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Radiative deformation
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An infinitesimal chang&Q in heat fluxQ is shown, in terms of entropy flu¥ = Q/T, to have two
parts,6Q=ToéW¥V +W¥4T. The first part being the thermal displacement and the second part being
the thermal deformation. Only the second part dissipates into internal energy and generates entropy.
Thermodynamic arguments are extended to transport phenomena. It is shown that the thermal part
of the rate of local entropy generation is related to the local rate of thermal deformatigifi=by

— i IT(dTIox;), whereyg;,=q; /T, ¢; being the rate of entropy flux vector, aggdthe rate of heat

flux vector. The part of this generation related to radiation is illustrated in terms of an example.
© 2000 American Institute of Physids50021-897@0)06806-1

I. INTRODUCTION Here,E=U+Ux+Up, whereU, Uy, andU; respectively
denote internal, kinetic, and potential energy, &id pV, p

The concept of entropy production is now assumed welhging the pressure andthe volume. Splitting the net work,

understoodsee, for example, Bird, Stewart and Lightfdot,
De Groot and Mazdi. Recent interest is primarily aimed at oW=d(pV)=Vdp+pdV, (©)
a variety of applications. Because of the size of the Iiteraturea1
no attempt is made here for a complete review. Some of the
recent work include Arpaci and Selarhain the entropic dU+pdV+[d(Ux+Up)+Vdp]= Q. (4)
efficiency of energy systems, Befaon a variety of thermal

problems from the view point of minimized entropy produc-
tion, Lior on the energy, exergy and thermomechanics o
nuclear power plants, Szargut and Mdtrisn the exergy dU+pdV=5Q. (5)
losses associated with metal production, DiVita and Br{isati
on the minimum entropy production due to ohmic dissipation
in tokamaks, and Kucinskbn the minimum entropy produc-

tion in toroidal pinches. An inspection of this literature, how- 0Q=56(¥YT)=TsV+V¥dT. (6)
ever, reveals a need for further studies on the Second Lavsi.

Specifically, in the classical thermodynamics, the entropy he flrts_t tlern; onttheﬂ:lgr:_-he?nd Z'de OL Ec_(§)|anc(|j(i3r)] |
difference between a systetheat reservoir at temperature respectively denotes the displaced mechanical an erma

T,) separated by a partition from another systémat reser- enle rg;&, ?hnd thel second tgrn|1 ?Enodte? the (;eformed .mechanl-
Voir at temperaturd,) is given by cal and thermal energy. Only the deformed energy irrevers-

ibly dissipates into internal energy and produces entropy.
Note that the pressure related volumetric change is dilation
T.- T_)' T1>Ty, (1) rather than deformation, it is reversible and produces no en-
2 1 . .
tropy, but shear stress related deformation, to be considered
Q being the heat flux through the partitifig. 1. First note  in the next section, is irreversible and produces entropy.
that a finite temperature drop cannot exist across a partitiohow, Eq.(5) may be rearranged in terms of E) to give
of no appreciable thickness. Actually, one nqeds tp replace dU+pdV=TéV¥ +WdT. @
the ideal model of Fig. 1 dealt in thermodynamics with a real
model which involves a partition of finite thicknekssepa- ~ Next, consider the entropy balance including a generation
rating two bathgFig. 2). In this model, the bath at tempera- term, sayll, as a measure of irreversibility,
ture T, transfers heat via an irreversible process over the
. . dS= 6V + SI1. 8
thickness of partition to the bath at temperatdre The ®
objective of the present study is the entropy change withirfFor the energy equivalent of E¢B), multiply this equation
the partition rather than the difference between(th&erna) by temperature,
entropy of two baths. Toward this objective, first consider TdS= TSV + T SIL. ©)
the energy balance

nd, after some regrouping, E@) becomes

In the absence of the mechanical effects, the terms in brack-
fets vanish and Ed4) is reduced to a thermal energy balance,

Now, in a manner similar to splitting work, rearranging the
heat flux in terms of the entropy flu¥ =Q/T, gives

$-5=Q

Now, consider the fundamental difference,
dE=6Q— 6W. 2
Thermal energy balaneeTl X Entropy balance,

¥Electronic mail: arpaci@umich.edu obtained by subtracting E¢9) from Eq.(7),

0021-8979/2000/87(6)/3093/8/$17.00 3093 © 2000 American Institute of Physics



3094 J. Appl. Phys., Vol. 87, No. 6, 15 March 2000 V. S. Arpaci and A. Esmaeeli

B L
T,—] T,
—TZ \
=>Q

—=—=>Q

FIG. 1. Thermodynamic model—heat flux across a temperature discontinuFIG. 2. Heat transfer model—heat flux over a continuous temperature dif-
ity. ference.

dU+pdV—TdS=wdT-T4Il. (10) .Th'e study consists of six sectiqns: 'foIIowing .this section

_ _ . which introduces thermal deformation into classical thermo-

For a reversible process, the right-hand side of @Q) van-  gynamics Section Il extends the concept by incorporating the
ishes and we obtain the well-known thermodynamic relationate of thermal deformation into transport phenomena, and

dU+pdv=TdS (11)  elaborates this deformation in terms of radiation. Section il

) ) . deals with the electromagnetic deformation Section IV gives

For an |rreve_r5|ble process _to be assumed Iocally_ reversibley, iiustrative example on entropy production resulting from
Eq. (11 continues to be valid, and the left-hand side of Eq.these deformations Section V generalizes the results of Sec.
(10) vanishes and the right-hand side results IV by some dimensional arguments, and Sec. VI concludes

4 Q the study.
oll= ?dT=\Pd(InT)= _ITZdT

For a steady process within a solid partition, ). is !l RATE OF THERMAL DEFORMATION
reduced tadU=6Q=0, and Eq.(8) to &%+ 41=0. Then, Transport phenomena involve the rate of thermal defor-
Q mation which requires first a consideration of the momentum
6 =—0oll=— dT. (12 balance. For a Newtonian fluid, this balance in terms of the

conventional nomenclature is

Now, integration of Eq(12) between the boundaries of the
partition yields Du; &_p+ Iy f (14)
1

PDt ~  ax | ax,

2dT
‘I’|§:—H|EZ—Q L T2 where f; includes all body forces. In terms of the rate of
entropy flux,¢;=q; /T, the local rate of entropy balance is
or ) Ds 2 Lo (15
1 PRT= ¢ TS
1 wheres” denotes the local rate of entropy production. Also,
or, explicitly, the conservation of the rate of total energy including the rate
11 of heat flux expressed in terms of the rate of entropy flux is
‘Pz_‘Plz_(Hz_Hl):Q(T__ T_) (13 D 1
2 1

Jd J

Por| Ut _UiUi> == o (Tghi) — —(pv;)
which is identical to the right-hand side of Ed) but should Dt~ 2 i %
be identified as the the change of entropy flux across a solid d "
partition of finite length. This change is balanced by the + o (T +fivi+u”, (16)
change of entropy production in the partition. o _J

For a case involving both radiation and conduction, letVhereu” denotes dissipation of any energy other than ther-
the internal energy, heat, and work associated with gas rgnomechanical energy into internal energy. Note that we ex-
diation (including infrared as well as visible spedtize UR, pressed both the entropy balance and the total energy balance

QR, andWR, respectively. For negligible relativistic effects, In térms of entropy fluxy; rather than the customary ap-
proach in which the Second Law is expressed in terms of

UR<U, QF~QX, WR<w, heat fluxg; . Thus, the rate of net heat flux becomes
provided the characteristic transport velocity remains much ;4. 5 I, JT
less than the velocity of light. Then, r9_Xi: ﬁ_m(T¢i):Ta_m+ l/ji&_xi’

Q=Q*+Q",

the first and second right-hand terms respectively denoting
QX and QR respectively being the heat flux by conduction the rate of displaced and deformed thermal energy. One may
and radiation. In the next section, the foregoing developmerglso note that the rate of total mechanical energy associated
is extended to transport phenomena. with shear stress can be written as
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I is well known but the radiative constitution, depending on

K(Tijvi):UiW'i'Tijsij, the assumptions made, can be described in a number of
! ! ways. Here, following Arpaci, consider the constitution

wheres;; is the rate of mechanical deformation and the firstbased on the radiative streHs; ,

and second terms in the right-hand side denote the displaced

and deformed mechanical energy, respectively. Only the de- r_ _ "7 ﬂ (21)

formed part of any(mechanical, thermal, electromagnetic, ' ay 9%

nuclear, chemicalenergy dissipate6rreversibly converted

into internal energy. Thermal deformation in terms of en-

tropy flux appears to be overlooked in the literature and is

the motivation of this work. Now, consider the fundamental ij f f I 1il;dQdv

difference

where

I, being the monochromatic intensitly,andl; are spherical

Rate of total energy(Newton's Law)u; unit vectors. and

—T(Second Law

4 Jd d
by subtracting the rate of mechanical enefgptained by Hii:§Eb5ii+4r§1 a_ﬁ,{‘( Mijpq (9_Xp(9_xq) = (22)
multiplying Eq. (14) by velocity] and the rate of thermal
energy[obtained by multiplying Eq(15) by temperaturp ~ With
from the rate of total energy given by E@.6). The result is,
after some rearrangement with the conservation of mass, Mijpq - j Uililolg-..
Dp (?vi .
ﬁﬂLpa—:O, Here,E,=oT* is the Stefan—Boltzmann law for blackbody
X .. . 1/2 . .
emissive powerg), = (apag) ' the mean absorption coeffi-
andp=1/v, cient, »=(ap/ag)'?the degree of nongrayness, and ag
respectively the Planck and Rosseland means of the absorp-
Du _Ds Dv al tion coefficientsMj,q .. is annth-order moment operator. A

_ + +u"— " ) 8
Pl Dt T TPy ¢"(9 RTRE procedure for evaluatml_!j/lIlpq . in terms of the Wallis In-
(17 tegrals is described in Unno and Spié§eiho apparently
overlook earlier work by Milné! After lengthy manipula-

For a reversible process, all forms of deformatitirat is, the .
versible p i ' tions, the procedure leads to

right-hand sidgvanish and Eq(17) is reduced to the Gibbs
thermodynamics relation * V21" 2(2n3,d;+ V28,))Ep

I :420 a2(2n+1)(2n+3)

where 9;= g/ dx; and 9;=dl dx; are used for notational con-

For an irreversible process to be assumed locally reversibl¢énience.
Eq. (18) continues to be valid and the right-hand side of Eq. A useful alternative form of this stress explicitly in-

(23
Du Ds Dv

(17) gives the rate of local entropy production volves radiative pressure=(1/3)J, where
1 ot o (VA" B
s =?{—1pi F + s +u” |, (19 J—Hkk—zo(ﬁ Pnr3’ (24)

where the first and second terms in brackets respectively d&=4E, and Il is the trace ofll;; andJ is the spectrally
notes the deformedor dissipateyl thermal and mechanical and directionally averaged monochromatic intensity,
energy into internal energy, and the third term denotes any
deformed (or dissipated except for thermomechanicah- J:J’ J | dQdv.
ergy into internal energy. Next, we consider the radiative '
part of thermal deformation.

Thermal part of deformation may be illustrated in terms
of the radiative deformation. First, consider both the conduc,
tion and radiation modes of heat transfer,

For the alternative form of the stress, one follows Prandtl and
Tietiens? in a manner similar to the development of the
Stokesean viscous constitution from the Hookean elastic

constitution, by rearranging Eq(24) in terms of (J

qi:q:(_l—qiR' —Hij)éiJ:O, and obtains
The conductive constitution, usually described by Fourier's 1 § 2nV2" 2 3,9,— (13) V25, 1B
=—17165:+
law, =390+ 2 a2M(2n+1)(2n+3) @9
qK:_kﬂ 20 A first approximation for the radiative heat flux based on

ax;’ pressure is the well-known Eddington approximation,
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R 1 4J and e,, respectively. The rate of uniform energy per unit
qi=- STzR e (26)  volume,u”, is steadily generated in the gas. For negligible
I

conduction, distribution of emissive power and entropy pro-
Although extensively used in the literature on gas radiaguction between the plates are desired.

tion and to be utilized in the next section, the radiative flux  The thermal balance for a one-dimensional differential
based on this approximation deviates as much as 29% frogystem is
the exact flux given by Eq21). In terms of this approxima-

R "m_
tion, the local entropy production, resulting from the sum of —dg,/dx+u"=0. (32
thermoelectromagnetomechanical deformations, becomes The radiative energy balance for the same system is
111/ oT 1 93\ aT Riqy— _
g = ? T( ka_x_i_ 37 ﬁ_x 5_1_ Tijsij +u” (27) qu/dX—ap(4Eb \]) (33)
' REAOH Also, the one-dimensional form of E¢R6) is
whose radiative part based on the Eddington approximation R_
needs to be coupled with the radiative constitution 0y = — (1/3ag)(dJ/dX). (34
(V2—3af,,)\]= _12a§/| E, (28) Now, inserting Eq(32) into Eq. (33) gives
(see, for example, Arpaci and "‘@em'® or Philips and J=4Ep—u"/ap (35

Arpaci”). The next section illustrates local entropy produc-and inserting this result into E¢34) yields

tion resulting from electromagnetic deformation. R
0, = — (4/3ag)(dE,/dX). (36)

IIl. ELECTROMAGNETIC DEFORMATION Note that Eq(36), usually valid for a thick gas, now applies
. __ to a gas of any optical thickness because of the neglected
For a plasma flow prescribed by MHD approximation -gnduction.

(see, for example, Shercliff, Mitchner and Krugéf), the The combination of Eqg32) and(36) gives the govern-
electromagnetic body force in E¢L4) becomes ing equation,
f=€ijd; By, (29 d2E,/dx?+ 3agu”/4=0 (37

density and the magnetic field, adgl is given by Ohm’s
La.W, Eb(o): EbO and Eb(L):EbL' (38)

Ji=o(Ei+€jviBy), (30 Because of neglected conduction, these emissive powers are
different than those imposed on the wallthe radiative

o being the electrical conductance angdis flow velocity. . mp). The solution of Eq(37), subject to boundary condi-

For the electromagnetic power, consider the dot product

Eq. (30) with J;, ions (38), is
JiJi=0(Ei+ €jv;Bi)J; Ep(X) — Ep,= = (Ep,— Ep ) (X/L) + (3/8)aRu”’(xL—();29))
WhiZth;ay bEe Jreazrangel;i ?JS which gives, in terms of E¢(36),
I Jo=E.J+(&10:B)J:
or, inI ttl'-zrms o1l‘ tlhe idlgnt]itylj | qng< E|DZY—RLE|DL . U;(ZX— o w0

0B = — (€:,.J:Bu)v .
(€ijviBi)Ji =~ (eipdiBuvi, However, Eqs(39) and(40) need to be expressed in terms of

as the wall emissive powers rather than wall values of the gas
EJi=(edBovi +3,3; [, emissive power. _To accomplish this, c70n5|der the_ radiative
boundary conditions(see, e.g., Goody or Arpaci and
or, in view of Eq.(29) andu”=J,J;/0, as Troy'9),
EiJi="ffvi+u”, 31) ( ) R 1 dgg(0)
. . Ep,—Ep=|— 3 - , 41
E;J; being the total electromagnetic powéfp; andu” re- e P 4ap  dx (41)
spectively the displaced and deform@dissipatedl electro- and
magnetic power.
The foregoing considerations on the deformation energy R 1 dgi(L)
are next illustrated in terms of an example. e Ax (L) = dap  dx (42)

which may be rearranged in terms of E§2) to give
IV. AN ILLUSTRATIVE EXAMPLE

1 1 n
Consider a gas between two parallel plates at tempera- Ebl—Eb0=<—— E) qff(O)— . (43
ture T, and T, separated a distande apart. The emissive €1 “p
power and emissivity of the plates alfg and Ep,, and e, and
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1 1) 4 u” whereqR(0) is given by Eq.(51).
Ebz_EbL:(e_z_ 5/ a(L)— Tap (44) To evaluate the radiative entropy production, consider
the one-dimensional thermal part of Eq9) in terms of the
The difference between Eq&l3) and (44) yields radiative heat flux,
1 R
- == —_ —_— R n q dT
o, ~ B, =(Es, o)+ - 2)qx<0> e F(ﬁ
11 and replaca® in the above equation in terms of E(®6).
—_Z|gR X
+ = Z)QX(L), (45 Thus,
where, employing Eq(40), .4 @ d_T (54
_ ~ BagT?| dx /ldx)"
R 4(Ep,—Ep | u"L
WO =31 3 (46)  Next, substitute fod T/dx and dE,/dx in the above using
R Eq. (53) and noting thaE,=oT* to get
and )
nm__ 3L ™ R 0)+u"” 2 5
qR(L):i(EbO—EbL> u”L @ S =1 167070 7L (05(0) +u"x)*. (55)
" 3 gl 2 This entropy production is now evaluated for the two
Note that special cases that follow.
—ax(0)+ag(L)=u"L, (48)

as expected. Now, from Eqgl5), (46), and(47), after some

’ ) A. Stagnant gas between two plates
manipulations,

In this case,u”=0, and heat flux is constari.e.,

u'L{1 1 Riy— aR(1 Y= oR
(Ep,—Ep)+ T(e_l_ 6_2) Ax (0)=ax (L) =ay(x)]. 1;hus, Eq.(55) reduces to
Eb _Eb = ' (49) m__ 3L T_M R 2
° - 1+ 4_77 i-l— i_l) s= 1670 T° 7L [qX(O)] , (56)
3TM €1 €r

. . . . Or
mu=ayL being the optical thickness. Theqy, in terms of

the imposed wall emissive powers, obtained by inserting Eq.

4O.T5LS///:(3_T (qR)Z
(49 into Eq. (40), is 4 x/

u"L{1 1 For this special case, E5) reduces to
(Ebl_ Ebz) + T - "
R_ L2l S (2x-L). (50 Lo R
Ax 3TM 1 ., 1 2 : Ebl_EbZZ(Ebo_EbL)+ 6_1+6_2_1 Qy
4n e & which in terms of Eqs(46) or (47), gives
Also, for x=0, ) Ebl_ Eb2
(Ep. — Ep )+&(i_ i) qx_37'/4+1/61+1/62—1'
1 2 2 \e € u”L
q0)= 3 1 1 S 5 (51)  Substitution of the above relation in E¢6) results in
™
_—t —+ —— " 2
4y * €, * € 1 40Ts L/Ej, 37/4 57
2= 2-
Foru”=0 andry=0, Eq.(51) is reduced to the enclosure (1-Ey,/Ep)”  (37/4+ e+ 1/e,—1)
radiation between two closely located parallel large plates, as

Figure 3 shows the radiative entropy production versus
optical thicknessr for the special cases of;,=e,=€. As
expected, this production diminish fer=0 andr—c, and it
goes through a maximum at an intermediate thickness,
1 1

_+__
€1 €

expected.

To expressE,, of Eq. (39) in terms of the wall emissive
powers, rearrange E@3) as
1 1 "
~_ZlgR - 4
E]_ 2)Qx(0)+ 4ap' (52) T= §

Then, in terms of Eq949) and (52),

EbO = Ebl -

which, for black surfaces, becomes4/3. An inspection of
Eq. (57) reveals that

SN/TSL — f(T, Eb1, Ebz' €1, 62) .

1 1 3ryx| 4
Es(X) ~Ep, =~ | 2 3% | RO

€1

Then, for specified temperature, emissivities, gas optical
thickness, and geometry,

u”L {1  3ryx?
, (53

an \ny 2L2
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FIG. 3. Entropy production vs optical thickness and emissivity in a stagnant
gas between two plates. FIG. 4. Entropy production vs optical thickness and location in a plasma
between two plates.

s"T®=Const.

which can also be seen directly from E§7). II=s"1%/K, (62)
| being a characteristic length, and a heat transfer number,

(2lax)Bag  a

B. Plasma between two plates

Let the gas be an electrically conducting fluid. In a fully

developed plasma floysay, for example, the Hartman flow k(aTlax;) $ (62)
the Joulean dissipation is spacewise distributed. Here, onIP/
for mathematical convenience, we assuiffeto be uniform. N terms of these numbers, E@O0) becomes
For T,=T,=Ty, (Ep,=Ey,=E, ) and e;=€,=€,, Egs. 12/9T\/( 0T
(39) and (40) yield, in terms of Eqs(45), (46), (48), and Hs:(1+H)ﬁ &T(i aTq . (63)
considering the fact that novqffz(u’”/Z)(ZX—L) and . _
RiAY_ _ Also, from Eq.(26), on dimensional grounds,
0,(0)=—u"L/2,
R_(] —
_u///L 1 1 1 3TMX X q (‘]W Joc)/3aR5, (64)
Ep(X) ~Epw= 2 |ley §+ 297y * 4yl 1- L where § is the thickness of thermal boundary layer ahg
(58  andJ.. are the wall and ambient values frespectively. To
Then, Eq.(55) gives in terms of Eq(58 relate J to temperature, consider the radiative constitution
q-(55) gives | a(58) given by Eq.(28). Using Fourier transforms, for example,
s” exp(k;x), k; being the wave number vector,
U T V2= 13, IB= I+ k33
" 2
37w [ UL ) (1 X) or, in view of ko~ 61, V2~ — 62, and Eq.(29) yields
87 | 2E 2 L
_ Y (672+3a%)d~1222E, . (65)
O | 7Y PR f the optical thick
fbw e 2 2 Ayl L en, in terms of the optical thickness,
T~apy 0, 66
59 M 2 (66)
i — _ "m _ 12’7’
Figure 4 shows(for =1, €,=1, andu”L/2E, =1) the J~(W) = (67)

distribution of the entropy production versus the optical

thickness for two locations. Optical behavior of the forego-which, together with Eq(64), leads to the radiative heat flux,

ing two cases is now generalized by an order of magnitude

analysis.

V. DIMENSIONAL ARGUMENTS

Consider the thermal part of E(L9),

n l
STT

oT
IXj

1(k
f

N 1 aJ)
3CYR (?Xi

JT
X

Introduce an entropy production number,

(60

A"~ 47 7/(1+37))(Ep,~Ep), (68)

which is valid for any optical thickness but excludes any
boundary effect. Fom=1, Fig. 5 shows the radiative heat
flux versus emission and absorption, which, respectively, are
the measures for the hotness and thickness of the gas.

To include any wall effect in Eq68), first consider the
boundary-affected thick gas and thin gas approximations
with negligible scattering. For the thick gas, from Arpaci and
Larsert®
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FIG. 5. Radiative heat flux vs emission and absorption.
FIG. 6. Radiative entropy production vs temperature difference and optical

thickness.
R —4 s . 9Ep
qy_3T(R(1_pWE3_ 2Ea) oy (69 Furthermore, introducing a dimensionless number,
wherep,, is the wall reflectivity ande; andE, are the usual - Emission Ebw— Ep,
exponential integrals of order three and four. On boundaries, -w=Gonduction” K(To—T.)/5" (78)
w o
R ___4 Ew I 70 and Eq.(62) may be rearranged as
qy W_3a 2 J . ( )
R Y lw R
_ Ow €w T p
However, near a boundary, the Rosseland gas gives Hw_q_\er”A"?( 1- 2 /114372 Fow- (79
R=— 4 I 71 Finally, Eq.(63) yields, in terms of Eq(79),
y L
Sar Iy~ [(Tw=TITE(1+Hy), (80)
and the net radiative source, obtained from the differenc%r explicit
between Eqs(70) and(71), is » explicily,
Ty—Ta\2 € T
Jq; 4 ew> JEp Mo~ | ——=| |1+4p[1- = (—2)/? . (81)
L A | + W
7y 3aR(1 2| 3y (72 T 2)\1+37
h int i ield di ional d The smallest value of this production is on the hot boundary,
whose integration ylelds, on dimensional grounds, and its radiative part becomes, after some rearrangement,
4y € 2
d=5(1- e, £, @ W (T e .
A7(1— €,12). 7y, T, \14+37%)°

wheree,, is the wall emissivity.

) . F ti lit tant of unifgh itrarily f
For the thin gas, Arpaci and Tr8yshow or a proportionality constant of unifghosen arbitrarily for

a graphical representation of E82) and ¢,=1], Fig. 6
shows the boundary production of radiative entropy versus

R/ o, €w
dayldy=4ap (Ep—Ep )~ 5 (Ep,~Ep)E2l, (74 the optical thickness and the temperature ratio.

whereE, is the exponential integral of order two. On bound-
VI. CONCLUSIONS

aries,
agR € The present study is based on the original idea suggest-
a—y =4ap( 1- 7‘”) (Ep,—Eb,) (75 ing a First Law in terms of entropy flux rather than the well-
known classical approach expressing the Second Law in
whose integration yields, on dimensional grounds, terms of heat flux. Accordingly, heat flux is expressed by a
product of temperature and entropy flux. A change in heat
6 - . . . . .
Q5v~4777 1— _W)(Eb ~Ep). (76) flux is identified as a f:omblnatlon of thermal dlsplacemem
2 w and thermal deformation. Only thermal deformation dissi-

Thus, the radiative heat flux, including a hot wall as well asPates(irreversibly transforminto internal energy and pro-

the emission and absorption effects, is found to be duces entropy. Using the concept of thermal deformation, the
well-known thermodynamic irreversibility across a thermal

T (Ep —Ep ) 77) discontinuity is replaced by actual irreversibility across a
1+372) " Pw B continuous thermal distribution. These considerations allow

R_ _ Ew
q 477(1 >
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