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In this paper we prove that the only spherically symmetric black hole solution to
the SU2) Einstein—Yang/Mills equations that has zero temperature at the event
horizon is the extreme Reissner—Nordstreolution. No assumptions are made on
the signs of the metric coefficients, save that the metric has Lorentz
signature. ©1996 American Institute of Physids$S0022-24886)02803-2

I. INTRODUCTION

Black holes having a degenerate horizon, that is, vanishing surface grewify, are called
extremal. In view of Hawking's celebrated formulsee Ref. },

K=27T,

where 7 is the temperature at the horizon, this implies that such black holes have zero horizon
temperature, and thus do not radiatepwever, see Refs. 2 and.3rhe quantum mechanical
stability of extremal black holes makes them very interesting objects, in various contexts. First,
they are natural candidates for the final states of the evaporation process. Second, the scattering of
quantum fields off extremal black holes can be described entirely within the semiclassical approxi-
mation, and this allows one to analyze the information loss in black hole evaporation without
confronting the problem of unknown Plank-scale phy&iEnally, it was suggested in Ref. 5 that
extreme black holes resemble, in a certain sense, elementary particles—in fact, it was recently
shown in Ref. 6 that extremal black holes can be identified with elementary string excitations.

In Ref. 7 it was shown that the only black-hole solution of the static, spherically symmetric,
coupled Einstein—Yang/Mill$EYM) equationgwith SU(2) gauge grouf) which has zero surface
gravity, is the extreme Reissner—Nordstr@ERN) solution. More precisely, if the Einstein metric
is written in the form

ds?=—A(r)B(r) 2 dt?+ A~ X(r)dr2+r3(d6>+sir’ 9 d¢?), (1.2
and the SW) Yang/Mills field is (cf. Refs. 7—10
F=w'(r)r, dr/Ar do+w'(r)mdr/\(sin 8 d¢)— (1—w?(r))73 d6/\(sin 6 d¢), (1.2
where ;7,75 form a basis for the Lie algebra @), then if

lim A(r)=0=Ilim A’'(r), A(r)=0, forr>r, (1.3
r\.r r\.r

the metric must be the ERN metric; nameélyr) =[(r —1)/r]% B(r)=1, w(r)=0, and the Yang—
Mills curvature 2-form takes values in the Lie algebfd)ult was also proved in Ref. 7 that for
the metric(1.1), the surface gravity=0 if and only if A’ vanishes at the black hole horizon

In this paper we shall strengthen the above result, so as to also apply to the interior of a black
hole. Namely, we will prove that if4,w) is a smooth solution of the EYM equations, defined for
r>r, such thatA is positive for some large, and if
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lim A(r)=0=lim A’(r), (1.4
NI N\

then again the metri€l.1) is the ERN metricw(r)=0, and the Yang/Mills curvature 2-form lies
in u(1); cf. Theorem 3.1 The proof of this resultmisuchmore difficult than the proof in Ref. 7,
becauseA(r) is not assumed to be positive forr.

Finally, we remark that it was proved in Ref. 1Glso see Ref. 11 that if A(r)=0 and
A’(r)#0, then the singularity in the metric at=r can be transformed away by a “Kruskal-like”
change of coordinates in which the YM field remains well behaved. Moreover, it was proved in
Ref. 12 that for the ERN solution, the metric singularityr atr can also be transformed away. It
thus follows from our result here that fany SU(2) spherically symmetric EYM black hole
solution with event horizon at=r>0, the singularity in the metric at=r can be transformed
away by a change of coordinates, whereby the YM field remains well behaved.

Il. PRELIMINARIES

As discussed elsewheref. Refs. 8 and § the static, spherically symmetric EYM equations,
with gauge group S(2) can be written in the form

2

u
rA’+(1+2w’2)A=1—r—2, (2.1

u2
r2Aw’ + r(1—A)—T w’ +w(1-w?)=0, (2.2
B’ _2W’2 )3
E_ r ] ( . )
where

u(r)=1-w(r). (2.9

Since(2.1) and(2.2) do not involveB, we can use these to obtafhandw, and then usé2.3) to
find B. Herew(r) is the connection coefficient that determines the Yang—Mills curvature 2-form;
see Refs. 8 and 9. If we write

u2
<I>(A,W,r)=r(1—A)—T, (2.9

then(2.1) and(2.2) can be written in the more compact form
rA’+2w'2A=®/r, (2.6)
r2Aw’ +dw’ +w(1—w?)=0. (2.7
If (A(r),w(r)) is a specific solution 0f2.1),(2.2), then we write®(r)=®(A(r),w(r),r).

lll. THE THEOREM

In this section we shall prove the following theorem.
Theorem 1: Let (A(r),w(r)) be a smooth solution aR.1) and(2.2), satisfying

lim A(r)=0=Ilim A’(r), (3.1
N\ N\
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FIG. 1. A oscillates.

for somer =0, and assumA(r,) >0 for somer ;>maxr,1). Then (A,w) is the extreme Reissner—
Nordstran (ERN) solution; namely,

2
A(r)=(T) ,  w(r)=0. (3.2

Remarks:

(1) If (3.2 holds, then from(2.3) we haveB(r)=1.

(2) Theorem 1 was proved in Ref. 7 under the additional hypothesigmat=0 for r >r. We
show here that the theorem is still true under the far weaker hypotiAésig >0 for some
ry>max(ly).

Proof of Theorem 1There are three cases to consider; namelyt 00, the following occurs.

Case (i).There is a sequenag\,r such that

(—1)"A(r,)>0. (3.3

In this case we say tha# oscillates cf. Fig. 1.

Case (ii). Ar)<O0 forr>r, r nearr; cf. Fig. 2.

Case (i) A(r)>0 forr>r, r nearr.

As mentioned above, a proof of the Theorem in dgisewas given in Ref. 7, under the additional
hypothesis that\(r)=0 for r>r.

We shall prove that neither of the cad@sor (ii) can occur, and that if cagei) occurs, the
solution is the ERN solution. The proof is further divided into two subcases; namely either the
solution (A,w) is “smooth up to the boundary;”i.e. A,w) e (C1X C?)[r,r + €) for somee>0, or
(A,w) is not smooth at. The following proposition is subsumed by Theorem 1. The simple proof
is given here in order to demonstrate that the difficulties occur when néitimer w is assumed
to be smooth at.

Proposition 2: Suppose thatA,w) e (C*X C?)[r,r+¢€) for somee>0. If (3.1) holds, then
r=1, and the solution is the ERN solutid8.2).

Before giving the proof, we shall need a preliminary result.

Atn)

* >
;\_/

FIG. 2. A<O nearr.
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Lemma 3:If (A,w) is a solution of the EYM equations defined in an open interval abgut
and if we havew?(ry) <1, A’(r,)=0 andA(r,) <0, thenr,<1.
Proof: If ry=1, then from(2.1) we obtain the contradiction

u?(ro)
0>(1+2wW'2(rg))A(rg)=1— 2 =0.
0

Proof of Proposition 2if r =0, then(as in Ref. 10 expandingA andw in Taylor polynomials
gives

A(r)=Ay+Ar+0(r?),
W(r)=wg+w;r+0(r?),

and we easily obtain fror2.1) and(2.2) thatA,=1. Thus,A(0)=1 and this violates3.1). If >0,
then from(2.6) we seed(r)=0 so(2.5) givesr=u?, where

u=1-w?  w=w(r). (3.9

From (2.7) we concludeuw=0, so sincer >0, we obtainw=0, and thusr =1. Now A(r;)>0,
A(1)=0, so minA(r) in the interval[1r;] cannot be negative, in view of Lemma 3; hence
A(r)=0 on 1<r=<r,. To invoke the results of Ref. 7, we must show tA4t)=0 for allr>1. To
do this, suppose that, was the first zero ofA,r,>r,. If w?(r,)<1, then from(2.1) we find
A’(r,)>0, so A(r)<O0 for somer<r,, r nearr,, and this is impossible. Ifv?(r,)>1, then
w?(r3)>1, andA(rz)>0 for somer;<r,, ry nearr,. If (ww’)(rz)>0, it was shown in Ref. 10,
Proposition 2.2, thawv’ tends to infinity for some >r 5, thereby violating the smoothness as-
sumption. If gvw’)(r3)<O0, it was shown in Ref. 10, Proposition 2.3, thafr)>0, thereby
violating (3.2). If (ww’)(r3)=0, thenw’(r3)=0, so(2.2) implies the contradictionyw)(r3) =0.
ThusA(r)>0if r>r,, soA(r)=0 if r>r; hence the results of Ref. 7 apply to shoi, ) is the
ERN solution. |
Remark: One case in which Proposition 2 applies is the following; namely, suppose that
(A(r),w(r)) is the solution of(2.6) and(2.7), defined forr >r, whereA(r)=0, andA(r)>0 for
r>r, r nearr. Then by Ref. 10, Theorems 3.4 and 3.7, the solution can be extended to be smooth
atr, if r>0, and ifr=0, A(0)=1; hence Proposition 2 applies. This,proving Theorem 1, we
may assume that either case (i) or case (ii), above, hold. That is, we may assume that either there
is a sequence N\, r such that (3.3) holds, or else thai(¥) <O for r nearr, r>r.
In what follows, we shall assume only that

(A,w) e (C*XC?)(r,r+e),

for somee>0; this case is far more difficult.

Notes.(1) We do not assume that or w is smooth at, nor do we assume that our solution
is regular, as in Ref. 10.

(2) The proof given in this paper is considerably more difficult than that in Ref. 10 because
since we allowA to change signs far nearr, the curve(w(r),w’(r)) cana priori be “all over”
thew—w' plane. That is, bot andw can oscillate unboundedly and can be unbounded. We
shall, in fact, show that none of the above can occur; this will require that we “systematically”
rule out all such pathological behavior.

(3) In what follows, we assume thaf(w) is not the ERN solution, and we shall prove that
(3.1) leads to a contradiction.

Proof of Theorem 1We begin with the following lemma.

Lemma 4:There does not exist a sequenga.r satisfyingw(r,)?=1.
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Proof: Suppose that the contrary holds. Then, by passing to a subsequence if necessary, we

may assume, without loss of generality, thtr,,)=1, andw’(r,)=0, forn=1,2,... . We claim

that for eachn, A(r,,)<0. To see this, suppose thafr,)>0. Then, ifw’(r,)=0, it follows by
unigueness that(r)=1 andA(r)=1+c/r for some constart. This violateq(1.2). Thus, we may
assume thatwv'(r,)>0. It follows that the orbit enters the regiov>1, w’'>0, forr>r,, r near

r,, with A(r)>0. From Ref. 10, Proposition 2.2, it follows that tends to infinity for some>r,

so the solution cannot be smooth. This contradiction proves our clainf(itg) >0. Now, since
u(r,)=0, (2.2 gives

A (1) +A(ry)=—2(Aw'?)(r) +1,
and sinceA(r,) <0, we have
raA(rp) +A(r)=1.
But this cannot hold for largae, in view of (3.1). |

Corollary 5: There is arf >r such thaw?(r) #1 if r<r<f.
In view of this corollary, we may assume that precisely one of the following holds:

w(r)>1, if r<r<r, (3.5
w(r)<-—1, if r<r<fr, (3.6

or
—1<w(r)<1, if r<r<f. (3.7

In order to consider these cases, we shall need some preliminary results. We begin by noting
that from (2.1), we have

2
u
rA'+A+2Aw'2=1—r—2s1. (3.9

Also, given any5>0, (3.1) shows that for nearr, rA’(r)+A(r)>—46, and so from(3.9),
2AW'2<1+6. (3.9

Thus we have the following.
Lemma 6:There is ane>0 such that

A(NW'2(r)<1, if r<r<r+e. (3.10

ThusAw'? is bounded from above if is nearr. Our first goal is the show thatw’?2 is bounded
(Proposition 1 as a first step in this direction we have the following.
Lemma 7:Let r>0, and assume that(r) is bounded forr nearr. Then Aw'?)(r) is
bounded forr nearr.
Proof: Assume that the result is false. In view (8.10, we may assume that there is a
sequence,\r such that Aw’?)(r,,)— —c. But from(2.1), we see that if >0 andw is bounded,
it follows that Aw’? is bounded in view of3.1). [ ]
Lemma 8:Let r=0, and assume that there is ar0 such that ifr is close tor,

(AW?)(r)<—i-e. (3.11)
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ThenAw'? has a negative limit at (which may equal-=), A(r) is negative for nearr, and
W'2(r)—m asr\r.
Proof: Let
f=Aw'?; (3.12

then(cf. Refs. 9 and 1Df satisfies the equation

()] u
rf’+ 2f+7 w'2+2rww’=o. (3.13

SinceA(r)—0, asr\,r, we seew’?(r)—w. Also, forr nearr,

P u? u? u?
21+ —=2f+1-A- z=-2e-A- z<—€ z=-e (3.14
We shall now show that
f'(r)y>0, if r is nearr. (3.15

To do this, we only consider thosefor which r<r <t [c.f. (3.5—(3.7)].
Suppose first that for all suah the sequenc{a/vz(r)} is bounded. Then frorB.14), we have,
at suchr,

2

W’2+ZEWW’<— -4 '2+—u ! 3.1
. ew r2W ; ww'. (3.16

P
2f+—
r

If (u/r)w’—0, asr\,r, then(3.14 shows that (& +®/r)w’2+ (2u/r)ww’<0, so from(3.13
we conclude that3.15 holds. On the other hand, im, r|(u/r)w’| > 0, then as{w(r)} is
bounded and,iw (r)|—, we see from(3.16 that (3. 13 holds Thus(3.15 holds if {wz(r)} is
bounded near.

Suppose now that(r ,) — for some sequenag,\r; we shall show that for large, (3.15
holds. Thus, ifw?(r,)—, we have, at=r,

U2 12 u ! —u 12 !

- W +2—ww'=— [uw'“=2ww'r ]
2 2 n
rn I r

—u
=z [(1—w?)w'?—2ww'r ]
n
—u 2

w
<— | == w'?Z=2ww'r,|, (3.17
r 2

if nis large. Letx,=w(r,)w’'(r,); thenx?—o, and if h(x,) = —x2/2—2x,r,,, then if x,—+oc,

h(X,) = (X,/2) (— X, +4r ) — — [sinceu(r,)——o], while if Xp,— = ® for some subsequence

{ny}, thenh(x, ) = (= X, /2)(Xn, — 41y )— — . Thus,(3.17) and(3.16) show that3.15 holds, at

Xn,» SO that(3.19 is valid. Thus lim. ; f(r) exists and is<s—3, SoA(r) is negative for nearr,

andw’2(r)— asr\,r. This completes the proof of Lemma 8. ]
Lemma 9: Let r=0; then Aw’?)(r) is bounded for near 0.

Proof: SupposeAw’? is not bounded near=0. Then, in view of Lemma 6Aw’'? is not
bounded from below, so we can find a sequenge,0 such that Aw’?)(r,)<—3—¢, for some
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A

= W

FIG. 3. wis bounded near=0.

€>0. By the last lemmaAw’? has a negative limit at=0, and asAw’? is unbounded near=0,
we see thatAw'?)(r)——o asr\,0. Thus, from the last lemma, we have

A(r)<O0, forr near O, (3.18
w'(r) is of one sign forr near O, (3.19
lim w'?(r)=os. (3.20

r\.0

Next, from(2.1) lim,« o[u?/r? + 2(Aw'?)(r)] = 1, and aAw'>— —, we see

2

. u(r)
lim 7—200. (32])
r\.0
Thusr?/u?>—0 asr\,0, so
2(AW'?)(r
jim 22Oy (3.22
o | ur

Since(3.21) holds, we have

u2

® u?
— =AY o

o2 for r near 0. (3.23
Now, in view of (3.19 and(3.20), either lim o w'(r) = + orlim. o w'(r) = —. Then,

in either case lim o w(r) exists. Suppose first that ljmg w'(r) = o [the case where

w’ (r)——o will be discussed beloyv We consider in the range &r<r<ft; cf. (3.5—(3.7).

Then there are three possibilities(r) is bounded, lim o w(r) = —c, or lim o w(r)

= +o0. Note first that sincev’ (r)—oo, if w(r)—+oo, thenw is bounded near 0; cf. Fig. 3. Thus
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we shall suppose that

lim w'(r)=o0, (3.29
0
and either
lim w(r)=—oo, (3.25
r\.0
or
w(r) is bounded near=0; (3.2

we shall obtain a contradiction in both cases.
Now for r near 0, we have, fron2.7) and (3.23),

A -d u >u2 o 1u? , (3.2
FAW'= — W — —wW>—> W ——w=— — w/, )
r r 2r r 4r2

becausd3.25 or (3.26) holds. That is, if(3.26 holds, then(3.21) implies

u> o u u
— W - —w=—
4r? r 4r

u
FW'—4W}>O, if r is near O,

while if (3.25 holds, then sincev=o0(u),

v ooouu[(a-wh) anl=0
A TS A R
Thus, forr near 0,(3.27 and(3.22 give, forr near O,
1 u? 1 u? 1 w3 c? 5
_ H;_— [ - = ’
W=2 (—Ar?) W= TAaw?) r r Vo

wherec is a positive constant. Now let<t<s, wheres is near 0. Then, fron§3.28 we obtain

1 1 1 1 1 |5 (sw g 2F dar | S
— — = —— = = — = —
2 W’z(t) W’?(S) 2 W’z(l’) o Jt I r=c ¢ r ¢ n t’
so that
1 1 1 2| s 32
—_—— 2 -
2 W/Z(t) W’Z(S) c”In t ( ' &

Now let t—0; then the left side 0f3.28 is boundedbecause 0f3.20)], but the right side tends
to . This contradiction shows that the lemma hold$3f24), and either(3.25 or (3.26) holds.
Now suppose that

lim w'(r)=—oo, (3.29
r\,0

and either
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lim w(r)=oo, (3.30
r\.0

or (3.295 holds; we shall indicate how to obtain a contradictifiih.is easy to see that if3.29
holds then lim. ;w(r)# —.] In this case we obtain, frort2.7), (3.23, and(3.29),

rAw”su—zw’—Ewsu—zw’
2r? r 4r2 7
if r is near 0, so that, usin@.22,
L1 L fu? lwe o w
WS- —— W =— —=<c°—,
4 (—Ard) 4| —-AW?| r r

sow”=(—c?/r)w’3, and thus £ w"/w’3)=c?/r. If we again integrate from to s, we get

S

1 1 e S
2 win| ¢ "My

t

and lettingt—0 gives a contradiction, as before. This completes the proof of Lemma 9.1

We next have the following.

Proposition 10:(Aw’?)(r) is bounded ifr is nearr.

Proof: From Lemma 9, we may assume that0. Now choose such thatr <r <f, wherer
is defined in Corollary 5. Thus, as we have shown ab¢¥&)—(3.7) are valid. Now ifw(r) is
bounded, then Lemma 7 implies thatv'? is bounded near. Thus, we may assume that is
unbounded near, so that forr <r <f, eitherw(r)>1 orw(r)<—1. Since the proofs are similar
in both cases, we shall restrict attention to the cae)>1 for r<r<r.

Thus, assume that is unbounded near, andw(r)>1 for r<r<ft. Now suppose thaAw'?
is not bounded for nearr. Then, as in the proof of Lemma 9, livor (AW'?)(r) = —o, and
(3.18—(3.20 are valid. Thus, from(3.19, we conclude that lim_ w(r) exists; hence

lim w(r)=+co, (3.3)
r\.r

Also, the orbit cannot stay in the regiovi >0 for r nearr, for otherwise it would follow thatv
is bounded near; cf. Fig. 3. Thus the orbit enters the regian<<0, and in view 0f(3.19, we may
assume thatv’(r)<O0 if r is nearr; cf. Fig. 4. In view of(3.19 we have

lim w'(r)=—oo, (3.32
NI
From (2.7) we can write
() uw
AV\/’W,2+r—2W’3+r—2W’2=O. (333
Now, from (2.1),
u2
A" +A+2AW 2=1- =,
so that forr nearr, sincer >0,
(Aw'?) is well approximated by—ciw?*, (3.39
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A W

FIG. 4. w’' <0 for r near 0.

for some constant3+0. Also,

uw 1 A u? uw
2 w3+ e w'?= T w'3— T w'3— 3 w3+ g W,Z,

and asr >0, we see that for nearr,

@ 3 uw 2 H H 204 3
r—zw’ +r—2w’ is well approximated by—csw*w’?, (3.35

for some constant3+0. Thus, forr nearr, solutions of(3.33 are well approximated by the
equation

—ciwtw" — cawiw’ =0, (3.36
or, writing ¢?=(c,/c;)?, (3.36 becomes
w” +c?w’3=0, (3.37
wherec is a nonzero constant. Now the solution(8f37) satisfying(3.32 is

1 1

> —, >,
2C° \r—r

w'(r)y=-—

which implies thatw(r) is bounded near, contrary to(3.31). This contradiction completes the
proof of Proposition 10. |
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Proposition 10 yields a few useful corollaries. First, if we defife) by (cf. Ref. §

v(r)=(Aw')(r), (3.39
thenv satisfies the equation
2w’'? uw
v+ v+—=0. (3.39

r

Corollary 11:lim, ; v(r) = 0.

Proof: v2(r)=A(r) (Aw'2(r))—0 asr\r. [ ]

Corollary 12: w(r) is bounded for nearr, and ifr=0, then limw?(r)=1.

Proof: Consider Eq(2.1): the left side is bounded nearso thatu?/r? is also bounded near
r. If r>0 thenu? is bounded, sav is bounded near, while if r=0, thenw?(r)—1 asr \,r. &

We shall now consider the case whevé is bounded near.

Proposition 13:Assume that there is aM >0 such thatjw’(r)|<M for r nearr, then
Theorem 1 holds.

To prove this proposition, we shall need a lemma.

Lemma 141f w’ is bounded near, then

A is of one sign near, (3.40
w’ is of one sign nearr, (3.41
and
P
lim — =1. (3.42
I\ r

Proof: First note thatv’ bounded near implies thatw is uniformly continuous near, so that
lim, - w(r) = w exists. Next, since/’ is bounded near, (2.1) shows that limp. (u?/r?) =1, so0
(3.42 holds and

u _
F*}il, asr\,r. (3.43

Now writing (3.39 in the form
r’v’+2w'?vr+uw=0, (3.44

we see that ifv#0, lim, 7 rv’(r) = *w # , sov' is of one sign near, and using Corollary 11,
v is of one sign near, so(3.40 and(3.41) hold. On the other hand, =0, (3.42 implies that
r=1, so from(3.39, we havev'(1)=0 andv”(1)#0. Thusv is again of one sign nearso (3.40
and(3.41) hold. [ |

We can now give the following.

Proof of Proposition 13The last-lemma implies tha is of one sign near. If A>0 nearr,
then the result in Ref. Tcf. the remark after the proof of Propositiol 8hows that A,w) is the
ERN solution. Thus we may assume that

A(r)<0, ifr is nearr, (3.45

and we shall show that this leads to a contradiction.
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First, suppose thav=0. Then from(3.42), we see that =1, and as in the proof of Proposi-
tion 2, the solution must be the ERN solution. Thus, we may assume that

w#0. (3.46

Let r<r,<r, wherer is nearr. We consider two cases:

uw#0 (3.47
or
uw=0. (3.48
Using (2.7),
r3 r3 r3
f rZAw’ dr+f ow’ dr+f uw dr=0. (3.49
2 2 2

Suppose first thai3.47) holds. Then

.
f “r2Aw dr=r2Aw’
r

2

r3 ra
—f (r?A)’'w’ dr,
2
2
and lettingr,\,r gives, for some intermediate poit

J:rrsrzAWE rEA(r )W’ (r3) —[E2A'(€)+2EA(E) W' (§)(r3—T),
so that

r J—
f ‘r2Aw’ dr=o(rz—r). (3.50
M2
Similarly, sinced(r)=r —rA—u?/r—0 asr\,r [in view of (3.42], we have, for some interme-
diate pointy,
3 '3 — —

lim f dw’ dr=f_ dw' dr=(dw’)(7)(rzg—r)=o(rz—r). (3.5)

rz\_r ro r
Finally, we have, for some intermediate poift

rs '3 — —

lim f uw dr=J_ uw dr=(uw)(n)(rz—r)=0(rz—r), (3.52
roNT Y2 r

where the constant is nonzero, in view @47. Taking the limitr,\r in (3.49, and using
(3.50—(3.52) gives the contradiction

Now suppose that3.48 holds. In view of(3.46), this meansu=0 so (3.42 implies r =0.
Thus,w==1, and, for definiteness, suppose that 1 (the proof forw=—1 is similar, and will be
omitted. As above(3.49 gives
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'3 3
fo r’Aw’ dr=r§A(r3)W’(r3)—JO (r?A’(r)+2rA(r))w’(r)dr.

But
r3A (raw' (rg)=o(r3)

[sinceA(r3)=0(r3)], and for some intermediate poigt
fors(rzA’+2rA(r))W’(r)dr=(§2A’(§)+2§A(§))(w(r3)—W(O))=0(r§);
thus
JorsrzAV\/’dr=o(r§). (3.53
Similarly, for some intermediate poing,
| Caw dr=@w)(mrs=ord, (354

because

U2 2 2
1-=2—A =r(rA’'+2Aw'9)=0(r3).

d(r)=r

However, for some intermediate poifitwe have

2

jrauw drzjrsu wr dr=—2 (g) (g)r__O( r2),

0 0

and this gives a contradiction, in view .53 and(3.54). This completes the proof of Proposi-
tion 13. ]
In view of this last resultywe may assume in what follows that

w’'(r) is unbounded forr nearr. (3.55

Our strategy for completing the proof of Theorem 1 is to first show that Theorem 1 holds,
provided that bottA(r) andw’(r) are of one sigr(not necessarily the saméor r nearr, and
then to prove that this assumption is always valid.

Proposition 15:Assume thatv’(r) andA(r) each are of one sign farnearr; then Theorem
1 holds.

Proof: As we have remarked earlier, we may assume (Bat5 holds, and also in view of
Proposition 13, we may also assume t{8b5 holds. We shall show that our assumptions lead to
a contradiction.

First recall that sincéw’? is bounded nearr, it follows from Corollary 12 that for nearr,

w is bounded, and iff =0, then w?(r)—1. Furthermore, asv’ is of one sign near, w
= lim, 7 w(r) exists and is finite. We assume for definiteness that

w'(r)>0, forr nearr; (3.56

if w'<0 nearr, the proof is similar.
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(b)

(a)

= W

W= -l w=

FIG. 5. w’'>0, w? near 1, forr nearr.

The proof is now divided into two cases=0 andr>0.

Case 1r=0. Since lim<o w2(r) = 1, (3.56 implies that forr near 0, eithefa) —1<w(r)
<0, or (b) 1<w(r)<1+e¢, for some smalk>0; cf. Fig. 5. Now from Corollary 11y (0)=0, and
from (3.19, v’ (r)>0, forr near 0, and ’'(0)=0. This implies that (r)>0 for r near 0, and this
is impossible becaus&<0 andw’>0.

Case 2 r>0. Sincew has a finite limit atr, it follows from (2.1) that Iim(\O(Aw’z)(r)
= —L, whereL=0. If L>0, thenw'?>—® asr\r, and(3.56), together with(3.39 shows that
v’ (r)>0, forr nearr, which is impossible, as we have just seen. Thus we may assurrie=tfiat

If —1<w=0, orw=1, then(3.19 and(3.39 show thatv’(r)>0 for r nearr so that ife>0
is small, we have, for some intermediate paint

v(r+e)=v(r+e)—v(r)y=ev'(£)>0,

and this is a contradiction. Thus, we can assume what-1, or O<w<1. Now asL=0, (2.6)
implies that®(r) =0, sou=r. Also, from Refs. 8 and 9,

_2u? 4uww’

(I)'( ):rT‘FZAW,Z‘F T

so that®’(r)>0. Thus®(r)>0 for r>r, r nearr, so(2.6) implies thatA’(r)>0 for r nearr, and

hence asA(r)=0, we get the contradictioA(r)>0 for r nearr. This completes the proof of

Proposition 15. |
Now in view of Corollary 5, we may assume that fonearr, one of the following must hold:
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1 wi(r<i,
an  w(r)y>1,
My w(ry<-—1.

Our objective is to show that in each of these cases, B6th andw’(r) have fixed signs for
nearr. Then Proposition 15 will complete the proof of Theorem 1. We begin with the most
difficult case; namely the following.

Case I: W/(r)<1 for r nearr.

In order to carry out our program in this case, we shall first rule out “infinite rotation” of the
orbit (w(r),w’(r)) about the origin. There are two cases to consider; namely

lim w(r)=0, andw’ is not of one sign near, (3.5
r\r
or
—1<lim w(r)<O0<lim w(r)<1 (3.58
~r N\
and

lim W(r)<ﬁ w(r);
~r T

cf. Figs. 6 and 7.

Proposition 16:lt is impossible for(3.57) to hold.

Proof: DefineQ’ (r)=2w'?/r, Q(r,)=0. Then,Q(r)<0 if r<r<r, and(2.1) can be written
as

2
(re® A)’=(1— Lrj—z) e, (3.59

Also, |re?A(r)|<|rA(r)], so that
reQA(r)—0, asr\r. (3.60
Now if r— 1/r=0, then(3.57) and(3.59 imply that forr nearr, (re®A)’=0, so that for such,
reQA(r)=reRVA(r) —reRVA(r) = (£e9A(£))' >0,
for some intermediate poird It follows that A(r)>0 for r nearr, and this is contrary to our
assumptions; cf. the remark after the proof of Proposition 2. B
If r—21/r<0, then a similar argument shows thsfr) <0 for r nearr. Thus from(2.7), if
w'(r)=0, thenw"(r)>0, for O<w(r)<1, andw"(r)<0, if —1<w(r)<O0; cf. Fig. 8. Thusw'(r)
is of one sign forr nearr, contrary to our assumptiof8.57). This completes the proof of
Proposition 16. [ |
We now turn to the remaining case; namé®y59. To handle, this case, we first note that

r>0, (3.61)

if (3.58 holds. Indeed(3.58 implies that we can find a sequengg\.r such thatw(r,)=0. Then
(2.1 gives
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d

\V\/

W —f

FIG. 6. The case wherg.57) holds.

FOA (P + (L 20721 )A(F ) =1~ riz

and since the left side is boundé®roposition 10, it follows that{1/r2} is also bounded, and this
proves(3.61).

Proposition 17:It is impossible for(3.58 to hold.

Proof: If (3.58 holds, then we can find ag

0<e<j,

such that eithelim,. - w(r) > 2e, orlim, r w(r) < —2e. Without loss of generality, let us as-
sume that the former inequality holds; cf. Fig. 9.

Thus there exist sequences of poifas} and{b,}, such that

b,>a,>b, 1>r, b,—r, (3.62
w(a,)=0, w(b,) =2e, (3.63

and ifa,<r<b,, then
w(a,)<w(r)<w(b,), (3.649
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W -1

FIG. 7. The case wherg.58 holds.

and finally,

w'(r)>0; (3.69

see Fig. 9. We note that the intervabs,[b,] are all disjoint from each other.

Lemma 18There exists>0, »>0, and an integel >0, and sequencds,}, {d,}, defined for
n=N,

ap=Cp<ds=<by, (3.69

such that ifr satisfiesc,<r=d,, then

A(r) is of one sign, (3.66
|p(r)|=7, (3.67)
w(d,)—w(c,)=4. (3.68

Before giving the proof, we shall need a few lemmas. We begin with the following easy result.

Lemma 19Supposeb(A(r),w(r),r)=d(r)#0 onl =[a,b], wherea>0. ThenA can have at
most one zero ok.
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.
—_—
l 1
) | v
_
WERS W=t

FIG. 8. w' is of one sign near.

Proof: From (2.6), if A(r)=0 for somer 1, we seeA’(r)=d(r)/r+0. ThusA' is of one
sign, and this implies thah can have at most one zero bn |

Lemma 20:Supposeb(A(r),w(r),r)=®(r)#0 on the interval =[a,b], wherea>0, and that
w(a)=0, w(b)=2e>0. Then there exist numbecsd, a<c<d=<b such thatw(d) —w(c)=€/2,
andA has one sign ond,d].

Proof: We break the proof up into two cases; namdiya)A(b) #0 andA(a)A(b)=0.

Case 1 A(a)A(b)#0.

If sgnA(a)=sgnA(b), then setc=a, d=b, and the result holds in view of Lemma 19. If
sgnA(a) #sgnA(b), choosez such thatw(z) =¢, a<z<b. If A(z)#0, then in view of Lemma
19, one of the following must hold; namely, eithi&¢a) A(z) >0 or A(z) A(b) >0. In the first case,
choosec=a, d=z, and in the second case, choasez, d=b. If A(z)=0, choosez’ | with
w(z')=3€/2. ThenA(z')#0, and we proceed as before to reach the desired conclusion; this
completes the proof in case 1.

Case 2A(a)A(b)=0.

In view of Lemma 19, we cannot have bo#t{a) =0 andA(b)=0. Thus supposé(a)=0,
A(b) #0; (the proof in the other case is similaNow chooseze |, z neara, such thatA(z) #0,
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’_\
m\\\
\\
oV
wr U w= € VAN

FIG. 9. lim, ;w(r)>2e.

and apply the result in Case 1 to the situation wrere replaced by. This proves Lemma 28
Proof of Lemma 18We break the proof up into three cases:1, r<1,r=1.
Suppose first that>1. Then set

il

r— =27,

wheren>0. Since lim« 7 A(r) = 0, then ifr>r,
u? 1 _ 1
D(A,W,r)=r—rA-— T>r—rA— F>r— ?—rA.

Thus there exists a, 0<o<e such that if 6<r —r <o, then
d(A,wW,r)> 7. (3.69

Now we only consider those for whichb,<r + o; [cf. (3.62)]. Then withl ,=[a,,b,], we apply
Lemma 20 to conclude th#8.65—(3.68 hold, with 6=¢€/2.
Suppose now that<l. Then set

N

r— =—-279,

where >0. Since
u2

(I)(A,W,r)zr—T—rA,

andrA(r)—0 asr \,r, andu(r)=1—w?(r), we see that we can find @>0 such that if &r
—r<o, and Gxw<o,
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D(A,W,1)<—7. (3.70

Again, we only consider those for which b,<r+o. Now as Gsw(r)<2e if a,<r<b,, we
chooseb;, such thatv(b) = min(c,2¢). Then®d(r)<— 7 on the interval a, ,b;]. Another appli-
cation of Lemma 20 shows that we can achi¢®®65—(3.68.

Finally, consider the case=1. Considemw satisfyinge<w=2e. Then for thesav,

2
u
1—721—(1—62)25277>o,

sincee<1/4. Thus, ifr is sufficiently close to 1, say<0r —1<o, then®(A,w,r)>». Takingn so
large thatb,<r+o, and definingc, by w(c,) =e¢, and settingd,=b,,, we see that Lemma 20
again applies, and we can achig@65—(3.68. This completes the proof of Lemma 18. W

We now can give the following proof.

Proof of Proposition 17:From Lemma 18, we see that we have infinitely many intervals,
J,=[c,.d,]C[a,,b,], where(3.66—(3.68 hold onJ,. We now consider two cases.

Case a.For infinitely many intervals,,,

(AD)(r)>0, if red,. (3.7)
Case b.For all but a finite number of intervaly, ,
(AD)(r)<0 if red,. (3.72

The proof is somewhat involved, so before giving the details, we shall discuss the strategy.
The basic idea is to show that there i€>a0 such that

d,—c,=¢; (3.73

then sincer <a,<c,<d,<b, andb,—r, (3.73 would give the desired contradiction. Now, in
order to carry out this program, we need the following fundamental lemma.

Lemma 21.Let 0<r<a<pB<2r, and assume thatA(w) is a solution of(2.1), (2.2) on
J,=[a,B] or I_=[—B,—a]. Assume too that on this intervak?(r)<1,

0<|(Aw'?)(r)|<L (3.7
and
|D(r)|=7, (3.79
for some positive constants and . Then
|B—a|={>0, (3.76

where{ is a constant depending only onL, », and

A=|w(B)—w(a)]. (3.77
Proof: Assume first that we are ok, , and that onJ_ both
w’ >0 (3.78
and
AD>0. (3.79
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Define the constanh by

1 16r2L
m=max —, ——|. (3.80
7’ A
We claim that
if reJ, and w/(r)=m, then w"(r)<O0. (3.8)

To see this, we have fror2.7),
r’Aw’+dw’ +uw=0,

and as|®w’|>1 and|uw|<1/2 onJ_, it follows that sgn®Pw’ +uw)=sgn®w’=sgn®; thus
sgnw”=sgn—A®d)<0, and this prove$3.85. It follows from this that

if red, and w'(f)sm, thenw'(r)<m for r>f, rel,. (3.82
Now define& by

wiey= M B

Then if for somer e J, F<¢, we havew’ (f)<m, thenw’(r)<m for all r=t. In this case, we
would have, for some intermediate poifit

. w(B)—w) ()| _ A2
|B—a|>|3—f|—w>ﬁ— :
and this would prove the result. Thuse may assume that

w'(ry=m, forall red,, r<é& (3.83

We will show that this leads to a contradiction.
We first claim that

—WH —W, if el 3.89
w2 2rAw2 ! ' ' @
Indeed,(2.7) gives

-w  dw +uw dw’
= > ,
w2 r2Aw'2 7 2r2aw’?

(3.89

because|®w’|>1, and |[uw|<3 imply that sgn@®w’+uw)=sgr(®w’). Thus using(3.78,
sgr(dw’ +uw)/r2Aw’2]=sgn[®w’/A] =sgnw’>0, and this give$3.84.
Next, we show
—ow’

Wi—czw’(r), if red,, r<¢, (3.86

where
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C =8=rL. (387)

To see this we have, fare J, , r<¢,

\V

dw’ dw’ w' (3.88

2r2AW2 | 2r2Aw'2 22L 8

sincer<¢< B<2r, and this giveg3.86).
Now if reJ, , r<¢, (3.84 and(3.89 give

E;J g
I\
Q
EI\)

Integrating this froma to ¢ gives

_ L 1 1, N
W (&) W (a) W (& co(w(é)—w(a))= >

so thatw’ (&) <2/c?A=16r2L/7A<m, and this contradict$3.83. Thus the lemma is proved if
we are onJ ., and both(3.78 and (3.79 hold.

Now suppose that we are dn., and both(3.78), and(3.79 hold. It is clear that in this case
the same proof works; we merely substitutg for « and —a for g.

Next, consider the case wheré <0, (onJ, orJ_), and(3.79 holds. Note that if A,w) is a
solution of(2.1), (2.2), then so is A,—w). Also, if (A,w) satisfies the hypotheses of the lemma,
so does A, —w); this shows that the case’<0 is reduced to the case’ >0.

Finally, suppose thaA ¢ <0, onJ (whereJ=J, or J_). We extend the function& andw to
—J by defining

(A(=r),w(=r))=(A(r),w(r)), reld.

Since®(—r)=—®(r), we see thaAd >0 on —J. Thus, applying what we have already proved
to —J gives that - A, —w) satisfies the conclusions of the lemma, and hence so dgeg ( This
completes the proof of Lemma 21. |

We now return to the proof of Proposition 17. For this, we shall use Lemmas 18 and 21. Thus,
choosen so large thab,<2r; cf. (3.62. Now we apply Lemma 21 to the intervals=|c, ,d,];
the hypotheses of Lemma 21 are valid because of Proposition 103a&6%®(3.67), of Lemma
18. We conclude that for large, d,—c,=¢, where ¢ is independent oh. Thus for largen,
b,—a,=¢, and this contradict§3.62). The proof of Proposition 17 is complete. ]

We now return to the proof of Theorem 1. For this, recall that from Corollary 5, we have that
for r nearr, one of the following must hold: eithev?(r)<1, orw(r)>1, orw(r)<—1. In view
of Propositions 16 and 17, the orlgiz(r),w’(r)) cannot have infinite rotation abo(@,0); thus
for r nearr, we may assume that the orbit does not cness0. We shall show that in all of the
above cases botA andw’ are each of fixed sign for nearr, and then Proposition 15 will
complete the proof of Theorem 1.

To carry out this program, we first note that for near r, we cannot have both
A(r)=0=w’(r). Indeed, forr nearr, our above remarks imply thatiqv)(r)#0, so that(2.2)
implies that not bottA(r) andw’(r) can be zero. Similarly, not bot(r) andA’(r) can be zero
for somer>r, since if this were s0(2.6) implies ®(r) =0 so(2.7) would give the contradiction
(uw)(r)=0.
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\/
X

W:»' W= 1

FIG. 10.aUubucuUd.

Now let us denote the region<—1 by a=a,Ua_ (cf. Fig. 10; the region—1<w<O0 by
b=b, Ub_; the region 8cw<1 byc,Uc_; and the region €w by d, Ud_ . Forr nearr, we
may assume that the orbit lies in precisely one of the regégrs c, or d.

Lemma 22:If v(s)=0, for s nearr, then Uwv’)(s)<O.

Proof: If s is nearr, then w)(s)+#0, by our above remarks. Thus frof8.39,

2 2
(uwﬂ)(s)=—%<o,

and this proves the lemma. [ ]

We can now complete the proof of Theorem 1. Namelyy ifs nearr, then we have
(uw)(r)#0. Thus the last lemma shows thatchanges sign at every zero. Sincean have at
most one sign change in each of the regian®, c, ord, A, andw’ can have at most one sign
change between them. Thus fonearr, A andw’ each are of fixed sign. As we have noted above,
Proposition 15 completes the proof of Theorem 1. ]
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