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A lower bound on the number of I-PI connected graphs without tadpoles that will be 
important in the proof of the divergence of the perturbation series of a model with rational 
interaction is obtained. 

I. INTRODUCTION 

In two previous papers we studied the perturbation se- 
ries of a model with rational interaction of the form 
/i ‘Q( 1 + R@(x))- ‘, in the context of quantum mechanics’ 
and quantum field theory in two dimensions.* Here, we con- 
sider the same model as defined in Ref. 2 and this time we 
calculate a lower bound for the number of I-PI graphs that 
will be important in the proof of the divergence of the pertur- 
bation series of the model, to appear in a subsequent paper. 
There are two motivations for considering this interaction. 
First, models with interaction of the above type have aroused 
considerable interest due to their possible applications to la- 
ser theory (see the above references for more information on 
this). Second, they mimic some of the perturbation prob- 
lems of renormalizable polynomial field theories like factori- 
al growth of the number of diagrams, the presence of positive 
and negative signs mingled in the same order of perturba- 
tion, and divergence of the series which in most of the cases is 
very difficult to prove rigorously.3*4 The main difficulty re- 
sides in the fact that the subtractions of ultraviolet infinities 
are responsible for an oscillation of signs among the ampli- 
tudes belonging to the same order of perturbation that lead 
to cancellations. Prior to the calculation ofa lower bound for 
the sum of these amplitudes therefore it is necessary to per- 
form a careful analysis of which amplitude dominates which. 
The model we consider here, though, is supernormalizable. 
The only possible infinities are those associated to tadpole 
diagrams and they are eliminated from the perturbation se- 
ries by Wick ordering the fields, after which we are left with 
positive and completely convergent amplitudes which are 
exponentially bounded. Although no renormalizations are 
necessary, there is an oscillation of signs inside the terms of 
the series but they are solely due to the rational form of the 
interaction. In our case this problem is a mild one since the 
way the signs appear can be completely displayed from the 
outset. A harder problem concerns the counting of diagrams 
since we should count only those without tadpoles. In this 
paper we solve this counting problem. 

II. DIAGRAM COUNTING 
I-PI connected graphs are basically of two types: those 

whose vertices can be displayed forming a ring (we shall call 
them ring graphs) and therefore can be counted using Jaffe’s 
method” and those whose vertices cannot. The latter are 
treelike graphs whose “lines” are ring graphs. A lower 

bound on their number can be achieved from (a bound on) 
the number y of ring graphs given by the following lemma. 

Lemma I: The number y(n) of connected I-PI ring 
graphs with V= Z V,, vertices contributing to order n of the 
E-points Schwinger function of the two-dimensional model 
defined in Ref. 2 (as well as the symbols used here) is given 
by 

y(n)=J-J y V.~*2V-W-1)!(3E!(2n-E-l)!!. 
0 1’ 2 

(1) 

Prooj In a v-vertex (a vertex where Y fields meet) we 
can choose two fields in (;’ ) ways. If V,, is the number of Y- 
vertices, then II,, (i ) ” is the total number of ways of choos- 
ing two fields in each vertex. There are 2 “- ’ * ( V - 1 )! ways 
to link the chosen fields in order to form a ring ( Vinternal 
lines). Suppose all vertices are in a given order. Given one of 
them we can link one of the two fields chosen in two ways 
with the two fields of the next vertex in the order. The re- 
maining field can be contracted in two ways with the third 
vertex in the order and so on. For a fixed order we have 2 ‘- ’ 
ways to form the circle. But we must consider all possible 
orders, i.e., ( V - 1 )!. There are (“‘L- ‘) ““) ways to choose E 
fields among the ‘c ( Y - 2) V,. = 2n) E in order to link them 
with Eexternal fields. E! contractions are possible. The other 
I-Vinternal lines come from the 

( 
C(Y-2) V,.-E-l !!=(2n-E-l)!! 

> 
contractions of the rest of the fields. n 

Now, we classify the connected ring graphs into two 
types: those having tadpoles (lines with both ends hooked to 
the same vertex) and those not having them. The theorem 
below gives a unique expression that displays both types of 
graphs, but we will be able to decouple from it a much 
simpler formula that considers only graphs without 
tadpoles. 

Remark: The making of the I-V internal lines consists 
of forming 

pairs of fields. By a formula given in the Appendix, they can 
be formed in 
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P 
( 

c (Y-2)V,.l# 
,’ > 

= c (v--2)~,/,. 
f j (2# - l)!!=P(#) 

\ E / 
ways. 

Theorem: Let Y be the number of fields hooked to a 
vertex and P( VI p) the number of ways of formingp tadpoles 
with them. Then P( #) is equal to 

v-2 

I 
(a) 

x *g, c P( % - I + s2s I%6 - I &5! 

‘Ib = n ( 
7h -2- i (m,),t,, I= 1 ’ .> L 1 ‘a,,, ,.‘<, ” n (m6+ I IT)& )I 

g-J CLhiP( TV-2 - 2 
I 1 

- y Cm,),,, ,I(%“-3L,, .)sd (3) 
I -I 

In ( 3 ), the products II ,, ,, are over the elements n,, E B 
:~P~,={fl~}wherej=1,2 ,..., VandLZ~={fl~+ ,,..., B”): 
Sums E’O) and C’ h, run over the possible values of .szh _ , , +, , 
and (szc. J ) ‘,, !, szb, 2 satisfying the relations 

2% , -t.b =bi -2-- i (mOo,, (4) 
111 

and 
V-I 

($I.- 3 I,,, 2 +s,.-, =vvp2 - E (m,),,, 1t 
r=i 

(5) 

respectively. For V= 2, consider (3) with V= 3 but go 
and Y , having only two and one element, respectively. 

Proofi An informal proof (for a formal one see the Ap- 
pendix) is: 

(a) Rewrite (““,’ ““’ ) so as to explicitly show all possi- 
ble attachments of the external lines to the vertices. We have 
then 

( C(v-2)V,. 
E > = X8& = .g ( c%L‘) ’ (6) I 

whereO<(m,),,<flj - 2and 

obtained after application of the simplest case. The (m , )@,‘s 

are nothing but the number of external lines hooked to theflj 
vertex. 

(b) Given an attachment of the external lines pick one 
(any) of the vertices, e.g., the B, vertex where (m, )a, fields 
are already contracted with external ones and two fields link 
the vertex with other two. The remaining /?, - 2 - (m, ) Bi 
fields are to be contracted to form s, tadpoles and leave s, 

fields to be linked with those of other vertices. All the possi- 
bilities are comprised in the condition 2s, + .Q = p, - 2 
- (m,),, (seeFig. l).ThesumX’“‘in(3) runsoverallthe 

possible values s, and s? can assume. The second sum inside 
the brackets has the same meaning of that for the external 
lines. The sz lines coming from the p, vertex are seen as 
“external lines” by the other V - 1 vertices and the sum is 
over all possible ways to hook these lines to those vertices. 
One should repeat this process until all vertices have been 
covered except two. The possible contractions among their 
fields are described by the sum X”“. Because the set G ,,- 2 
has only two elements, we have a product of two P’s that 
count for the tadpoles hung to each of the two vertices times 
s,,- *! possible contractions of the rest of the fields. q 

Now we takes, = 0 for ~7 odd to eliminate those graphs 
with tadpoles. Because P( .,O) zz 1, (3) is reduced to the 
expression (7) below: 

.,&CL-J 
v. 2 

x *!!, i %! “tm,\ ,3 ,,,, ‘,, 51 .> 
x 17* -2- 2 (m,),ts, 

( 

l=I 

)I 

s,,-. 2!, 

(m 1 iJ + 1 v., 

(7) 

where sth is given by (8) with s*,, _ , = 0 and 

s2y-2 =Bv-, -‘x’ (m,lp, , ,Z, 
v- I 

=B,- C (m,)B,. (81 
r=l 

When V=2putS= lands,,_,!= 1. 
Equation (7) can be bounded as follows. Using (g ) > 1 

we find that 
V-I 

(7)> l-J (SZh)!>2 -xsy~s2b)!. (9) 
b=I 

FIG. 1. Possibilities comprised in the condition 2s, -I- sT =/3, 
- 2 - (ml)n,. 
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However one should not forget the conditions on the m’s, 
namely, 

c (mllp, = E, pj E zSo, 
I 

C(m 6+ILl,,=~~-~- i (mt)oAy f-l 
7)segs, s= l,..., v-2, 

V-I 
S2L’-2 = fir,.. , - 2 - C (m&,. , I=1 

v- 1 
=pv - 2 - 1 (m, Ifi,.- 

,= I 
(10) 

When S = V - 2 one can solve two of the above conditions 
for (m,- , ja, and (mvlB, , to get 

2S2v.-Z=(B~'-2)+(PV-,-2)+(Pv-2-2) 

+B(m,lp,. .' -Um,)8, , --JWb),,, ,, 

(11) 

where 1 (t( V - 2. Adding up the SHE’S, using ( 15) and the 
conditions (10) one obtains that 

I’- I 

2 S26 = 
6=1 

~~(Bi-2)-~~(m,)~,=n-~. 

Therefore, 
(12) 

(7))2-“+ E’2.(n -E/2)!. (13) 
We may conclude that the number of ring graphs without 
tadpoles, ymyw.( is bounded from below by 

Y,:,., 22 v-‘(V-1)!E!2-“+E’2(n-EE2)!. (14) 
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APPENDIX: A LEMMA AND A FORMAL PROOF OF THE 
THEOREM 

If P( 1’1 p) is the number of sets ofp pairs formed out of v 
elements with no element in a pair appearing more than once 
within a set then 

P(vl p) = (2p - l)!! y 1/2p ) v>2p. 
( > (Al) 

The number P( ~1 p) satisfies the following relation 
Lemma: 

c P(A Im,)P(B jm,)m,! = (A + B - l)!! . 
2m,+m,=A 
2m2+m.=B 

(AZ) 
Pro08 One could apply Hermite polynomials to show 

(A2). However, we rather prefer the following proof. Con- 
sider two vertices, each one with A and B fields hooked, 
respectively. The number of ways of linking these fields 
among themselves is (A + B - l)!! . In general, this can be 
done by contracting 2m, fields of the A vertex to form m, 

tadpoles. This can be accomplished in P(A (m, ) manners 
leaving m3 fields to be linked in m,! ways with m3 of the B 
fields. Similarly, we can have m2 tadpoles hanged in the B 
vertex formed before the m3 contractions, in P(B Im,) ways. 
If 2m, + m3 = A and 2m, + m3 = B then the sum in the lhs 
running over the possible values of m,, m2, and m3 certainly 
covers all possible contractions and it equals the rhs. 

Proceeding now to a proof of (3) we note that the set 
9 v-Z has only two elements and vv- 2 can assume two 
values, say pv _ , and fly. Then by (A2) the last sum in (3) 
involving the two P’s is equal to 

( [ 

v- I 
,,C vve2 -2- C (m,),v .’ - 1 !! 

v 2 r=l 1 > 
V-2 = ( [ C rlve2 - 2-- 1 (m,).,. I 

‘I,. 2 t=t I 

(A3) 

We can then shift (A3) to the left side of 

c n( 
vve2 - 2 - Wn,),,v 1 

Z(rn, ,),&, z 9 F 2 (mv-l),, I > 
=.>z,. 4 

[77v-2 -2-~(mr)n 21 , (A4) 
s2V-4 > 

where l<t<V- 2. By (Al), 

(A2)*(A3) 

i ( 

v-2 
= 

p f/F 1 
vve2 -2- C  (m,), ,  z  

/=I > 

X13[ .,~2EilY11~ (As) 

By application of (A2), we can now obtain that 

(A61 
where the sum on the lhs of (A6) does satisfy the relations 

v-2 

2s2Vh5 +s2V-4 =PV-2 -2- c (mt)8, 29 I= I 
2[+,,;,(.-;$;*)]+s2V-4 

v-2 = rl~-~ - 1 (mrlnr. z 

Proceeding as above one can exactly resum (3) to obtain 

C(j-2)5-E-l !!. 
j > 

(A81 
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