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Three-atom scattering in gas-phase electron diffraction. II. A general 
treatment* , t 
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Intramolecular mUltiple scattering of electrons by polyatomic gas molecules is investigated with the aid of 
Glauber's theory of high energy elastic scattering. The key to a simpler and more rapidly convergent 
expression for dynamic scattering corrections is found in a propitious transformation of variables. An 
analytical representation of the corrections averaged over molecular rotations and vibrations is presented in 
a form suitable for routine electron diffraction analyses of molecular structure. Magnitudes and practical 
considerations in analyses are briefly discussed. 

I. INTRODUCTION 

Systematic discrepancies between experiment and 
theory have been observed in many electron diffraction 
investigations of the structures of molecules in which 
heavy atoms are present.1 Several recent studies1,2 have 
established the theoretical basis of the dynamic 
scattering effect which is chiefly responsible for these 
discrepancies. The theoretical model conventionally 
used in diffraction investigations neglects the inter­
ference terms generated by electron waves suffering a 
scattering by more than one atom within the same 
molecule. It can be shown that this previously neglected 
interference term is often large enough to give dis­
crepancies much greater than experimental errors. 

In a previous paperl (hereafter referred to as Paper I) , 
we derived an approximate analytical representation for 
three-atom scattering using Glauber's approximation3 

for the limiting case in which the distances between 
atoms are large compared with atomic radii. The result 
accounts satisfactorily for the discrepancies in ReFs as 
observed by Jacob and Bartell.4 

The purpose of the present paper is to outline a new 
approach based on Glauber's approximation that leads 
to a convenient analytical expression for a general 
three-atom scattering case. The advantage of this 
method lies in its easily recognizable physical basis, in 
its mathematical simplicity, and in its greater accuracy 
in comparison with other published analytical approxi­
mations. In Sec. II, we introduce the mathematical 
framework needed for high energy scattering and its 
application to multiple scattering. A detailed treatment 
of three-atom scattering and its spherical average is 
presented in Sec. III. In Sec. IV, considerations of 
multiple scattering corrections in least squares analyses 
in electron diffraction are briefly discussed. 

II. GLAUBER'S APPROXIMATION 

and by the Born series approach. It was shown in Paper 
I that Glauber's approximation3 leads to a tractable 
treatment of this multiple scattering effect. Glauber's 
approximation has been shown to give satisfactory 
results in the energy range usually used in gas phase 
electron diffraction. s 

The Glauber scattering amplitude for a system of 
scatterers is expressed as7 

1(s) = (ik/27r)f exp(is·p)r(p)d2p, (1) 

where s= k ine- k.eatt with kine and k.eatt representing 

.. y 

x 

FIG. 1. Three-atom system. 
Eulerian angles a, (J, and 'Y 

denote the orientation of the 
system with respect to the 
space-fixed axes X Y Z. The 
trajectory of the incident elec­
tron is parallel to the Z axis. 

the incident and scattered wave vectors, respectively, 
and 

r(p) = 1- exp[ix(p)]. (2) 

In this expression, x(p) is a phase shift of the scattered 
particle when it passes through the potential field of the 
system of scatterers at a particular impact parameter p. 
The relationship between this phase shift and the 
potential field is given by 

m 100 

x(p) = - fi2k _00 V(p, z)dz, (3) 

The effects of double scattering and the interference where m is the mass of the scattered particle. If a static 
between single and double scattering in electron diffrac- potential is assumed, this approximation is equivalent 
tion have been studied before5 ,2a.b by numerical methods to the Moliere high energy approximation.s If the 
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interaction between the scatterers and the scattered 
particle can be approximated by a sum of two-body 
interactions from individual scatterers in the system, 
then the phase shift can also be expressed as a sum of 
phase shifts induced by the individual scatterers, i.e., 
for an N-scatterer system, 

N 

x(p, r1, r2" .rN) = 'E X,(P-Pi), (4) 

the ith scatterer and its projection on the plane perpen­
dicular to the incident wave vector. 

Define 

ri(p-p,) =1- exp[iX,(P-Pi)]. (5) 

Then r(p) can be conveniently expanded as' 
N N 

r(p)= 'Eri- 'E'Er,r,+ ... (-1)N-1IIri, (6) 
i-1 i<i 

where ri and Pi are, respectively, the position vector of and the scattering amplitude becomes 

1(s) = ik [f. exp(is'Pi) J d2p exp[is· (P-Pi) ]ri(p-Pi) - 'E 'E J d2p exp(is·p) ri(p-Pi) r;(p-p;) 
211" i-1 i<i 

where the first term denotes the amplitude for single 
scattering, the second term for double scattering, etc. 
Hereafter, the individual contributions will be ab­
breviated as1.(s) , 1i;(S) , etc., respectively. 

Now, we consider a general three-atom system as 
shown in Fig. 1, which is the smallest system that can 
produce a single-double scattering interference term 
yielding an oscillatory contribution to the differential 
cross section, and, hence, is the smallest system capable 
of causing the discrepancies. For an instantaneous 
orientation, the scattering amplitude is 

1(s) = 'E1i(S) exp(is'Pi) + 'E 'E1i;(S)+.··. (8) 
i i<i 

The differential cross section averaged over all 
orientations is thus given, through lowest-order terms 
inhh by 

(dujdO) = (I 1(s) 12)0 

= 'E 'E1i*(s)1;(s) (exp[is. (P;-Pi)])O 
i j 

+2 Re'E 'E 'E (jk*(S) exp( -s'Pk)h;(s) )0, (9) 
i<i k 

= 'E 'E (dujd')ii+ 'E 'E 'E (dujd')i;.k, (10) 
i i i<i " 

where < )0 denotes the orientational average. The first 
term, of course, is the conventional atomic (i=j) and 
molecular (i¢ j) scattering term. The last term repre­
sents the single-'-<louble scattering interference term 
which is the leading term in the multiple scattering 
effect. Higher-order terms are neglected here because 
the magnitude is small compared with this term.1 
For the case k¢i¢j, the three-atom term gives oscil­
latory contributions to the differential cross section 
and can be evaluated as described in detail in the next 
section. If k is equal to either i or j, the last term is2 a 
monotonic function of s derivable from the general 
(ij, k) term by setting 'ik or ';k equal to zero. 

+ •.• (_1)N-1 J d2p exp(is·p) iI ri(p-Pi)], (7) 
.-1 

The factor of two in the last term on the right-hand 
side of Eqs. (9) and (10) comes from the symmetry 
of the double scattering amplitude 1i;(S) with respect 
to the interchange of atoms i and j, i.e., 

1ii(S) =1;,(s). (11) 

As a consequence of this symmetry, the contribution of 
each three-atom scattering process to the total differen­
tial cross section (dujdO)ii.k is also invariant with 
respect to the interchange of i and j. Although this 
symmetry arises naturally in the Glauber approxima­
tion, it is not rigorously adhered to in the exact theory. 

m. ANALYTICAL EXPRESSIONS 

An analytical expression for the three-atom scattering 
is desirable, because it can then be applied' conveniently 
to the routine electron diffraction analysis of molecular 
structure. Heretofore, the spherical average (dujdO)i;.k 
has been tedious to evaluate either numerically or 
analytically in a satisfactorily convergent form. 
Fortunately, the energy of the incident electron used in 
electron diffraction is sufficiently high that it is per­
missible to introduce approximations which greatly 
simplify the orientational averaging process. For 
high energy scattering, the scattered amplitude is 
expected to be strongly peaked in the forward direc­
tion. Therefore, the magnitude of the double-scat­
tering amplitude 1,;(s) is appreciable only if atom 
i and atom j are nearly eclipsed in the direction of the 
incident electron. In averaging over all possible orienta­
tions of the three-atom system in the space, the contribu­
tion of the total three-atom scattering decreases 
sufficiently rapidly with {j, the angle between the vector 
connecting atoms i and j and the Z axis,l° that a small 
angle approximationll is applicable. 

Consider the three-atom system in the space-fixed 
coordinate system X, Y, Z, in which k iDo of the incident 
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electron is chosen to be parallel to the Z axis. Choose 
point 0 such that ok..Lij, and take point 0 as the origin 
about which the orientational average is made. 

Let P be the impact parameter of the incident electron 
with respect to the origin o. Define 

rl=ol, t=i,j, k, 

and PI to be the projection of rl on the X - Y plane. This 
choice of the origin of the system makes the first order 
variation of Pk with {3 vanish, i.e., 

lim (apk/a{3) =0. (12) 
(j-+O 

To break down the difficult double scattering ampli­
tude jij(S), we propose a new way to separate it into 
individual scattering amplitudes ji(S) and 1;(s). 
Instead of employing an approximate Fourier trans-

and 

form as proposed by Franco and Glauber,3b which in 
this case leads to mathematically tedious, slowly con­
verging terms, we define the following vectors 

l=i,j, k, (13) 

where b l represents the impact parameter of the in­
cident electron with respect to atom i. From considera­
tions of geometry we find that 

where 

and 

Si= (rj/rii)s, 

Sj= (r;/rij)s, 

rij= I rj- ri I 
Substitution of (13) and (14) into jij(S) gives 

(14) 

(15) 

(16) 

(17) 

( du ) ( ik ) 12.. 1211" 1" f dn ii.k=-2Re 8~ 0 da 0 d'Y 0 sin{3d{3jk*(s)exp(-is'Pk) exp(isi,bi)I\(bi)exp(isj'bj)rj(bj)d2p, 

(18) 

where a, (3, and'Y denote the Eulerian angles of the system.lO The key to simple evaluation of the integrals in (18) 
is the observation that a proper change of variables allows the integrals of (18) to be separated nicely into a product 
of integrals closely related tOji(S) and1;(s). Therefore, using the geometric relations between a, {3, 'Y, bi, and bj, 
we introduce a transformation of the following form: 

f daf d'Y f sin{3d{3fF(a, (3, 'Y, p, cpp) pdpdcpp= f dcpff ffF(b ix, bill, bjz, bjl/, cp )J(a, (3, 'Y, p, cpp/bix, bi;' bjx, bjl/, cp) 

X dbixdbil/db jxdbh" ( 19) 

where CPP is the angle between p and the X axis, and J is the Jacobian. Details of the transformation are shown in 
Appendix A. Since a small angle approximation is applicable, all functions containing (3 are expanded to the f32 
term. Also, for sake of calculation, the momentum transfer vector S is chosen to lie parallel to the X axis. This 
convention has no influence on the spherically averaged intensity, of course. Then the resulting expression for the 
three-atom scattering is 

(du) = -2 Re {~jk*(S) 12
" dcp f d2bi exp(iSi' bi) ri(b;) f d2bj exp(isj' b j) rj(b j ) 

dn ii.k 8~r,1 0 

X[1+~{32(1+isrk sin2(cp-a) coscp+ cos2(cp-a) )J}. (20) 

Integrating over cp and transforming a, {3 into .:lx and .:ll/' where 

and noting that 

we obtain 

.:lx=bjx-bix, 

.:ll/=bjl/-bil/, (21) 

(22) 
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By invoking the recurrence relation of Bessel functions,12 

J n+l(Z) = (2n/z)J n(z) -J n-l(Z), (24) 
we simplify (23) to 

(du/dn) ij,k= -2 ReI (ik/41r2ril)fk*(S) f d2bi exp(isi' bi) ri(bi)f d2b j exp(isj" bj) rj(b j ) [(1+ (A,,?+Al) / 2ri/) 

XJO(srk) + (A,.2j2rij2)srdl(srk) Jl. (25) 
It is noted that, from Glauber's approximation, 

fd2b l exp(isl' bl)rl(bl) = (21r/ik)fl(SI), l=i,j, k. (26) 

(27) 

(28) 

(29) 

Let 

Then 

and 
fb ixd2b i exp( iSi' bi) r i(b i ) = - (21r/k) [afi(Si) /asi.], 

fb i.,2d2bi exp( iSi' bi) ri(b i ) = (21ri/k) [a2fi(Si) /asi,,}]. 

Since Si II Sj II s, and they are parallel to the X axis, the resulting representation has the form, 

(30) 
where 

(31) 

and 

(32) 

with 
j<n) (s) = dnJ(s) / dsn• (33) 

It may often be convenient to express the effective diffraction distance rk in terms of the valence parameters, 

(34) 

used in Ref. 2. We estimate the magnitudes of E and 8, for a wide range of combination of atoms i andj, to lie in 
the range 1 X 10-3 to 3 X 10-2 unless s is small. Therefore 8 can usually be neglected without significantly affecting 
the numerical result. However, for an experimentally significant range of angle (5 1-1<s<25 A-I) our calculation 
shows that the magnitude of the coefficient of J 1(srk) term is large enough to modulate both the phase and the 
magnitude of the oscillatory function (du/dn)ij,k appreciably, especially at large values of s. 

If 8 and higher powers of E are discarded and the vibrational average is taken, (30) can be approximately repre­
sented by 

(du/ dn) ij,k= 2 ReI (i/kril)fk*(s)fi(Si)!;(Sj) (1-ElI12S2) exp( -lJ.2s2/2)Jo[srk(1-E-Hw2» JJ, (35) 

where lJ.2 and 1112 are the components of the mean square amplitude of vibration of atom k relative to point 0 parallel 
and perpendicular to rif, and where (w2) is II Nrk2. 

For small s, Uk may be interpreted as the foreshortening of the effective distance between atom k and atom pair i 
and j due to the average deviation of (3 from the most favored eclipsing orientation. 

IV. PRACTICAL CONSIDERATIONS 

In Paper I, it was shown that an expression similar 
to (35), using an approximate value of E, gave a correc­
tion to the reduced intensity M(s) for ReF6 in good 
agreement with the experimental AM(s) = M(s) theoret­

M(s)a:ptl. Results by Bonham et al. and by Yates2 also 
showed similar agreement. It is of some interest to 
examine the influence of the multiple scattering cor­
rection upon the peaks in the radial distribution curve 

f(r). Therefore, the correction to fer) was calculated 
from the Fourier inversion of the correction to the 
reduced intensity via 

Af(r).al.= [mu. SM(S)mult exp( -bs2) sinsrds. (36) 
o 

A comparison between Af(r) cal. and Af(r)s.ptl for ReF6 
obtained from Ref. 4 is shown in Fig. 2. It reveals that 
the calculated Af (r) accounts for all the major anomalies 
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FIG. 2. Upper curve represents the experimental "radial 
distribution function," f(r), for ReF. (Ref. 4) exhibiting dynamic 
scattering effects including the splitting of the Re-F peak due to 
Re intra-atomic multiple scattering. The lower solid curve, t;.f(r) , 
plotted on a tenfold more sensitive scale, is the difference between 
experiment and theory neglecting interatomic multiple scattering. 
It includes noise of the order of 1% of the ReF peak height. The 
dashed curve is the three-atom scattering effect calculated from 
Eqs. (35) and (36). 

originally observed in Af(r)oxp including the asym­
metry of the split ReF peaks and the perturbation of the 
F· •• F nonbonded peak. It is worth commenting that, 
unlike the Shomaker-Glauber failure of the Born 
approximation,13 which is caused by a difference in 
atomic number, the three-atom effect may be significant 
when all atoms involved are heavy, as well as in peaks 
corresponding to heavy atom-light atom pairs. In 
Paper I, in Fig. 2 of the present paper, and in the other 

calculations by Bonham et at. and Yates,2 it has so far 
been possible to make only an approximate comparison 
between M(S)mult and ~M(S)exPtl for the chosen case, 
ReF6• This is because the principal term, (ReF, F) with 
8ijk = 7('/2, has an effective three-atom diffraction 
distance, rk (1- E) , virtually the same as the Re-F bond 
length. Since for large argument, 

fo(z) = (cosz+ sinz)/(7('z)1/2, (37) 

the sine component of fo(z) for the (ReF, F) term will 
be in phase with the molecular term of Re-F. The sine 
component was therefore omitted in the comparison on 
the ground that it would be largely absorbed by a shift 
in the vertical scale factor in the least squares fitting. 
This is not a rigorous comparison, because the sine 
component of the multiple scattering contribution is 
modified by an envelope substantially different from 
that of the molecular interference term. Therefore the 
sine component corresponding to Eq. (37) cannot be 
completely absorbed in the least squares fitting. In 
addition to giving a large discrepancy between theory 
and experiment, the neglect of the mUltiple scattering 
effect in the least squares analysis may alter the 
apparent index of resolution and distort molecular 
parameters, especially the amplitude of vibration. 
A reanalysis with three-atom scattering corrections 
incorporated properly in the least squares analysis 
is underway for ReF6 and some other compounds 
with heavy atoms to test the effect upon the derived 
molecular parameters. 

In conclusion, we have shown that a qualitative 
analytical description of the multiple scattering effect 
in electron diffraction can be obtained from the Glauber 
theory. It is simple enough to be applied as a correction 
in routine analyses for molecular structure. Evidence 
to date suggests that inclusion of this multiple scattering 
correction will go far towards eliminating the systematic 
anomalies previously observed and will put upon a 
sounder basis the structure analyses of molecules con­
taining heavy atoms. 
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APPENDIX A 

Transformation (19) can be carried out by establishing the geometric functional relationships between the 
parameters concerned. Implicit in Fig. 1 are the relations 

ri= ri(sina sinfjz- cosa sinfjJ+ cosfjk), 

rj= -rj(sina sinfj£- cosa sinfj3+ cosfjk), 

rk=rk[(cosa cOS')'- sina cosfj sin')'H+ (sina cos1'-I- cosa cosfj sin,),)3'+ sinfj sin,),k], 

(Al) 

(A2) 

(A3) 
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and 
Pi=ri(sinat- cosa) sin{3, 

Pk=rk[(cosa cOS')'- sinO' cos{3 sin-yH+ (sinO' cos')'+ cOSO' cos{3 sin,),»)]. 

It may be shown from (AI) to (A6) and (13) that 

The Jacobian is 

0'= tan-I[ - (bjx-b;x) / (bjy-biy) J, 

{3= sin-I{ (l/rij) [(b jx-b;",)2+ (bju-biy)2J/21, 

')'= tan-I[sec{3 tan(<I>-a) J, 

p= (l/rij) [(ribjx+rjbix) 2+ (ribjll+rjb;u)2J/2, 

<l>p= tan-I [ (rjbiy+ribjy) / (rjbix+ribjx) J. 

J = 1[0(0', (3, ,)" p, <l>p) /o(bix, bill, bjx, bi/I> <1» JI , 
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(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

(AIO) 

(All) 

= (~.,2+~1I2)-1/211-[(~x2+~1I2) /rilJI-I/2[(ribjx+rjbix )2+ (ribJit+rjbill)2J-1/2(1+~f32 cos2 (<1>-0') +O({34) + ... ). 

(A12) 

The effective diffraction distance between atom k and atom pair i andj, which depends on the orientation of the 
three-atom system, is expanded as a series in {3, where, as in the case of the Jacobian, only terms up to {32 are kept, 
giving 

Therefore, 
(A13) 

(A14) 

Our choice of the origin simplified this term and, accordingly, the subsequent integrals. Putting (A12) and (14) 
into (18), keeping only terms up to (32, we obtain 

x It +~f32[1 +isrk sin2(<I>-a) cos4>+cos2(<I>-a) Jl ), (A1S) 

which is identical to (20). 

APPENDIX B and 

The complex atomic elastic scattering factor for 
electrons is expressed as 1" (s) = f(s) [I f(s) 1"/1 f(s) I - (7]' (s) )2J 

f(s) = I f(s) I exp[i7](s)J, (B1) 

where I f(s) I and "I/(s) are the absolute value and the 
phase of the complex quantity, respectively. Then the 
first and second derivatives of f(s) with respect to s 
can be expressed in terms of the derivatives of I f( s) I 
and 7](s): 

f' (s) = f(s) [I f(s) 1'/1 f(s) I +i7]' (s) J, (B2) 

+i[2 (I f(s) 1'/1 f(s) 1)7]' (s) +7]" (s) J. (B3) 

Tables of I f(s) I and 7](s) exist14 from which the 
required derivatives may be obtained by numerical 
methods. In the present investigation, it proved to be 
convenient to use the convolution methods for smooth­
ing points and evaluating derivatives of functions as 
described by Savitzky and Golay.15 
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