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Perfect quantum wire structures are attractive candidates for low threshold lasers and high 
speed electronic devices because of the nature of the density of states and 
eigenfunctions. In this letter, we discuss the effect of structural disorder on the density of 
states as well as on the localization length of these eigenstates. We find that significant changes 
in the density of states and eigenfunctions occur with a small random disorder along the 
wire axis. Consequences for devices based on quantum wires are discussed. 

Quasi-one-dimensional systems are currently attract- 
ing a great deal of interest for their potential applications in 
high speed electron devices and extremely low threshold 
current lasers.r4 Much of this potential is due to the na- 
ture of the one-dimensional (1D) band structure, the den 
sity of states and the reduced phase space for scattering. 
The density of states develop a strong peak near the band 
edge for quantum wires, allowing for example a very high 
gain in quantum wire lasers at-very low injection. The ideal 
1D density of states is5 

N(E) = (E - En) - 1’2, (1) 

where En is the confinement energy due to the finite cross 
section of the wire. The wave functions along the axis of 
the wire (x-axis) are described by Bloch functions 

Y(x) = (2) 

if the wire isperfect. Here UUk is the central cell part of the 
Bloch function which in the effective mass theory may be 
taken as the bulk materials band edge central cell function. 
As noted above, the density of states and the wave function 
are strictly valid only for the perfect wire. In fact, in a 
one-dimensional system, we know that any disorder can 
localize states and drastically alter the density of states.’ 
Since most of the predicted benefits of quantum wires arise 
from these special features, it is important to find out 
whether in realistic quantum wires which are not strictly 
one dimensional, but are quasi-one-dimensional (due to 
the tlnite wire cross section), structural disorder will dras- 
tically alter the electronic properties. 

It is important to distinguish between the fabrication 
process of quantum wells versus quantum wires. The quan- 
tum wells are formed by a simple shuttering mechanism 
which leads to an interfacial structure fluctuation of the 
order of only a monolayer ( -3 A) or so. No such simple 
process exists for quantum wire fabrication. While a num- 
ber of different techniques have been employed for quan- 
tum wires, it is expected that it would be very difficult to 
approach the perfection of quantum wells, and a structural 
variation of less than 10-20 A may be difficult to achieve. 

With this in mind, we consider a quantum wire as 
shown in Fig. 1. The wire has a cross section of L& and 
has a sidewall of disordered region with width AL, The 
disordered sidewall is made up of islands of either the bar- 
rier region (which we choose to be Ale3Gas7As) or GaAs 
(which is the well region material). These islands are ran- 
domly placed on this edge by a Monte Carlo method. In 
the results shown for the disordered cases, we have as- 
sumed a 5050 chance of the islands on the disordered edge 
being GaAs or AlesGae7As. A number of other kinds of 
disorder (e.g., along two edges) were also introduced, but 
the results were qualitatively the same. 

A 2000 h; long wire was used for the results that will 
be presented. A finite size wire had to be chosen because we 
solve the Schrodinger equation in the disordered wire by 
the tinite difference method which effectively involves the 
diagonalization of a 1000x 1000 matrix. We find that with 
a 2000 A wire, the density of states results converge to the 
infinite wire results. A 2 meV Gaussian broadening is used 
for the density of states results presented here. 

In Fig. 2 we show the density of states results for the 
perfect wire as calculated by the numerical technique. A 
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FIG. 1. A schematic of the model used to introduce structural disorder 
along the quantum wire axis. Random islands having composition of 
either well or barrier material and sizes AL, x AL,, x AL= are placed 
along one of the sidewalls. 
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60 x 60 A wire size was used with an Al,,sGas7As barrier. 
Figure 2(a) shows the density of states and we can see the 
sharp peak at the effective band edge (measured from the 
bulk conduction band edge). The results are shown for the 
ground state of the confined state in the y-z plane. The 
excited states results are at a much higher energy and are 
not shown. We only focus on an energy region of about 
30-40 meV away from the band edge since this is the re- 
gion of interest for many devices. The stationary wave 
functions are represented by plotting the probability func- 
tion 1 \I, (x) 1 2 along the wire axis. The electron probability 
function has a peak amplitude of 0.05 corresponding to the 
normalization in the 0.2 ,um wire. 

In Fig. 3, we show the effect of disorder on the quan- 
tum wire electronic properties. The disorder is introduced 
by randomly placing islands along one edge of the wire 
(see Fig. 1) with island sizes given by 

ALZ=20 A; AL,=20 A; AL,=100 A. (3) 

The inner 60 X 60 A GaAs region is still perf ect, as are 
the three other~edges of the wire. Thus the disorder intro- 
duced is not of an extreme nature. The random potential 
fluctuations (averaged over the islands in the z direction) 
seen by the electron along the wired axis are shown in Fig. 

3 (a). The density of states obtained by diagonalizing the 
effective mass matrix with the disordered potential is 
shown in Fig. 3 (b). The density of states. is not too differ- 
ent from the case of the perfect wire [Fig. 2(a)]. There is 
only a 10% reduction in the peak value at the band edge 
and the density of states has some other peaks. These other 
peaks shift around if the disorder is generated in a different 
random sequence. However, the main peak at the band 
edge is maintained in spite of the disorder. This is in con- 
trast to the case of a strictly 1D system where the disorder 
qualitatively alters the density of states.5 

The nature of the wave functions in the disordered 
wire however is dramatically affected by the disorder. The 
probability functions for the first five lowest energy states 
are shown in Fig. 4(a). Once again 1 q(x) 1 2 is plotted as a 
function of the position along the wire axis. The electronic 
states are all strongly localized in a particular region of the 
wire axis. The lateral spread ( -localization length) of 
these states is -300-400 A. Once again if we charge the 
random sequence of the disorder, the ordering of these 
states does change, but the localization length is in the 
same range. As we move to higher energy states, the extent 
of the states increases slowly. In Fig. 4(b), we show a state 
-20 meV above the lowest state. As can be seen, this state 
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FIG. 2. (a) Calculated density of states (including 2 meV Gaussian FIG. 3. (a) Random potential seen along the 20 A sidewall region along 
linewidth) for the perfect wire and (b) probability distribution for some the quantum wire axis, (b) density of states for the disordered quantum 
of the low lying states. wire. 
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FIG. 4. (a) Probability function for the lowest lying five states along the 
wire axis for the disordered wire, (b) probability function for a state 20 
meV above the lowest lying state. 
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is extended over the entire range of the wire and looks 
similar to the excited states of the perfect wire. 

The calculations were repeated for the heavy hole 
states and it was found that in this case, while the density 
of states once again maintained a peak at the band edge, all 
the states up to 25 meV were strongly localized. The lo- 
calization lengths were - 100-200 A for the lower lying 
states. The fluctuations were therefore much more effective 
in localizing the heavier hole. 

Our simulation results show that small disorder does 
not qualitatitiely perturb the nature of the density of states 
function, although it causes localization of a large fraction 
of the low-lying electronic states. Properties of the quan- 
tum wire which are more dependent upon the density of 
states such as optical transitions will still see an enhance- 
ment due to the peak at the band edge in the density of 
states. However, the usual k-selection rules for optical 
transitions may not be valid for these calculations. Prop- 
erties of the quantum wire which are dependent upon the 
extended nature of the wave function such as charge trans- 
port, are expected to be significantly altered. This study 
shows the seriousness of the effect of disorder on the wire 
properties. Detailed studies with varying levels of disorder 
will be presented in a longer paper. 
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