(qoU»)e" = e-v'[cos vt + (f/2v) sin vt]xo, 

(PoU) lex = -e -tf',,2V -1 sin vtxo. 

(76) 

(77) 

(78) 

The operator describing the fluctuation of the 
displacement of the oscillator about the mean dis­
placement is 

qo(t) - (qa(t» 

= l' dt' e-v<t-") sin v(t - t') E(t'). (79) 
o v 
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The mean-square fluctuation in displacement we 
express as the mean of the square of (79), written as 
a normal product. Using (59), we find 

(:[qo(t) - (qo(t)W:) = ~ i~ dw P(::;) 
xiI - e-eV-'''')'[cosvt + (tt -iw)v-1 sinvtll2 (80) 

w2 - K2 + ifw . 

Here we have used the following result of an ele­
mentary but tedious integration 

l ' dt' l' dt" e- ife '-") sin v(t - t') 
o 0 v 

X -!f(t-''') sin v(t - t") (t' t") e cosw -
v 

_/1 - e-ev-,,,,),[cos vt + af -iw)pl sinvtll2 
- w2 _ K2 + ifw • (81) 

The time dependence of the mean fluctuation in 
displacement, as expressed by (80), is rather com­
plicated. It does, however, have the simple feature 
that, for times long compared with the relaxation 
time r\ it approaches an equilibrium value 

(:[qo(t) - (qo(t»Y:).q 

square displacement of an independent oscillator of 
frequency" at temperature T. 

APPENDIX 1: CORRELATIONS IN A SYSTEM 
OF COUPLED CLASSICAL OSCILLATORS 

Consider first the correlations of the initial values 
of the coordinates and momenta, whose distribution 
is [c.f. Eq. (6)] 

D(q(O) , p(O» = (21r/,8)2N+l(det At! 

X exp {-~ [~p~(O) + ft q;(O)A;kqk(O)l}. (1) 

Since this is a Gaussian distribution, all higher 
correlations can be expressed in terms of the pair 
correlations. These are (,8 = l/kT): 

(P;(O)Pk(O» = kTo;k, 

(Pj(O)qk(O» = 0, (2) 

(q;(O)qk(O» = kT IIA -111;k' 
These expressions are consequences of well-known 
integral formulas for Gaussian distributions.14 

The pair correlations for the time-dependent 
coordinates and momenta are found from (4), using 
(2). We have for the momentum correlation: 

2f 1~ P(liw/kT) 
= - dw ( 2 2)2 + 2j2' (82) (P;(t)Pk(t + r» = L {IIAlsinAltll; .. 

1r 0 W -K W 

In the classical limit we use the property of the 
Planck function (53) 

P(hw/kT) ~ kT, as h ~ O. (83) 

The remaining integral in (82) is elementary: 

2/ 1~ 1 -2 - dw (2 2)2 + 2j2 = K , 
1ro W-K W 

(84) 

and we find 

(:[qo(t) - (qo(t»t:).q ~ kT/K2
, as h ~ 0, (85) 

which is the classical equipartition result. 
Another simple limit of (82) is the weak-coupling 

limit, in which the coupling of the Brownian particle 
to the heat bath is weak compared with the oscillator 
coupling. That is, K » f. In this limit the resonance 
denominator in (82) becomes sharply peaked at 
w = K, with a width ~ f. Hence, we can evaluate the 
Planck function at w = K and perform the remaining 
integral using (84). We find 

(:[qo(t) - (qo(t»t :).q ~ j p(~~), for K» j. (86) 

This is the well-known Planck result for the mean-

.... n 

X IIAl sin Al(t + r) Ilkn(q .. (O)qn(O» 

+ II cos Aitll;", IIcos A!(t + r)lIkn(p ... (O)Pn(O»1 

= kT{ IIsin Ait sin Al(t + r) 

+ cos Ait cos Ai(t + r) II;k, 

where we have used the fact that the matrix A is 
symmetric. Using the formula for the cosine of the 
difference of two angles, we find 

(3) 

In a similar way, we can also show 

(q;(t)Pk(t + r» = -kT IIA-i sin Airllik' (4) 

(q;(t)qk(t + r» = kT IIA-1 cos Airll;k' (5) 

Since the process is Gaussian, the higher correlations 
are given by the following rule8

: 

The correlation of an odd number of coordinates 
and momenta vanish. The correlation of an even 
number of coordinates and momenta is equal to the 

1< See, e.g., H. Cramer, Mathematical Methods of Statistics 
(Princeton University Press, Princeton, New Jersey, 1945), 
p.118. 
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sum of products of pair correlations, the sum being 
over all pairings. 

For example, 

(q;(tJ) qk(t2) ql (ta)Pm(t4) > = (q,(tJ) qk(t2»( ql (t3)Pm(t4) > 

+ (q,(fJ)ql(ta»(qk(f2)p",(f4» 

+ (q,(f,)Pm(f4»(qk(t2)ql(ta». 

APPENDIX 2: CORRELATIONS IN A SYSTEM 
OF COUPLED QUANTUM OSCn.LATORS 

The system of oscillators is described by the 
Hamiltonian 

where the operators qi and Pi satisfy the commuta­
tion relations 

The expectation value of any operator F with 
respect to the canonical ensemble at temperature T 
is defined by 

(F) = Tr {Fe-~Hl/Tr {e-~H}, (3) 

where the trace operation is in the space of the eigen­
functions of the Hamiltonian operator. We are 
interested mainly in the case where the operator F 
is a product of q's and p's. 

As a first step in the evaluation of such traces, 
consider the eigenvalues and eigenvectors of the 
matrix A: 

_ . ,,/:(.)(~)i( *) 
q, - ~ '7-'''' 2w. a. - a. , 

(8) 

_ "t(')(hw.)!( + *) 
Pi - '7-'''' 2 a. a •. 

Inserting these expressions in the Hamiltonian (1) 
and using the relations (4) and (5) we find 

H = L: hw.(a~a. + !). (9) . 
The operator a~a. is the number operator for the 8th 
normal mode; its eigenvalues are the nonnegative 
integers. The operator a. is the step-down (annihila­
tion) operator, and the operator a~ is the step-up 
(creation) operator; they have matrix elements only 
between eigenstates of the number operator which 
differ by unity. 16 

The evaluation of the expectation value (3) when 
F is a product of the a's and a*'s is straightforward. 
Clearly, the only nonvanishing expectation values 
are for products containing an equal number of a*'s 
and a's. The simplest of these are the pair expecta­
tion values. Thus 

(a~aT) = Oar Tr {a~a.e-IlH}/Tr {e-IlH } 

i: n exp [-hw. (n + !)] o .. -0 kT 2 

ar i: exp [_hw. (n + !)] 
n-O kT 2 

0 .. [ exp e:r) - 1 J' 
or 

(a~ar) = !oar[coth hw./2kT) - I]. (10) 
" A. /:(.) = 2/:(,) 4..J lkt;k WS'i'· 

k 
(4) Using the commutation relation (7), we have 

The eigenvectors are assumed normalized so that 

" t(·)/:(r) = ~ £-i ~1 t;"J UHf L: ~;r)~~r) = ~'k' (5) 
r 

We now introduce the operators 

a. = (2hw.)-i L: ~~.)(p, - iw,q,), , 
(6) 

a~ = (2hw.)-t 2: ~~')(Pi + iw.q,). , 
The commutation relations for these operators follow 
from (2) and (5). We find 

[a .. aT] = [a~, a~l = o. (7) 

The inversion of (6) is readily accomplished using 
the relations (5). We find 

(a.a~) = !o,,[coth (hw./2kT) + 1]. (11) 

The results for higher products are summarized by 
the following rule: The expectation value of a product 
of a's and a*'s is equal to the sum of products of 
pair expectation values, the sum being over all 
possible pairings with the order of each pair prs­
served. 

For example: 

(a~aTaUa~) = <a~aT)<aUa~) + (a~au)(ara~). 
We do not prove this rule here, since the most con­
vincing demonstration is by example. 

We turn now to the consideration of expectation 
Ii These properties of the operators are discussed in many 

textbooks on quantum mechanics. See, e.g., A. Messiah, 
Quantum Mechanics (North-Holland Publishing Company, 
Amsterdam, 1961), Chap. 12. 
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values of products of q's and p's. Because of the 
linear relations (8) we have the same rule for these 
expectations: 

The expectation value of an odd number of q's 
and P's vanishes. The expectation value of an even 
number of q's and P's is equal to the sum of products 
of pair expectation values, the sum being over all 
pairings which preserve the order of the pair. 

For example: 

(qiqjPkql) = (qiqj)(PkPI) + (qiPk)(qjql) + (qiql)(qjqk)' 

The pair correlations are readily obtained from (10) 
and (11), using (8). Thus 

( ) '" h th 'tuJJ o (0)/:(0) 
qjqk = 7' 2w

o 
co 2kT ~j ,k . 

Using (4) we see this can be written 

(qjqk) = II~ coth ;:;lllk' (12) 

Similarly, we find 

(P;Pk) = II!hAl coth (hAi j2kT)lljk' (13) 

(qjPk) = -(p;qk) = !ihO;k' (14) 

Consider now the time-dependent correlation 
functions in which the operators at time t are 
expressed in terms of the initial operators through the 

relations (4), considered here as formal solutions of 
the Heisenberg equations of motion. Again we have 
the rule that correlations of an odd number of 
operators vanish while a correlation of an even 
number of operators is equal to a sum of products of 
pair correlations, the sum being over all pairings 
which preserve the order of the pair. For example, 

(q;(t1)qk(t2)PI (ta) q",(tJ) = (q;(t1) qk(t2»(PI(ta)q",(tJ) 

+ (qj(t1)PI(ta»(qk(t2)q",(t4» 

+ (qj(t1) q",(t4»(qk (t2)p I (ta». 

The pair correlations are 

(Pj(t)Pk(t + T» 

= I I !hAi[coth (hAlj2kT) cosAiT + isinAiT]lljk, (15) 

(q;(t)qk(t + T» 

= II!hA -l[coth (hAi j2kT) cosAlT + isinAi T] Ilik' (16) 

(q;(t)Pk(t + T» 

= II!h[ - coth (hAi j2kT) sin AlT + i cos Ai T] Ilik' (17) 

The derivation of these expressions goes exactly 
as the derivation of the corresponding classical 
correlations, obtained in Appendix 1, but using the 
expressions (12), (13), and (14) for the initial 
expectation values. 


