
Uniqueness of zero surface gravity SU(2) Einstein–Yang/
Mills black holes

J. A. Smoller and A. G. Wasserman
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1003

~Received 18 September 1995; accepted for publication 10 November 1995!

In this paper we prove that the only spherically symmetric black hole solution to
the SU~2! Einstein–Yang/Mills equations that has zero temperature at the event
horizon is the extreme Reissner–Nordstro¨m solution. No assumptions are made on
the signs of the metric coefficients, save that the metric has Lorentz
signature. ©1996 American Institute of Physics.@S0022-2488~96!02803-2#

I. INTRODUCTION

Black holes having a degenerate horizon, that is, vanishing surface gravity,k50, are called
extremal. In view of Hawking’s celebrated formula~see Ref. 1!,

k52pt,

wheret is the temperature at the horizon, this implies that such black holes have zero horizon
temperature, and thus do not radiate;~however, see Refs. 2 and 3!. The quantum mechanical
stability of extremal black holes makes them very interesting objects, in various contexts. First,
they are natural candidates for the final states of the evaporation process. Second, the scattering of
quantum fields off extremal black holes can be described entirely within the semiclassical approxi-
mation, and this allows one to analyze the information loss in black hole evaporation without
confronting the problem of unknown Plank-scale physics.4 Finally, it was suggested in Ref. 5 that
extreme black holes resemble, in a certain sense, elementary particles—in fact, it was recently
shown in Ref. 6 that extremal black holes can be identified with elementary string excitations.

In Ref. 7 it was shown that the only black-hole solution of the static, spherically symmetric,
coupled Einstein–Yang/Mills~EYM! equations@with SU~2! gauge group#, which has zero surface
gravity, is the extreme Reissner–Nordstro¨m ~ERN! solution. More precisely, if the Einstein metric
is written in the form

ds252A~r !B~r !22 dt21A21~r !dr21r 2~du21sin2 u df2!, ~1.1!

and the SU~2! Yang/Mills field is ~cf. Refs. 7–10!

F5w8~r !t1 dr`r du1w8~r !t2dr`~sin u df!2„12w2~r !…t3 du`~sin u df!, ~1.2!

wheret1,t2,t3 form a basis for the Lie algebra su~2!, then if

lim
r↘ r̄

A~r !505 lim
r↘ r̄

A8~r !, A~r !>0, for r. r̄ , ~1.3!

the metric must be the ERN metric; namelyA(r )5[( r21)/r ] 2, B(r )[1,w(r )[0, and the Yang–
Mills curvature 2-form takes values in the Lie algebra u~1!. It was also proved in Ref. 7 that for
the metric~1.1!, the surface gravityk50 if and only if A8 vanishes at the black hole horizonr̄ .

In this paper we shall strengthen the above result, so as to also apply to the interior of a black
hole. Namely, we will prove that if (A,w) is a smooth solution of the EYM equations, defined for
r. r̄ , such thatA is positive for some larger , and if
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lim
r↘ r̄

A~r !505 lim
r↘ r̄

A8~r !, ~1.4!

then again the metric~1.1! is the ERN metric,w(r )[0, and the Yang/Mills curvature 2-form lies
in u~1!; cf. Theorem 3.1 The proof of this result ismuchmore difficult than the proof in Ref. 7,
becauseA(r ) is not assumed to be positive forr. r̄ .

Finally, we remark that it was proved in Ref. 10;~also see Ref. 11!, that if A( r̄ )50 and
A8( r̄ )Þ0, then the singularity in the metric atr5 r̄ can be transformed away by a ‘‘Kruskal-like’’
change of coordinates in which the YM field remains well behaved. Moreover, it was proved in
Ref. 12 that for the ERN solution, the metric singularity atr5 r̄ can also be transformed away. It
thus follows from our result here that forany SU~2! spherically symmetric EYM black hole
solution with event horizon atr5 r̄.0, the singularity in the metric atr5 r̄ can be transformed
away by a change of coordinates, whereby the YM field remains well behaved.

II. PRELIMINARIES

As discussed elsewhere,~cf. Refs. 8 and 9!, the static, spherically symmetric EYM equations,
with gauge group SU~2! can be written in the form

rA81~112w82!A512
u2

r 2
, ~2.1!

r 2Aw91F r ~12A!2
u2

r Gw81w~12w2!50, ~2.2!

B8

B
5
2w82

r
, ~2.3!

where

u~r !512w2~r !. ~2.4!

Since~2.1! and~2.2! do not involveB, we can use these to obtainA andw, and then use~2.3! to
find B. Herew(r ) is the connection coefficient that determines the Yang–Mills curvature 2-form;
see Refs. 8 and 9. If we write

F~A,w,r !5r ~12A!2
u2

r
, ~2.5!

then ~2.1! and ~2.2! can be written in the more compact form

rA812w82A5F/r , ~2.6!

r 2Aw91Fw81w~12w2!50. ~2.7!

If „A(r ),w(r )… is a specific solution of~2.1!,~2.2!, then we writeF(r )5F„A(r ),w(r ),r ….

III. THE THEOREM

In this section we shall prove the following theorem.
Theorem 1: Let „A(r ),w(r )… be a smooth solution of~2.1! and ~2.2!, satisfying

lim
r↘ r̄

A~r !505 lim
r↘ r̄

A8~r !, ~3.1!
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for somer̄>0, and assumeA(r 1).0 for somer 1.max~r̄ ,1!. Then (A,w) is the extreme Reissner–
Nordström ~ERN! solution; namely,

A~r !5S r21

r D 2, w~r ![0. ~3.2!

Remarks:
~1! If ~3.2! holds, then from~2.3! we haveB(r )[1.
~2! Theorem 1 was proved in Ref. 7 under the additional hypothesis thatA(r )>0 for r. r̄ . We

show here that the theorem is still true under the far weaker hypothesisA(r 1).0 for some
r 1.max~1,r̄ !.

Proof of Theorem 1:There are three cases to consider; namely, forr̄>0, the following occurs.
Case (i).There is a sequencer n↘ r̄ such that

~21!nA~r n!.0. ~3.3!

In this case we say thatA oscillates; cf. Fig. 1.
Case (ii). A(r ),0 for r. r̄ , r near r̄ ; cf. Fig. 2.
Case (iii). A(r ).0 for r. r̄ , r near r̄ .

As mentioned above, a proof of the Theorem in case~iii ! was given in Ref. 7, under the additional
hypothesis thatA(r )>0 for r. r̄ .

We shall prove that neither of the cases~i! or ~ii ! can occur, and that if case~iii ! occurs, the
solution is the ERN solution. The proof is further divided into two subcases; namely either the
solution (A,w) is ‘‘smooth up to the boundary;’’ i.e., (A,w)P(C13C2)[ r̄ , r̄1e) for somee.0, or
(A,w) is not smooth atr̄ . The following proposition is subsumed by Theorem 1. The simple proof
is given here in order to demonstrate that the difficulties occur when neitherA norw is assumed
to be smooth atr̄ .

Proposition 2:Suppose that (A,w)P(C13C2)[ r̄ , r̄1e) for somee.0. If ~3.1! holds, then
r̄51, and the solution is the ERN solution~3.2!.

Before giving the proof, we shall need a preliminary result.

FIG. 1. A oscillates.

FIG. 2. A,0 nearr̄ .
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Lemma 3:If (A,w) is a solution of the EYM equations defined in an open interval aboutr 0,
and if we havew2(r 0)<1, A8(r 0)50 andA(r 0),0, thenr 0,1.

Proof: If r 0>1, then from~2.1! we obtain the contradiction

0.„112w82~r 0!…A~r 0!512
u2~r 0!

r 0
2 >0.

j

Proof of Proposition 2:If r̄50, then~as in Ref. 10! expandingA andw in Taylor polynomials
gives

A~r !5A01A1r1O~r 2!,

w~r !5w01w1r1O~r 2!,

and we easily obtain from~2.1! and~2.2! thatA051. Thus,A~0!51 and this violates~3.1!. If r̄.0,
then from~2.6! we seeF( r̄ )50 so ~2.5! gives r̄ 25ū2, where

ū512w̄2, w̄5w̄~ r̄ !. ~3.4!

From ~2.7! we concludeūw̄50, so sincer̄.0, we obtainw̄50, and thusr̄51. Now A(r 1).0,
A~1!50, so minA(r ) in the interval @1,r 1# cannot be negative, in view of Lemma 3; hence
A(r )>0 on 1<r<r 1 . To invoke the results of Ref. 7, we must show thatA(r )>0 for all r.1. To
do this, suppose thatr 2 was the first zero ofA,r 2.r 1 . If w

2(r 2)<1, then from~2.1! we find
A8(r 2).0, so A(r ),0 for somer,r 2 , r near r 2, and this is impossible. Ifw2(r 2).1, then
w2(r 3).1, andA(r 3).0 for somer 3,r 2 , r 3 nearr 2. If (ww8)(r 3).0, it was shown in Ref. 10,
Proposition 2.2, thatw8 tends to infinity for somer.r 3 , thereby violating the smoothness as-
sumption. If (ww8)(r 3),0, it was shown in Ref. 10, Proposition 2.3, thatA( r̄ ).0, thereby
violating ~3.1!. If (ww8)(r 3)50, thenw8(r 3)50, so~2.2! implies the contradiction (uw)(r 3)50.
ThusA(r ).0 if r.r 1 , soA(r )>0 if r. r̄ ; hence the results of Ref. 7 apply to show (A,w) is the
ERN solution. j

Remark:One case in which Proposition 2 applies is the following; namely, suppose that
„A(r ),w(r )… is the solution of~2.6! and ~2.7!, defined forr. r̄ , whereA( r̄ )50, andA(r ).0 for
r. r̄ , r nearr̄ . Then by Ref. 10, Theorems 3.4 and 3.7, the solution can be extended to be smooth
at r̄ , if r̄.0, and if r̄50, A~0!51; hence Proposition 2 applies. Thus,in proving Theorem 1, we
may assume that either case (i) or case (ii), above, hold. That is, we may assume that either there
is a sequence rn↘ r̄ such that (3.3) holds, or else that A(r ),0 for r near r̄, r. r̄ .

In what follows, we shall assume only that

~A,w!P~C13C2!~ r̄ , r̄1e!,

for somee.0; this case is far more difficult.
Notes.~1! We do not assume thatA or w is smooth atr̄ , nor do we assume that our solution

is regular, as in Ref. 10.
~2! The proof given in this paper is considerably more difficult than that in Ref. 10 because

since we allowA to change signs forr nearr̄ , the curve„w(r ),w8(r )… cana priori be ‘‘all over’’
thew2w8 plane. That is, bothA andw can oscillate unboundedly andw8 can be unbounded. We
shall, in fact, show that none of the above can occur; this will require that we ‘‘systematically’’
rule out all such pathological behavior.

~3! In what follows, we assume that (A,w) is not the ERN solution, and we shall prove that
~3.1! leads to a contradiction.

Proof of Theorem 1:We begin with the following lemma.
Lemma 4:There does not exist a sequencer n↘ r̄ satisfyingw(r n)

251.
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Proof: Suppose that the contrary holds. Then, by passing to a subsequence if necessary, we
may assume, without loss of generality, thatw(r n)51, andw8(r n)>0, for n51,2,... . We claim
that for eachn, A(r n)<0. To see this, suppose thatA(r n).0. Then, ifw8(r n)50, it follows by
uniqueness thatw(r )[1 andA(r )511c/r for some constantc. This violates~1.2!. Thus, we may
assume thatw8(r n).0. It follows that the orbit enters the regionw.1, w8.0, for r.r n , r near
r n , with A(r ).0. From Ref. 10, Proposition 2.2, it follows thatw8 tends to infinity for somer. r̄ ,
so the solution cannot be smooth. This contradiction proves our claim; i.e.A(r n).0. Now, since
u(r n)50, ~2.1! gives

r nA8~r n!1A~r n!522~Aw82!~r n!11,

and sinceA(r n)<0, we have

r nA8~r n!1A~r n!>1.

But this cannot hold for largen, in view of ~3.1!. j

Corollary 5: There is anr̃. r̄ such thatw2(r )Þ1 if r̄,r, r̃ .
In view of this corollary, we may assume that precisely one of the following holds:

w~r !.1, if r̄,r, r̃ , ~3.5!

w~r !,21, if r̄,r, r̃ , ~3.6!

or

21,w~r !,1, if r̄,r, r̃ . ~3.7!

In order to consider these cases, we shall need some preliminary results. We begin by noting
that from ~2.1!, we have

rA81A12Aw82512
u2

r 2
<1. ~3.8!

Also, given anyd.0, ~3.1! shows that forr near r̄ , rA8(r )1A(r ).2d, and so from~3.8!,

2Aw82<11d. ~3.9!

Thus we have the following.
Lemma 6:There is ane.0 such that

A~r !w82~r !<1, if r̄,r, r̄1e. ~3.10!

ThusAw82 is bounded from above ifr is nearr̄ . Our first goal is the show thatAw82 is bounded
~Proposition 10!; as a first step in this direction we have the following.

Lemma 7:Let r̄.0, and assume thatw(r ) is bounded forr near r̄ . Then (Aw82)(r ) is
bounded forr near r̄ .

Proof: Assume that the result is false. In view of~3.10!, we may assume that there is a
sequencer n↘ r̄ such that (Aw82)(r n)→2`. But from ~2.1!, we see that ifr̄.0 andw is bounded,
it follows thatAw82 is bounded in view of~3.1!. j

Lemma 8:Let r̄>0, and assume that there is ane.0 such that ifr is close tor̄ ,

~Aw82!~r !<2 1
22e. ~3.11!
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ThenAw82 has a negative limit atr̄ ~which may equal2`!, A(r ) is negative forr near r̄ , and
w82(r )→` as r↘ r̄ .

Proof: Let

f5Aw82; ~3.12!

then ~cf. Refs. 9 and 10! f satisfies the equation

r f 81S 2 f1 F

r Dw8212
u

r
ww850. ~3.13!

SinceA(r )→0, asr↘ r̄ , we seew82(r )→`. Also, for r near r̄ ,

2 f1
F

r
52 f112A2

u2

r 2
<22e2A2

u2

r 2
,2e2

u2

r 2
<2e. ~3.14!

We shall now show that

f 8~r !.0, if r is near r̄ . ~3.15!

To do this, we only consider thoser for which r̄,r, r̃ @c.f. ~3.5!–~3.7!#.
Suppose first that for all suchr , the sequence$w2(r )% is bounded. Then from~3.14!, we have,

at suchr ,

S 2 f1 F

r Dw8212
u

r
ww8,2ew822

u2

r 2
w821

2u

r
ww8. ~3.16!

If ( u/r )w8→0, asr↘ r̄ , then ~3.14! shows that (2f1F/r )w821(2u/r )ww8,0, so from~3.13!
we conclude that~3.15! holds. On the other hand, iflimr↘ r̄ u(u/r )w8u . 0, then as$w(r )% is
bounded anduw8(r )u→`, we see from~3.16! that ~3.15! holds. Thus,~3.15! holds if $w2(r )% is
bounded nearr̄ .

Suppose now thatw2(r n)→` for some sequencer n↘ r̄ ; we shall show that for largen, ~3.15!
holds. Thus, ifw2(r n)→`, we have, atr5r n ,

2
u2

r n
2 w8212

u

r n
ww85

2u

r n
2 @uw8222ww8r n#

5
2u

r n
2 @~12w2!w8222ww8r n#

,
2u

r n
2 F2

w2

2
w8222ww8r nG , ~3.17!

if n is large. Letxn5w(r n)w8(r n); thenxn
2→`, and if h(xn)52xn

2/222xnr n , then if xn→1`,
h(xn)5(xn/2)(2xn14r n)→2` @sinceu(r n)→2`#, while if xnk→ 2 ` for some subsequence

$nk%, thenh(xnk) 5 ( 2 xnk/2)(xnk 2 4r nk)→2 `. Thus,~3.17!and~3.16! show that~3.15!holds, at
xnk, so that~3.15! is valid. Thus limr↘ r̄ f (r ) exists and is<2 1

2, soA(r ) is negative forr nearr̄ ,
andw82(r )→` as r↘ r̄ . This completes the proof of Lemma 8. j

Lemma 9: Let r̄50; then (Aw82)(r ) is bounded forr near 0.
Proof: SupposeAw82 is not bounded nearr50. Then, in view of Lemma 6,Aw82 is not

bounded from below, so we can find a sequencer n↘0 such that (Aw82)(r n)<21
22e, for some
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e.0. By the last lemma,Aw82 has a negative limit atr50, and asAw82 is unbounded nearr50,
we see that (Aw82)(r )→2` as r↘0. Thus, from the last lemma, we have

A~r !,0, for r near 0, ~3.18!

w8~r ! is of one sign for r near 0, ~3.19!

lim
r↘0

w82~r !5`. ~3.20!

Next, from~2.1! limr↘0@u
2/r 2 1 2(Aw82)(r )# 5 1, and asAw82→2`, we see

lim
r↘0

u2~r !

r 2
5`. ~3.21!

Thus r 2/u2→0 asr↘0, so

lim
r↘0

2~Aw82!~r !

u2/r 2
521. ~3.22!

Since~3.21! holds, we have

2
F

r
5211A1

u2

r 2
.
u2

2r 2
for r near 0. ~3.23!

Now, in view of ~3.19! and~3.20!, either limr↘0 w8(r ) 5 1` or limr↘0 w8(r ) 5 2`. Then,
in either case limr↘0 w(r ) exists. Suppose first that limr↘0 w8(r ) 5 ` @the case where
w8(r )→2` will be discussed below#. We considerr in the range 05r̄,r, r̃ ; cf. ~3.5!–~3.7!.
Then there are three possibilities:w(r ) is bounded, limr↘0 w(r ) 5 2`, or limr↘0 w(r )
5 1`. Note first that sincew8(r )→`, if w(r )→1`, thenw is bounded near 0; cf. Fig. 3. Thus

FIG. 3. w is bounded nearr50.
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we shall suppose that

lim
r↘0

w8~r !5`, ~3.24!

and either

lim
r↘0

w~r !52`, ~3.25!

or

w~r ! is bounded nearr50; ~3.26!

we shall obtain a contradiction in both cases.
Now for r near 0, we have, from~2.7! and ~3.23!,

rAw95
2F

r
w82

u

r
w.

u2

2r 2
w82

u

r
w>

1

4

u2

r 2
w8, ~3.27!

because~3.25! or ~3.26! holds. That is, if~3.26! holds, then~3.21! implies

u2

4r 2
w82

u

r
w5

u

4r Fur w824wG.0, if r is near 0,

while if ~3.25! holds, then sincew5o(u),

u2

4r 2
w82

u

r
w5

u

4r F ~12w2!

r
w824wG.0.

Thus, forr near 0,~3.27! and ~3.22! give, for r near 0,

2w9>
1

4

u2

~2Ar2!
w85

1

4

u2

r 2 S 1

2Aw82D w83

r
>
c2

r
w83,

wherec is a positive constant. Now let 0,t,s, wheres is near 0. Then, from~3.28! we obtain

1

2 F 1

w82~ t !
2

1

w82~s!G52
1

2

1

w82~r !
U
t

s

5E
t

s w9

w82
dr>c2E

t

s dr

r
5c2 ln

s

t
,

so that

1

2 F 1

w82~ t !
2

1

w82~s!G>c2 ln
s

t
. ~3.28!

Now let t→0; then the left side of~3.28! is bounded@because of~3.20!#, but the right side tends
to `. This contradiction shows that the lemma holds if~3.24!, and either~3.25! or ~3.26! holds.

Now suppose that

lim
r↘0

w8~r !52`, ~3.29!

and either
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lim
r↘0

w~r !5`, ~3.30!

or ~3.25! holds; we shall indicate how to obtain a contradiction.@It is easy to see that if~3.29!
holds then limr↘ r̄w(r )Þ2`.] In this case we obtain, from~2.7!, ~3.23!, and~3.29!,

rAw9<
u2

2r 2
w82

u

r
w<

u2

4r 2
w8,

if r is near 0, so that, using~3.22!,

2w9<
1

4

u2

~2Ar3!
w85

1

4 F u2/r 2

2Aw82G w83

r
<c2

w83

r
,

sow9>(2c2/r )w83, and thus (2w9/w83)>c2/r . If we again integrate fromt to s, we get

1

2

1

w82~r !
U
t

s

>c2 lim
s

t
,

and lettingt→0 gives a contradiction, as before. This completes the proof of Lemma 9.j
We next have the following.
Proposition 10:(Aw82)(r ) is bounded ifr is nearr̄ .
Proof: From Lemma 9, we may assume thatr̄.0. Now chooser such thatr̄,r, r̃ , wherer̃

is defined in Corollary 5. Thus, as we have shown above,~3.5!–~3.7! are valid. Now ifw(r ) is
bounded, then Lemma 7 implies thatAw82 is bounded nearr̄ . Thus, we may assume thatw is
unbounded nearr̄ , so that forr̄,r, r̃ , eitherw(r ).1 orw(r ),21. Since the proofs are similar
in both cases, we shall restrict attention to the casew(r ).1 for r̄,r, r̃ .

Thus, assume thatw is unbounded nearr̄ , andw(r ).1 for r̄,r, r̃ . Now suppose thatAw82

is not bounded forr near r̄ . Then, as in the proof of Lemma 9, limr↘ r̄ (Aw82)(r ) 5 2`, and
~3.18!–~3.20! are valid. Thus, from~3.19!, we conclude that limr↘ r̄ w(r ) exists; hence

lim
r↘ r̄

w~r !51`. ~3.31!

Also, the orbit cannot stay in the regionw8.0 for r nearr̄ , for otherwise it would follow thatw
is bounded nearr̄ ; cf. Fig. 3. Thus the orbit enters the regionw8,0, and in view of~3.19!, we may
assume thatw8(r ),0 if r is nearr̄ ; cf. Fig. 4. In view of~3.19! we have

lim
r↘ r̄

w8~r !52`. ~3.32!

From ~2.7! we can write

Aw9w821
F

r 2
w831

uw

r 2
w8250. ~3.33!

Now, from ~2.1!,

rA81A12Aw82512
u2

r 2
,

so that forr near r̄ , sincer̄.0,

~Aw82! is well approximated by2c1
2w4, ~3.34!
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for some constantc1
2Þ0. Also,

F

r 2
w831

uw

r 2
w825

1

r
w832

A

r
w832

u2

r 3
w831

uw

r 2
w82,

and asr̄.0, we see that forr near r̄ ,

S F

r 2
w831

uw

r 2
w82D is well approximated by2c2

2w4w83, ~3.35!

for some constantc2
2Þ0. Thus, forr near r̄ , solutions of~3.33! are well approximated by the

equation

2c1
2w4w92c2

2w4w8350, ~3.36!

or, writing c25(c2/c1)
2, ~3.36! becomes

w91c2w8350, ~3.37!

wherec is a nonzero constant. Now the solution of~3.37! satisfying~3.32! is

w8~r !52
1

A2c2
1

Ar2 r̄
, r. r̄ ,

which implies thatw(r ) is bounded nearr̄ , contrary to~3.31!. This contradiction completes the
proof of Proposition 10. j

FIG. 4. w8,0 for r near 0.
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Proposition 10 yields a few useful corollaries. First, if we definev(r ) by ~cf. Ref. 8!

v~r !5~Aw8!~r !, ~3.38!

thenv satisfies the equation

v81
2w82

r
v 1

uw

r 2
50. ~3.39!

Corollary 11:limr↘ r̄ v(r ) 5 0.
Proof: v2(r )5A(r )„Aw82(r )…→0 asr↘ r̄ . j

Corollary 12: w(r ) is bounded forr near r̄ , and if r̄50, then limw2(r )51.
Proof: Consider Eq.~2.1!: the left side is bounded nearr̄ so thatu2/r 2 is also bounded near

r̄ . If r̄.0 thenu2 is bounded, sow is bounded nearr̄ , while if r̄50, thenw2(r )→1 asr↘ r̄ . j

We shall now consider the case wherew8 is bounded nearr̄ .
Proposition 13:Assume that there is anM.0 such thatuw8(r )u<M for r near r̄ , then

Theorem 1 holds.
To prove this proposition, we shall need a lemma.
Lemma 14:If w8 is bounded nearr̄ , then

A is of one sign nearr̄ , ~3.40!

w8 is of one sign nearr̄ , ~3.41!

and

lim
r↘ r̄

u2

r 2
51. ~3.42!

Proof: First note thatw8 bounded nearr̄ implies thatw is uniformly continuous nearr̄ , so that
limr↘ r̄ w(r ) 5 w̄ exists. Next, sincew8 is bounded nearr̄ , ~2.1! shows that limr↘ r̄ (u

2/r 2) 5 1, so
~3.42! holds and

u

r
→61, as r↘ r̄ . ~3.43!

Now writing ~3.39! in the form

r 2v812w82vr1uw50, ~3.44!

we see that ifw̄Þ0, limr↘ r̄ rv8(r ) 5 6w̄ Þ , sov8 is of one sign nearr̄ , and using Corollary 11,
v is of one sign nearr̄ , so ~3.40! and~3.41! hold. On the other hand, ifw̄50, ~3.42! implies that
r̄51, so from~3.39!, we havev8~1!50 andv9~1!Þ0. Thusv is again of one sign nearr̄ so ~3.40!
and ~3.41! hold. j

We can now give the following.
Proof of Proposition 13:The last-lemma implies thatA is of one sign nearr̄ . If A.0 nearr̄ ,

then the result in Ref. 7~cf. the remark after the proof of Proposition 2!, shows that (A,w) is the
ERN solution. Thus we may assume that

A~r !,0, if r is near r̄ , ~3.45!

and we shall show that this leads to a contradiction.
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First, suppose thatw̄50. Then from~3.42!, we see thatr̄51, and as in the proof of Proposi-
tion 2, the solution must be the ERN solution. Thus, we may assume that

w̄Þ0. ~3.46!

Let r̄,r 2,r 3 wherer 3 is nearr̄ . We consider two cases:

ūw̄Þ0 ~3.47!

or

ūw̄50. ~3.48!

Using ~2.7!,

E
r2

r3
r 2Aw9 dr1E

r2

r3

Fw8 dr1E
r2

r3
uw dr50. ~3.49!

Suppose first that~3.47! holds. Then

E
r2

r3
r 2Aw9 dr5r 2Aw8U

r2

r3

2E
r2

r3
~r 2A!8w8 dr,

and lettingr 2↘ r̄ gives, for some intermediate pointj,

E
r̄

r3
r 2Aw95r 3

2A~r 3!w8~r 3!2@j2A8~j!12jA~j!#w8~j!~r 32 r̄ !,

so that

E
r2

r3
r 2Aw9 dr5o~r 32 r̄ !. ~3.50!

Similarly, sinceF(r )5r2rA2u2/r→0 asr↘ r̄ @in view of ~3.42!#, we have, for some interme-
diate pointh,

lim
r2↘ r̄

E
r2

r3
Fw8 dr5E

r̄

r3
Fw8 dr5~Fw8!~h!~r 32 r̄ !5o~r 32 r̄ !. ~3.51!

Finally, we have, for some intermediate pointz,

lim
r2↘ r̄

E
r2

r3
uw dr5E

r̄

r3
uw dr5~uw!~h!~r 32 r̄ !5O~r 32 r̄ !, ~3.52!

where the constant is nonzero, in view of~3.47!. Taking the limit r 2↘ r̄ in ~3.49!, and using
~3.50!–~3.51! gives the contradiction

o~r 32 r̄ !5O~r 32 r̄ !.

Now suppose that~3.48! holds. In view of~3.46!, this meansū50 so ~3.42! implies r̄50.
Thus,w̄561, and, for definiteness, suppose thatw̄51 ~the proof forw̄521 is similar, and will be
omitted!. As above,~3.49! gives
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E
0

r3
r 2Aw9 dr5r 3

2A~r 3!w8~r 3!2E
0

r3
„r 2A8~r !12rA~r !…w8~r !dr.

But

r 3
2A8~r 3!w8~r 3!5o~r 3

3!

@sinceA(r 3)5o(r 3)#, and for some intermediate pointj,

E
0

r3
„r 2A812rA~r !…w8~r !dr5„j2A8~j!12jA~j!…„w~r 3!2w~0!…5o~r 3

3!;

thus

E
0

r3
r 2Aw9dr5o~r 3

3!. ~3.53!

Similarly, for some intermediate pointh,

E
0

r3
Fw8 dr5~Fw8!~h!r 35o~r 3

3!, ~3.54!

because

F~r !5r S 12
u2

r 2
2AD5r ~rA812Aw82!5o~r 3

2!.

However, for some intermediate pointz, we have

E
0

r3
uw dr5E

0

r3 u

r
wr dr5

u~z!

z
w~z!

r 3
2

2
5O~r 3

2!,

and this gives a contradiction, in view of~3.53! and~3.54!. This completes the proof of Proposi-
tion 13. j

In view of this last result,we may assume in what follows that

w8~r ! is unbounded forr near r̄ . ~3.55!

Our strategy for completing the proof of Theorem 1 is to first show that Theorem 1 holds,
provided that bothA(r ) andw8(r ) are of one sign~not necessarily the same!, for r near r̄ , and
then to prove that this assumption is always valid.

Proposition 15:Assume thatw8(r ) andA(r ) each are of one sign forr nearr̄ ; then Theorem
1 holds.

Proof: As we have remarked earlier, we may assume that~3.45! holds, and also in view of
Proposition 13, we may also assume that~3.55! holds. We shall show that our assumptions lead to
a contradiction.

First recall that sinceAw82 is bounded nearr̄ , it follows from Corollary 12 that forr nearr̄ ,
w is bounded, and ifr̄50, then w2(r )→1. Furthermore, asw8 is of one sign nearr̄ , w̄
5 limr↘ r̄ w(r ) exists and is finite. We assume for definiteness that

w8~r !.0, for r near r̄ ; ~3.56!

if w8,0 nearr̄ , the proof is similar.
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The proof is now divided into two cases:r̄50 and r̄.0.
Case 1. r̄50. Since limr↘0 w

2(r ) 5 1, ~3.56! implies that forr near 0, either~a! 21,w(r )
,0, or ~b! 1,w(r ),11e, for some smalle.0; cf. Fig. 5. Now from Corollary 11,v~0!50, and
from ~3.19!, v8(r ).0, for r near 0, andv8~0!>0. This implies thatv(r ).0 for r near 0, and this
is impossible becauseA,0 andw8.0.

Case 2. r̄.0. Sincew has a finite limit atr̄ , it follows from ~2.1! that limr↘0(Aw82)(r )
5 2L, whereL>0. If L.0, thenw82→` as r↘ r̄ , and ~3.56!, together with~3.39! shows that
v8( r̄ ).0, for r nearr̄ , which is impossible, as we have just seen. Thus we may assume thatL50.

If 21<w̄<0, or w̄>1, then~3.19! and~3.39! show thatv8(r ).0 for r nearr̄ so that ife.0
is small, we have, for some intermediate pointj,

v~ r̄1e!5v~ r̄1e!2v~ r̄ !5ev8~j!.0,

and this is a contradiction. Thus, we can assume thatw̄,21, or 0,w̄,1. Now asL50, ~2.6!
implies thatF( r̄ )50, soū5 r̄ . Also, from Refs. 8 and 9,

F8~ r̄ !5
2u2

r̄ 2
12Aw821

4uww8

r̄
,

so thatF8( r̄ ).0. ThusF~r !.0 for r. r̄ , r nearr̄ , so~2.6! implies thatA8(r ).0 for r nearr̄ , and
hence asA( r̄ )50, we get the contradictionA(r ).0 for r near r̄ . This completes the proof of
Proposition 15. j

Now in view of Corollary 5, we may assume that forr nearr̄ , one of the following must hold:

FIG. 5. w8.0, w2 near 1, forr near r̄.
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~I!
~II !
~III !

w2~r !,1,
w~r !.1,
w~r !,21.

Our objective is to show that in each of these cases, bothA(r ) andw8(r ) have fixed signs forr
near r̄ . Then Proposition 15 will complete the proof of Theorem 1. We begin with the most
difficult case; namely the following.

Case I: w2(r ),1 for r near r̄ .
In order to carry out our program in this case, we shall first rule out ‘‘infinite rotation’’ of the

orbit „w(r ),w8(r )… about the origin. There are two cases to consider; namely

lim
r↘ r̄

w~r !50, andw8 is not of one sign nearr̄ , ~3.57!

or

21< lim
r↘r

w~r !<0< lim
r↘ r̄

w~r !<1 ~3.58!

and

lim
r↘r

w~r !, lim
r↘ r̄

w~r !;

cf. Figs. 6 and 7.
Proposition 16:It is impossible for~3.57! to hold.
Proof: DefineQ8(r )52w82/r , Q(r 1)50. Then,Q(r ),0 if r̄<r,r 1 and~2.1! can be written

as

~reQ A!85S 12
u2

r 2 DeQ. ~3.59!

Also, ureQ(r )A(r )u<urA(r )u, so that

reQ~r !A~r !→0, as r↘ r̄ . ~3.60!

Now if r̄21/r̄>0, then~3.57! and~3.59! imply that for r nearr̄ , (reQA)8>0, so that for suchr ,

reQ~r !A~r !5reQ~r !A~r !2 r̄ eQ~ r̄ !A~ r̄ !5„jeQ~j!A~j!…8.0,

for some intermediate pointj. It follows thatA(r ).0 for r near r̄ , and this is contrary to our
assumptions; cf. the remark after the proof of Proposition 2.

If r̄21/r,0, then a similar argument shows thatA(r ),0 for r near r̄ . Thus from~2.7!, if
w8(r )50, thenw9(r ).0, for 0,w(r ),1, andw9(r ),0, if 21,w(r ),0; cf. Fig. 8. Thus,w8(r )
is of one sign forr near r̄ , contrary to our assumption~3.57!. This completes the proof of
Proposition 16. j

We now turn to the remaining case; namely~3.58!. To handle, this case, we first note that

r̄.0, ~3.61!

if ~3.58! holds. Indeed,~3.58! implies that we can find a sequencer n↘ r̄ such thatw(r n)50. Then
~2.1! gives
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r nA8~r n!1„112w82~r n!…A~r n!512
1

r n
2 ,

and since the left side is bounded~Proposition 10!, it follows that$1/r n
2% is also bounded, and this

proves~3.61!.
Proposition 17:It is impossible for~3.58! to hold.
Proof: If ~3.58! holds, then we can find ane,

0,e, 1
4 ,

such that eitherlimr↘ r̄ w(r ) . 2e, or limr↘ r̄ w(r ) , 22e. Without loss of generality, let us as-
sume that the former inequality holds; cf. Fig. 9.

Thus there exist sequences of points$an% and$bn%, such that

bn.an.bn11. r̄ , bn→ r̄ , ~3.62!

w~an!50, w~bn!52e, ~3.63!

and if an,r,bn , then

w~an!,w~r !,w~bn!, ~3.64!

FIG. 6. The case where~3.57! holds.
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and finally,

w8~r !.0; ~3.65!

see Fig. 9. We note that the intervals [an ,bn] are all disjoint from each other.
Lemma 18:There existd.0,h.0, and an integerN.0, and sequences$cn%, $dn%, defined for

n>N,

an<cn,dn<bn , ~3.65!

such that ifr satisfiescn<r<dn , then

A~r ! is of one sign, ~3.66!

uf~r !u>h, ~3.67!

w~dn!2w~cn!>d. ~3.68!

Before giving the proof, we shall need a few lemmas. We begin with the following easy result.
Lemma 19:SupposeF„A(r ),w(r ),r …[F(r )Þ0 on I5[a,b], wherea.0. ThenA can have at

most one zero onI .

FIG. 7. The case where~3.58! holds.
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Proof: From ~2.6!, if A(r )50 for somerPI , we seerA8(r )5F(r )/rÞ0. ThusA8 is of one
sign, and this implies thatA can have at most one zero onI . j

Lemma 20:SupposeF„A(r ),w(r ),r …[F~r !Þ0 on the intervalI5@a,b#, wherea.0, and that
w(a)50, w(b)52e.0. Then there exist numbersc,d, a<c,d<b such thatw(d)2w(c)>e/2,
andA has one sign on [c,d].

Proof:We break the proof up into two cases; namely,A(a)A(b)Þ0 andA(a)A(b)50.
Case 1. A(a)A(b)Þ0.
If sgnA(a)5sgnA(b), then setc5a, d5b, and the result holds in view of Lemma 19. If

sgnA(a)ÞsgnA(b), choosez such thatw(z)5e, a,z,b. If A(z)Þ0, then in view of Lemma
19, one of the following must hold; namely, eitherA(a)A(z).0 orA(z)A(b).0. In the first case,
choosec5a, d5z, and in the second case, choosec5z, d5b. If A(z)50, choosez8PI with
w(z8)53e/2. ThenA(z8)Þ0, and we proceed as before to reach the desired conclusion; this
completes the proof in case 1.

Case 2. A(a)A(b)50.
In view of Lemma 19, we cannot have bothA(a)50 andA(b)50. Thus supposeA(a)50,

A(b)Þ0; ~the proof in the other case is similar!. Now choosezPI , z neara, such thatA(z)Þ0,

FIG. 8. w8 is of one sign nearr̄ .
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and apply the result in Case 1 to the situation wherea is replaced byz. This proves Lemma 20.j

Proof of Lemma 18:We break the proof up into three cases:r̄.1, r̄,1, r̄51.
Suppose first thatr̄.1. Then set

r̄2
1

r̄
52h,

whereh.0. Since limr↘ r̄ A(r ) 5 0, then ifr. r̄ ,

F~A,w,r !5r2rA2
u2

r
.r2rA2

1

r
. r̄2

1

r
2rA.

Thus there exists as, 0,s,e such that if 0,r2 r̄,s, then

F~A,w,r !.h. ~3.69!

Now we only consider thosen for whichbn, r̄1s; @cf. ~3.62!#. Then withI n5[an ,bn], we apply
Lemma 20 to conclude that~3.65!–~3.68! hold, with d5e/2.

Suppose now thatr̄,1. Then set

r̄2
1

r̄
522h,

whereh.0. Since

F~A,w,r !5r2
u2

r
2rA,

and rA(r )→0 as r↘ r̄ , andu(r )512w2(r ), we see that we can find as.0 such that if 0,r
2 r̄,s, and 0,w,s,

FIG. 9. limr↘ r̄w(r ).2e.
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F~A,w,r !,2h. ~3.70!

Again, we only consider thosen for which bn, r̄1s. Now as 0<w(r )<2e if an<r<bn , we
choosebn8 such thatw(bn8) 5 min(s,2e). ThenF(r ),2h on the interval@an ,bn8#. Another appli-
cation of Lemma 20 shows that we can achieve~3.65!–~3.68!.

Finally, consider the caser̄51. Considerw satisfyinge<w<2e. Then for thesew,

12
u2

r
>12~12e2!2[2h.0,

sincee,1/4. Thus, ifr is sufficiently close to 1, say 0,r21,s, thenF(A,w,r ).h. Takingn so
large thatbn, r̄1s, and definingcn by w(cn)5e, and settingdn5bn , we see that Lemma 20
again applies, and we can achieve~3.65!–~3.68!. This completes the proof of Lemma 18. j

We now can give the following proof.
Proof of Proposition 17:From Lemma 18, we see that we have infinitely many intervals,

Jn5[cn ,dn],[an ,bn], where~3.66!–~3.68! hold onJn . We now consider two cases.
Case a.For infinitely many intervalsJn ,

~AF!~r !.0, if rPJn . ~3.71!

Case b.For all but a finite number of intervalsJn ,

~AF!~r !,0 if rPJn . ~3.72!

The proof is somewhat involved, so before giving the details, we shall discuss the strategy.
The basic idea is to show that there is az.0 such that

dn2cn>z; ~3.73!

then sincer̄,an<cn,dn<bn andbn→ r̄ , ~3.73! would give the desired contradiction. Now, in
order to carry out this program, we need the following fundamental lemma.

Lemma 21.Let 0, r̄,a,b,2r̄ , and assume that (A,w) is a solution of~2.1!, ~2.2! on
J15@a,b# or J25@2b,2a#. Assume too that on this interval,w2(r ),1,

0,u~Aw82!~ r̄ !u,L ~3.74!

and

uF~r !u>h, ~3.75!

for some positive constantsL andh. Then

ub2au>z.0, ~3.76!

wherez is a constant depending only onr̄ , L, h, and

D[uw~b!2w~a!u. ~3.77!

Proof: Assume first that we are onJ1 , and that onJ1 both

w8.0 ~3.78!

and

AF.0. ~3.79!
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Define the constantm by

m5maxS 1h ,
16r̄ 2L

hD D . ~3.80!

We claim that

if rPJ1 and w8~r !>m, then w9~r !,0. ~3.81!

To see this, we have from~2.7!,

r 2Aw91Fw81uw50,

and asuFw8u.1 and uuwu,1/2 on J1 , it follows that sgn(Fw81uw)5sgnFw85sgnF; thus
sgnw95sgn~2AF!,0, and this proves~3.85!. It follows from this that

if r̃PJ1 and w8~ r̃ !<m, then w8~r !,m for r. r̃ , rPJ1 . ~3.82!

Now definej by

w~j!5
w~a!1w~b!

2
.

Then if for somer̃PJ1 , r̃<j, we havew8( r̃ )<m, thenw8(r )<m for all r> r̃ . In this case, we
would have, for some intermediate pointu,

ub2au>ub2 r̃ u5
uw~b!2w)~ r̃ !u

uw8~u!u
>

D/2

m
5z,

and this would prove the result. Thus,we may assume that

w8~r !>m, for all rPJ1 , r<j. ~3.83!

We will show that this leads to a contradiction.
We first claim that

w9

w82
,

2Fw8

2r 2Aw82
, if rPJ1 . ~3.84!

Indeed,~2.7! gives

2w9

w82
5

Fw81uw

r 2Aw82
.

Fw8

2r 2Aw82
, ~3.85!

becauseuFw8u.1, and uuwu,1
2 imply that sgn(Fw81uw)5sgn~Fw8!. Thus using ~3.78!,

sgn@(Fw81uw)/r 2Aw82#5sgn[Fw8/A]5sgnw8.0, and this gives~3.84!.
Next, we show

2Fw8

2r 2Aw82
<2c2w8~r !, if rPJ1 , r<j, ~3.86!

where
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c25
h

8r̄ 2L
. ~3.87!

To see this we have, forrPJ1 , r<j,

Fw8

2r 2Aw82
5U Fw8

2r 2Aw82
U> hw8

2r 2L
>

hw8

8r̄ 2L
, ~3.88!

sincer<j,b<2r̄ , and this gives~3.86!.
Now if rPJ1 , r<j, ~3.84! and ~3.88! give

w9

w82
<2c2w8.

Integrating this froma to j gives

2
1

w8~j!
,

1

w8~a!
2

1

w8~j!
<2c2„w~j!2w~a!…52

c2D

2
,

so thatw8(j),2/c2D516r̄ 2L/hD<m, and this contradicts~3.83!. Thus the lemma is proved if
we are onJ1 , and both~3.78! and ~3.79! hold.

Now suppose that we are onJ2 , and both~3.78!, and~3.79! hold. It is clear that in this case
the same proof works; we merely substitute2b for a and2a for b.

Next, consider the case wherew8,0, ~on J1 or J2!, and~3.79! holds. Note that if (A,w) is a
solution of~2.1!, ~2.2!, then so is (A,2w). Also, if (A,w) satisfies the hypotheses of the lemma,
so does (A,2w); this shows that the casew8,0 is reduced to the casew8.0.

Finally, suppose thatAf,0, onJ ~whereJ5J1 or J2!. We extend the functionsA andw to
2J by defining

„A~2r !,w~2r !…5„A~r !,w~r !…, rPJ.

SinceF(2r )52F(r ), we see thatAF.0 on2J. Thus, applying what we have already proved
to2J gives that (2A,2w) satisfies the conclusions of the lemma, and hence so does (A,w). This
completes the proof of Lemma 21. j

We now return to the proof of Proposition 17. For this, we shall use Lemmas 18 and 21. Thus,
choosen so large thatbn,2r̄ ; cf. ~3.62!. Now we apply Lemma 21 to the intervalsJn5[cn ,dn];
the hypotheses of Lemma 21 are valid because of Proposition 10, and~3.65!–~3.67!, of Lemma
18. We conclude that for largen, dn2cn>z, where z is independent ofn. Thus for largen,
bn2an>z, and this contradicts~3.62!. The proof of Proposition 17 is complete. j

We now return to the proof of Theorem 1. For this, recall that from Corollary 5, we have that
for r nearr̄ , one of the following must hold: eitherw2(r ),1, orw(r ).1, orw(r ),21. In view
of Propositions 16 and 17, the orbit„w(r ),w8(r )… cannot have infinite rotation about~0,0!; thus
for r nearr , we may assume that the orbit does not crossw50. We shall show that in all of the
above cases bothA andw8 are each of fixed sign forr near r̄ , and then Proposition 15 will
complete the proof of Theorem 1.

To carry out this program, we first note that forr near r̄ , we cannot have both
A(r )505w8(r ). Indeed, forr near r̄ , our above remarks imply that (uw)(r )Þ0, so that~2.2!
implies that not bothA(r ) andw8(r ) can be zero. Similarly, not bothA(r ) andA8(r ) can be zero
for somer. r̄ , since if this were so,~2.6! impliesF(r )50 so ~2.7! would give the contradiction
(uw)(r )50.
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Now let us denote the regionw,21 by a5a1øa2 ~cf. Fig. 10!; the region21,w,0 by
b5b1øb2 ; the region 0,w,1 by c1øc2 ; and the region 1,w by d1ød2 . For r nearr̄ , we
may assume that the orbit lies in precisely one of the regionsa, b, c, or d.

Lemma 22: If v(s)50, for s near r̄ , then (uwv8)(s),0.
Proof: If s is nearr̄ , then (uw)(s)Þ0, by our above remarks. Thus from~3.39!,

~uwv8!~s!52
u2~s!w2~s!

s2
,0,

and this proves the lemma. j

We can now complete the proof of Theorem 1. Namely, ifr is near r̄ , then we have
(uw)(r )Þ0. Thus the last lemma shows thatv changes sign at every zero. Sincev can have at
most one sign change in each of the regionsa, b, c, or d, A, andw8 can have at most one sign
change between them. Thus forr nearr̄ , A andw8 each are of fixed sign. As we have noted above,
Proposition 15 completes the proof of Theorem 1. j

ACKNOWLEDGMENTS

We wish to thank Piotr Bizon and Robert Wald, for explaining the physics of black holes to us.
Both authors are supported in part by National Science Foundation, Grant No. G-DMS

9501128.

1R. M. Wald,General Relativity~University of Chicago Press, Chicago, 1984!.
2P. A. Anderson, W. A. Hiscock, and D. J. Lorenz, Phys. Rev. Lett.74, 4365~1995!.
3S. W. Hawking, G. T. Horowitz, and S. F. Ross, Phys. Rev. D51, 4302~1995!.
4J. A. Harvey and A. Strominger, inRecent Directions in Particle Theory—From Superstrings and Black Holes to the
Standard Model, edited by J. Harvey and J. Pochinski~World Scientific, Singapore, 1993!.

5C. F. E. Holzey and F. Wilczek, Nucl. Phys. B380, 447 ~1992!.
6M. J. Duff and J. Rahmfeld, Phys. Lett. B345, 441 ~1995!.
7J. Smoller and A. Wasserman, Phys. Rev. D52, 5812~1995!.

FIG. 10. aøbøcød.

1483J. A. Smoller and A. G. Wasserman : Uniqueness of zero surface gravity SU(2) Einstein

J. Math. Phys., Vol. 37, No. 3, March 1996



8J. Smoller, A. Wasserman, S.-T. Yau, and J. McLeod, Commun. Math. Phys.143, 115 ~1991!.
9J. Smoller and A. Wasserman, Commun. Math. Phys.151, 303 ~1993!.
10J. Smoller and A. Wasserman, J. Math. Phys.36, 4301~1995!.
11P. Bizon, Phys. Rev. Lett.61, 141–144~1988!.
12B. Carter, Phys. Lett.21, 423 ~1966!.

1484 J. A. Smoller and A. G. Wasserman : Uniqueness of zero surface gravity SU(2) Einstein

J. Math. Phys., Vol. 37, No. 3, March 1996


