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The transformation of molecular force fields from natural curvilinear coordinates § to rectilinear 
coordinates S (yielding simpler equations of motion) is discussed. Rectilinear cubic constants include mass 
dependent terms arising from the nonlinear coordinate transformation as well as contributions from the 
cubic constants for the S displacements. These contributors to anharmonicity lead to intramole.:ular 
"vibrational stresses" resolvable into components ;rc. ;rT, and;rF which induce rectilinear molecular strain 
components <S>c. <S>T' and <S>F' each of which has its own physical interpretation. More 
significant than the rectilinear quantities are the curvilinear stresses and strains which, it is shown, are 
readily expressed in terms of the above components. Each of the foregoing quantities is easily decomposed 
into contributions from the various types of vibration. Magnitudes are illustrated by computations of cubic 
force constants and selected stress and strain components in C2H6 and C2D6 . 

I. INTRODUCTION 

Because atomic positions always have a comparative­
ly large natural indeterminacy (- 10-1 A), the value as­
signed to a given internuclear distance depends criti­
cally upon the way the vibrational average is defined. 
Two of the most important averages are rg and r~, the 
average internuclear distance and the distance between 
average internuclear positions, respectively. These 
averages, expressed by Morino, Kuchitsu, and co­
workersl - 3 as 

(1) 

and 
(2) 

are sensitive to magnitudes of both harmonic and an­
harmonic components of the molecular force field. Our 
growing experimental and theoretical knowledge of an­
harmonic potential constants makes it increasingly 
worthwhile to pay heed to vibrational effects. One of 
the most significant recent advances in anharmonic mo­
lecular vibration theory has been the introduction of the 
L tensor formalism by Hoy, MillS, and Strey. 4 An­
other approach, only roughly worked out in its initial 
application, is a method focusing on intramolecular vi­
brational stresses. 5 This method is attractive in the 
way it can be reduced to physically interpretable com­
ponents of anharmonic atomic displacements and isotope 
effects on mean internuclear distances. The object of 
the present paper is to combine the instructiveness of 
the vibrational stress picture with the rigor of the L 
tensor formalism, and to illustrate the approach with 
ethane and perdeuteroethane as examples. For sim­
plicity we shall carry out the treatment only through 
the effects of cubic force constants. Because the pres­
ent treatment corresponds to a transformation of the 
Hoy, MillS, and Strey results back to internal coordi­
nates, it can be extended to arbitrary order in the 
framework of the L tensor formulation. By the same 
token, it yields no information not derivable, in prin­
ciple, from the L tensor approach. 

II. THEORY 
It is essential to distinguish carefully between the 

rectilinear internal coordinates R constructed from 

Cartesian displacements and the natural curvilinear 
internal coordinates deSignated by Mills et al. 4 by a 
Russian "ya" but in the present work (where ya cannot 
be typeset) by R. In the following a tilde will be used 
to identify symbols pertaining to curvilinear coordi­
nates. For the purposes of the present paper we shall 
carry out calculations in terms of the symmetry co­
ordinates 

S;= L [ftjRj (3a) 
j 

and 

8i =L UjjR" (3b) , 
which, of course, can be taken simply as the internal 
coordinates, if desired. The most fundamental expres­
sion for the force field, as emphasized by Mills et al. ,4 

is in terms of the Ii coordinates, or 

(4) 
rather than 

V=1/2 L L fjj Si Sj+1/6L L L fiJkSiS,S~+", (5) 
i J j ~ 

because the f;j~, unlike the f iJ~, depend upon the atomic 
masses involved (as a result of the Ekart conditions im­
posed in the definitions of the R). A particularly con­
venient way of deducing mean displacements in internu­
clear distances is to apply Ehrenfest's theorem6 

(6) 

according to which, for stationary states or equilibrium 
distributions among stationary states, the acceleration 
of Cartesian coordinates is zero, giving the set of equa­
tions7 

(7) 

By carrying out the indicated differentiations upon Eq. 
(5) the resulting relations 

(8) 
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can be solved for the displacements (SJ) in terms of the 
relatively simple mean square displacements (SJSk). In 
matrix notation Eq. (8) is expressible as 

f (S) = ~ (9) 

according to which 

(10) 

where the elements of the column matrix (S) are the 
mean displacements of the totally symmetric symmetry 
coordinates (reckoned relative to the equilibrium [re] 
structure) and the column matrix If has elements 

(11) 

By virtue of the resemblance of Eq. (9) to Hooke's law, 
the elements :J I can be interpreted as intramolecular 
vibrational stresses arising from the curved trajecto­
ries of atoms vibrating in the skewed (anharmonic) wells 
of the potential function. Although the original paper7 
pointed out tha:t the application of Eq. (7) is appropriate 
for rectilinear but not curvilinear coordinates, the ini­
tial treatmentS of secondary isotope effects disregarded 
this limitation and, accordingly, obtained equivocal re­
sults. In the following we show the relationship between 
the vibrational stresses for the rectilinear coordinates 
and those for the curvilinear coordinates. 

Crucial to the problem is the nonlinearity in the trans­
formation between the R and the R coordinates. Even if 
the cubic constants J'Jk for the R-based coordinates [Eq. 
(4)] were zero, nonlinearities would propagate quadratic 
potential constants into the rectilinear cubic constants 
flik as follows: From the transformation4 

- "" Ii S r = Sr + 1/2 ~ ~ T r SI SJ + ••• (12) 
I J 

expressing the aforementioned nonlinearity in the coordi­
nate transformation it follows that the rectilinear cubic 
constants are 

(13) 

As Eq. (13) stands there is no Significance in the sub­
division into "T" and "F" components since i, j, and 1 
all enter Eq. (13) on the same footing. In deriving the 
vibrational stress component acting on the lth coordi­
nate, however, a distinction between 1 and i, j is made 
which makes it worthwhile to decompose fIJI as shown. 
This decomposition is profitably continued through 
stress and strain components as follows: Vibrational 
stress components :J I of Eq. (11) can be written, in 
view of Eq. (13), as 

(14) 

where :If is derived from the cubic constants JiJl of the 
curvilinear coordinates, and the other components origi­
nate from the nonlinear transformation. The mean 
rectilinear coordinates can be similarly broken down, 
by inserting Eq. (14) into (10), to yield 

(15) 

It can be readily verified that the last component of (S) 
reduces to 

(Sk)F = -1/2 L L T~J (SISj). 
I J 

This result, by virtue of the definition of Eq. (12) 
(space-averaged over both sides), demonstrates the 
special Significance of (S)F' namely, 

(S)F = - «S) - (S». 

(16) 

(17) 

It is apparent that the difference «8 k) - (Sk» between 
mean curvilinear and rectilinear coordinates is the 
foreshortening correction required to express the ef­
fect of perpendicular amplitudes of vibration. This 
correction reduces, if Sk represents a bond stretch 
(e. g., 83 = Arcc in ethane), to the familiar 

r,- r. = «AX2) + (Ay2) )/2r. 

of Eq. (1) and the equivalent 

r,-r.=1/2 L LZS(Q!> 
8 

of Mills. B Since this result is obtained even if a bond is 
completely rigid, the utility of separating the fore­
shortening correction (S;F from the other "transforma­
tion" correction (S)r and from the cubic correction 
(S)c is obvious. Equation (17) is perfectly general and 
applies as well to bond angles and dihedral angles. 
Higher order corrections arising from terms dropped 
in the truncations specified in Eqs. (8) and (11) are 
discussed, for Morse OSCillators, in Ref. 7. Also ex­
amined in the same reference is the difference between 
using zeroth-order mean square amplitudes and exact 
mean square amplitudes. 

In view of Eqs. (14)-(17) it is possible to write a vi­
brational stress matrix ~ applying directly to the curvi­
linear coordinates, or 

f(8) = ~ , (18) 

where stress elements if I are comprised of the first 
two rhs terms of Eq. (14), namely, 

(19) 

Thus, the mean curvilinear displacements can be writ­
ten as 

(20) 

where the components (Sk)C and (Sk)T are the same as 
those in Eq. (15). Since (S,,)c is derived from the cubic 
constants fIJI of the curvilinear coordinates in the same 
manner as the rectilinear mean (S,,) is derived from the 
cubic constants hi I of the rectilinear coordinates, the 
fact that (S")T is nonvanishing is a manifestation that the 
Simple Newtonian average in Eq. (6) holds only if x" is 
rectilinear. The phYSical meaning of the transformation 
correction (S")r is in many cases straightforward. For 
example, if SIt represents the stretch of a bond whose 
terminal atoms are oscillating over nearly circular 
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TABLE 1. Cubic force constants for ethane; j and f are for curvilinear and rectilinear coordinates, 
respectively; Hand D represent C2HS and C2Ds, respectively. 

ijk Jiik
a (j-j)~k (jH_ fT:)ijk ijk Jiik (f-1Wlk (fH-fD)iik 

III -12.52(6) 0,00 0.00 SS2 -0,35(2) 0.25 0.00 
221 0,04 0.52 0,00 992 O,lS(4) -0.07 0,01 
231 O,lS 0.00 10,10,2 [-0.07] -0.20 0.07 
331 -2.96(30) 0.00 0.00 11,11,2 - 0.35(2) 0.22 -0.02 
551 [-12.52] 0.00 0,00 12,12,2 0.26(4) -0.09 -0.04 
661 [0.04] 0.69 0.02 113 0.29(0) 0.00 0.00 
771 [-12.52J 0,00 0.00 223 -0.52(0) 0.15 0,00 
SSl 0.5S -0,01 333 -23.45(1) 0.00 0.00 
991 2.12 0.09 443 -0.33(1) -0.13 
10,10,1 [-12.52J 0.03 -0.01 553 0.29(6) 0.00 0.00 
11,11,1 0,47 -0.04 663 - 0.34(1) 0,14 -0.02 
12,12,1 1.02 0.26 773 0.26(6) 0.00 0.00 
112 -0.07 -0.04 0.00 SS3 0.03(6) -0.01 -0.02 
222 0.49(1) -0.55 0,00 993 -0.93(1) 0.02 -0.03 
332 0.90(4) 0.00 0.00 10,10,3 0.32(6) -0.02 0.00 
552 [-0.07] -0.04 0.00 11,11,3 0.09(6) -0.03 -0.04 
662 0.56(10) -0.55 0.00 12,12,3 -0.91(1) -0.11 -0.01 
772 [-0.07] 0.03 0.01 

aAll constants except for 1112,1221' and those in square brackets are from the ab initio calculations 
of Ref. 9. Constants f112 and fz21 were calculated for this study by similar methods. Bracketed 
constants are assumed to be approximately equal to the corresponding values for related modes, 
Energy in mdynA (= 10-18 J), displacements in A for stretches, rad for bends. Uncertainties are 
indicated in parentheses. Because of minor inconsistencies mentioned in Sec. III, curvilinear to 
rectilinear corrections infHk are uncertain by perhaps 0.02 units. 

arcs, (S~)T is the stretch induced by the mean centrifugal 
reactions in the curved trajectories. 7 

From the foregoing it is clear that the vibrational 
stress components J1 and i'f l can be determined for 
various coordinates S, or S I in a straightforward way. 
It should be emphasized that the § I correspond much 
more directly to physical observations than do the SI 
because the former correspond always to geometrical 
measurements in a molecule whereas the latter involve 
the Eckart conditions. In the absence of displacements 
of the other coordinates the mean displacement of a 
given coordinate, for example 8" is given simply by 
~ zlf" according to Eq. (18). Displacements of other 
coordinates § m propagate effects into the § I coordinates 
through the couplings impliCit in the f'm as shown in 
Eq. (20). A resolution of the stress components into 
contributions originating from the various amplitudes 
of vibration is frequently illuminating, as illustrated in 
Ref. 5. 

Hoy, Mills, and Strey4 have outlined several ways to 
determine the transformation tensor elements T;J that 
are needed in the foregoing treatment. Their relation 

T;J = :E :E L;,n(L-l)~ (L-1)~ (21 ) 
m n 

is perhaps as convenient as any, although the tensor can 
be derived from considerations of mass and geometry 
without performing a normal coordinate analysis. 

III. APPLICATION TO ETHANE 

In order to illustrate the magnitudes involved both 
in the effects of the nonlinearities of the transformations 
and in the dependence of the cubic constants flJ~ upon 
atomic masses we present selected results for the cases 
of C2Hs and C2Ds. For this system most of the required 

cubic force constants iiJk are available from an ab initio 
calculation. 9 These are displayed in Table I along with 
the corrections (f - j)jJR' and (fH - fD)IJ~ derived from 
Eq. (13). For practical reasons the quadratic f matrix 
and L matrix were taken from Duncan's experimental 
studylO rather than from the ab initio calculation. For 
this reason, because of the incompleteness of the set of 
j iJ k' and because a cons iderable amount of the compu­
tation was carried out by hand rather than by an ef­
ficient computer code (so that minor inconsistencies 
were tolerated in reference geometries in different 
phases of calculations) tabulated corrections are illus­
trative rather than final. These minor flaws should 
have no Significant effect on the magnitudes. 

From Table I it can be seen that the distinction be­
tween the curvilinear and rectilinear cubic constants 
is small for the pure stretch constants although it is 
Significantly nonzero for the 10, 10, 1 and 10, 10, 3 
cases. Here, the E, stretch rocks the molecule and 
contributes to the bond foreshortening associated with 
the (f -]) correction. The largest curvilinear to recti­
linear cubic corrections and the largest mass depen-

TABLE II. Ground state vibrational stress componentsa and 
mean displacements of rectilinear Alz symmetry coordinates 
in ethane and deuteroethane, 

k 

1 
2 
3 

0.1050 
0.0077 
0.0654 

0.0699 
0.0055 
0.0533 

0.0212 
0.0236 
0,0173 

0.0141 
0.0183 
0.0140 

a~k in mdyn A (= 10-18 J) per displacement Sk (A for k = 1, 3, rad 
for k =2). Nonlinear transformation corrections for torsion 
have been neglected in the ~ k' 
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TABLE III. Ground state contributions from various vibra-
tions to selected C-C stresses and strains in C2HS illustrating 
rectilinear to curvilinear corrections. 

Source 5~ 'f 5f « S3 - S3» 

HCC bend 41.79 5.27 -7.37 0.48 
HCH benda -2.05 0.96 0.05 0.08 
CH stretch -5.45 -0,09 0.21 0.02 
CC stretch 30.64 0.00 0.00 0.00 
Torsion 5.67 0.00 2.31 0.00 
Cross terms -3.30b -0.03b 

~ -0.01 

Total 67.30 6.11 -4.59 0.57" 
10-3 mdyn 10-3 mdyn 10-3 mdyn 10-3 A 

aBy S8' 511 , 

~eglects small E u' E~ contributions. 
"Entirely due to E, vibrations. The appreciable torsional fore­
shortening component Jf is cancelled identically by the other 
:rf in the computation of (SS>F' 

dences are in terms quadratic in CCH bends. 

IsotopiC dependences of the vibrational stress compo­
nents and mean displacements of rectilinear coordi­
nates are listed in Table II for C:;Hs and CaDs' Although 
the mass variations of the cubic constants ill" do con­
tribute to the isotope effects, the mass differences in 
the mean square amplitudes (SiSJ) are rather more im­
portant. Representative values of (SiS,) are tabulated 
in Ref. 5. 

A decomposition of vibrational stress components is 
presented in Table III for the C-C stretch, along with 
vibrational components of the foreshortening correction 
(r, - r.). The vibrational effects on this internal co­
ordinate are overwhelmingly localized in CCH bend con­
tributions, which are, of course, strongly mass de­
pendent. (The appreciable ij 3 component from the C-C 
stretching motion itself is not sensitive to hydrogen 
mass, however.) The effect of hydrogen mass on the 
C-C bond stretch is a secondary isotope effect, the 
origin of which can plausibly be ascribed to geminal 
H' •• C nonbonded repulSions. These are enhanced by 
CCH vibrations as outlined elsewhere. 5,11 

IV. CONCLUSION 
In summary, we have separated cubic constants and 

vibrational stress and strain components into three 
classes with different physical meanings. None can be 
neglected in quantitative work. These can be further 
decomposed into interpretable components for diagnos­
ing vibrational effects, if desired. In the computation 
of vibrational averages in molecular structure the pres­
ent treatment permits nothing to be done that could not 
be done in the earlier treatments of Kuchitsu2

,3 or 
Mills.4 The intermediate quantities encountered, how­
ever, have a more readily visualizable meaning, and 
natural curvilinear coordinates are handled more di­
rectly than previously. 

ACKNOWLEDGMENTS 

ThiS work was supported by a grant from National 
Science Foundation. We are grateful to professors 
Ian Mills and Kenneth Hedberg for performing calcula­
tions of the L tensor elements for C2HS and for com­
municating valuable criticisms of the manuscript. We 
thank Mr. Scott Woehler for carrying out the ab initio 
calculations of iua and i 221 • 

ly. Morino, J. Nakamura, and P. W. Moore, J. Chern. Phys. 
86, 1050 (1962). 

2K. Kuchitsu, Bull. Chem. Soc. Jpn. 40, 505 (1967). 
3For reviews see K. Kuchitsu and S. J. Cyvin, Molecular 

Structure and Vibrutions (Elsevier, Amsterdam, 1972), p. 
183; A. G. Robiette, Molecular Structure by Diffruction 
Methods (The Chemical SOCiety, London, 1973), Vol. 1, p.160. 

~A. R. Hoy, I. M. Mills, and G. Strey, Mol. Phys. 24, 1265 
(1972). 

5L. S. Bartell, S. Fitzwater, and W. J. Hehre, J. Chem. 
Phys. 63, 3042 (1975). 

Gp. Ehrenfest, Z. Phys. (Leipzig) 45, 455 (1927). 
7L. S. Bartell, J. Chem. Phys. 88, 1827 (1963). 
81. M. Mills, J. Phys. Chem. 80, 1187 (1976). 
9L. S. Bartell, S. Fitzwater, and W. J. Hehre, J. Chem. 

Phys. 68, 4750 (1975). Note that the geminal steric model 
entries in Table VI of this paper are in error for constants 
F882 and F l1,l1,2' These constants should be -0.082 rather 
than - O. 218. We thank Professor Bernard Kirtman for 
pointing out our error. 

IOJ. L. Ducan, Spectrochim. Acta 20, 1197 (1964). 
l1L. S. Bartell, Iowa State J. Sci. 36, 137 (1961). 

J. Chern. Phys., Vol. 67, No.9, 1 November 1977 


