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Random sequential adsorption of nonoverlapping rectangles of arbitrary orientation onto a 
continuous plane was investigated by computer simulation. The approach to the jamming limit 
was found to obey Feder's law for a wide range of rectangle aspect ratios. The coverage 
fraction at the jamming limit was found to depend upon the aspect ratio of the adsorbed 
rectangles, with a maximum in the jamming coverage occurring at aspect ratios::::: 2. 

Random sequential adsorption (RSA) is an irreversible 
process in which objects are placed, one at a time, randomly 
in space and with random orientation subject to the condi­
tion that they do not overlap previously adsorbed objects. 
Eventually no more objects can be adsorbed, and the jam­
ming limit is reached. This process is of interest in a variety 
of fields including statistical,l.2 chemical,3,4 and biological5.6 

physics. The one-dimensional problem, sometimes called 
the carparking problem, was first solved by Flory3 for dis­
crete space, in connection with the irreversible binding of 
ligands on polymer chains. Since Flory's early work, several 
analytical solutions for the maximum coverage and the dis­
tribution of gaps at the jamming limit for both the discrete 
and continuous one-dimensional cases have been found. 7-10 

In contrast to the one-dimensional case, no analytical 
solutions for the coverage at the jamming limit have been 
obtained for higher dimensional problems. Indeed, Kendall 
and Moran 11 have argued that the prospects of obtaining 
such solutions are remote. Consequently, RSA in two and 
higher dimensions has been studied mainly with the aid of 
computer simulations. 5-6,12-20 Feder5 investigated the kinet­
ics of RSA of disks on a plane and postulated the following 
scaling law for the long-time behavior of the coverage frac­
tion, O, 

T~ 00, (1) 

where 7 is the cumulative number of attempts to adsorb ob­
jects (both successful and not), d is the dimensionality of the 
system, and OJ is the coverage at the jammed state. Pomeau 1 
and Swendsen2 have constructed arguments based upon geo­
metrical probability that confirm this scaling law for RSA of 
disks on a plane and Swendsen2 has argued that it may be 
generalized for arbitrary shapes, provided that objects are 
adsorbed with random orientations. Other models of RSA, 
however, do not necessarily obey Eq. (1). For example, 
Swendsen2 has shown that the kinetics of RSA of aligned 
squares does not follow Eq. ( 1 ). Likewise, Barker and Grim­
son 19 found Eq. ( 1 ) is violated for RSA of binary mixtures of 
various shapes on a square lattice. Rosen et a/. 17 examined 
the RSA of spherical particles onto small spherical sub­
strates, and their results showed that Feder's law is not 
obeyed when the relative sizes ofthe adsorbing spheres to the 
substrate spheres is greater than a critical value. Most re­
cently, Schaaf and Talboeo have given an expression for the 

kinetics of RSA of disks on a plane at short times, before the 
onset of the asymptotic behavior given by Eq. (1) is reached. 

In this paper, we present the results of a computer simu­
lation of the random sequential adsorption of rectangles 
with arbitrary orientation upon a continuous plane. Such a 
study is of interest in connection with processes such as the 
irreversible adsorption oflong, rodlike polymers upon a sub­
strate.21 In particular, we are interested in how the jamming 
coverage is related to the aspect ratio of the adsorbing ob­
jects. 

All simulations were performed on an Apollo Domain 
4000 computer. Centerpoints and angular orientations of 
rectangles of a given aspect ratio were generated randomly 
with uniform probability for a square target area with sides 
of unit length. Aspect ratios were varied from 1 to 64 where 
in all cases the ratio of the rectangle area to the target area 
was < 0.0004. Periodic boundary conditions were used in 
order to minimize boundary effects. In all, approximately 20 
weeks of computer time were used in this work. 

In order to determine if the adsorption of a trial rectan­
gle would result in an overlap with a previously adsorbed 
rectangle, the following algorithm was used. First, the dis­
tance, D;, between the centerpoints of the trial rectangle and 
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FIG. 1. Surface coverage Bas a function of T-
1

/
2

, where Tis the total num­
ber of adsorption attempts. Representative simulations are shown for var­
ious aspect ratios, (+) a = 1, (_) a = 8, ( + ) a = 32, (0) a = 64. The 
lines show that Feder's law is approached at long times. 
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the ith adsorbed rectangle was determined. If D; > (w2 

+ [2) 112 where wand / are the width and length of the ad­
sorbing rectangles, then we concluded that no overlap could 
occur between the trial rectangle and the ith rectangle. Like­
wise, if D; <;w, then the trial rectangle must have overlapped 
the ith rectangle and this attempt was rejected. For cases in 
which w <D; <; (w2 + [2) 112, each of the four line segments 
forming the perimeter of the trial rectangle was checked for 
intersection with the four line segments forming the perim­
eter of the ith adsorbed rectangle. Simulations were run up to 
227 attempted adsorption events and 3-5 simulations were 
carried out at each aspect ratio of 1, 1.125, 1.25, 1.5,2,2.5,3, 
4,8, 16,32,64, and 256. 

The surface coverage was calculated as a function of 7 by 
the following relation: 

O( 7) = N( 7)/W , (2) 
L2 

where N( 7) is the number of successfully adsorbed rectan­
gles at trial 7 and L is the length of a side of the target square 
(L = 1 in this study). The coverage, 0, is plotted against 
7-

1
/
2 for various aspect ratios in Fig. 1. The plots in all cases 

become linear at long times, suggesting that Feder's scaling 
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FIG. 2. Jamming coverage, 8j , vsaspect ratio, a. (a) a between I and 4 and 
(b) a between 8 and 256. Error bars represent I standard deviation from the 
mean, which was obtained from 3-5 simulations. 

law is satisfied for randomly oriented rectangles, and thus 
confirming Swendsen's2 analysis. However, we note that 
Fig. 1 suggests that as a increases, the time necessary to 
reach Feder's scaling regime also increases, implying that 
the scaling Eq. (1) may be valid only for 7>/(a), where 
I(a) is some monotonically increasing function of a. An 
estimate of the coverage at the jammed state, OJ, may be 
found by extrapolating the long-time data to 7 = 00 using 
Eq. (1). These OJ are plotted as a function of the aspect ratio, 
a = / /w, in Figs. 2(a) and 2(b). 

Notice that Fig. 2(a) shows a distinct peak in the 
jammed coverage at aspect ratios:::::: 2 which then falls off at 
higher aspect ratios. Although the existence of a peak may 
seem surprising, it may be understood from the following 
observations. In the early stages ofRSA, relatively few over­
laps occur and almost every trial rectangle is adsorbed. 
Therefore, the orientations of these adsorbed rectangles are 
not strongly correlated with other neighboring rectangles. 

~ 
.... 

) -fll , --# .- - #' • .1 • '-• ~ • I, ~ , 
r ' ~ ~ 

I 
~ - • - • , • ---,- - , " .. " -- , ~ · ~ ~ ~ ~ - -' ,. • • ~ • - -.' I 

, 
~ ~ • ~, 

~ 

~" 
... • I • ~ -

~. " , I -, , , 
~ ~ - -, 

~- , -' I 
~ 

.,- I 

FIG. 3. Adsorption surfaces at 8 = O.IBj for aspect ratios (a) a = 2 and 
(b) a = 16. Because the image is a discretized representation of the surface, 
some rectangles may appear to have irregular shapes or may seem to be 
touching other rectangles. 
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Thus, during the first stages ofRSA we expect that relatively 
large areas of target surface will be used inefficiently due to 
the highly random packing configurations. A meaSure of 
how this short-time "wasting" effect depends upon the as­
pect ratio may be found from the following consideration. 
The packing efficiency at short times will depend upon how 
uniformly the rectangles fill space, which is given by the 
ratio of the actual area covered by a rectangle to the area 
swept out by rotating the rectangle through all possible ori­
entations. Thus, we define packing efficiency, 1/, by 

wi 4a 
1/(a) == = . (3) 

1T(W2+F)/4 1T(a2 +1) 

Thus 1/ - 1/ a as a becomes large, implying that this wasting 
effect at short times will be more pronounced for rectangles 
with high aspect ratios than for those with low aspect ratios. 
Visual verification of this effect may be seen by comparing 
Figs. 3(a) and 3(b), which show adsorption surfaces at 
O:::::O.10j for rectangles with a = 2 and 16, respectively. 

At long times, however, an ordering effect occurs that 

FIG. 4. Adsorption surfaces at B = 0.9Bj for aspect ratios (a) a = 2 and 
(b)a=16. 

becomes more pronounced as a increases. At high cover­
ages, many overlaps occur and few trial rectangles are able to 
successfully adsorb. Trial rectangles with an angular orien­
tation similar to the orientations of its previously adsorbed 
neighbors have a smaller chance of overlapping with these 
neighbors and thus have a greater chance of successfully ad­
sorbing than do trial rectangles with angular orientations 
very different than those of its neighboring rectangles. As a 
result, angular orientations of subsequently adsorbing rec­
tangles become more correlated with neighboring rectangles 
and the packing becomes more ordered and efficient as 0 
increases. This long-time ordering effect would be expected 
to become more pronounced as a increases, since rectangles 
with high aspect ratios must have almost identical angular 
orientations with its nearest neighbors in order to successful­
ly adsorb at these high coverages. Figures 4(a) and 4(b) 
show adsorption surfaces for a = 2 and 16 at a coverage 
O:::::O.90j • Short-distance correlations in the angular orienta­
tions of rectangles are more evident in Fig. 4(b). 

In summary, at short times a low value of a would be 
expected to lead to more efficient packing while at long times 
a high value of a is more efficient. The combined effect evi­
dently produces a maximum in OJ (a) at some value of a. We 
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FIG. 5. Log-normal (a) and log-log (b) plots of Bj vs a. The slope of the 
line in (b) is - 0.22. 
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have found a max :::::::2, corresponding to 8j ,max :::::::0.545, which 
is about 4% higher than the coverage for unoriented squares, 
8j (1) :::::::0.523. In comparison, Feder5 reports 8j = 0.562 for 
aligned squares and 8j = 0.547 for circles. 

Lastly, we consider the asymptotic behavior of 8j (a) as 
a -+ 00. We expect that 8j -+ 0 as a -+ 00 and thus conjecture 
the simple forms 8j - e - aa or 8j - a - b where a and bare 
constants. Log-normal and log-log plots of our data shown 
in Figs. 5(a) and 5(b) clearly indicate that the data is more 
consistent with the power-law form with 8j :::::::0.73a- O

.
22

• 

Note added in proof We have just received a preprint by 
Talbot, Tarjus, and Schaaf,22 in which the RSA of randomly 
oriented ellipses is studied. They argue, because of orienta­
tional restrictions, that the long time behavior should be 8j 

- 8( T) - aT - P with p = 1/3 rather than p = 1/2 of 
Feder's law. Their arguments apply to squares and rectan­
gles as well as ellipses. We note that their results are in con­
flict with those of Swendsen, who argues that Feder's law 
applies to all randomly oriented objects. We have reexa­
mined our data by making a plot of In [8(2T) - 8( T) 1 vs 
In T, which will give a straight line with slope - p if the 
above behavior is followed. We find linear behavior for large 
T for a<32, with values for p in the range 0.30-0.40. (For 
a = 64 and 256, the asymptotic region was evidently not 
reached.) Thus we conclude that the data is more consistent 
with the prediction of Talbot et al. than with Feder's law. 
Although the data in Fig. 1 appears to validate Feder's law, 
we note that only the last few points fall on the straight line. 
With values of p in the range 0.30-0.40, many more points 
follow a straight line in a similar plot. 

The extrapolated value of 8j (a) depends upon p. How­
ever, by reanalyzing our 8( T) data with these new values of 
p, we find only a small change in the values of 8j (a) from 
those reported above and no change in the qualitative behav­
ior. Specifically, we still find a maximum in OJ(a) at a::::::: 2, 
with 0j(2) = 0.551 (rather than 0.545). For squares, 8j ( 1) 

::::;0.532 rather than 0.523. In general, the values come out 
:::::::0.01 higher than those given in the text. The asymptotic 
behavior of OJ (a) for large a remains power-law as in Fig. 5 
for OJ ::::;0.70a - 0.195. 

We are now carrying out additional simulations in order 
to determine the long-time behavior more precisely and 
these results will be reported in a future paper. We thank 
Talbot et al. for sending us a copy of their work prior to its 
publication. 

We acknowledge National Science Foundation Grant 
No. DMR-8619731 for support of this research. We thank 
H. S. Fogler and Ayumu Yokoyama for discussions which 
led to this work. 
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