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Interactions of carriers with interface optical phonons dominate over other carrier—phonon
scatterings in narrow quantum-well structures. Herein, a transfer matrix method is used to establish
a formalism for determining the dispersion relations, electrostatic potentials, ardicRro
interaction Hamiltonians of the interface optical phonons for multiple-interface heterostructure
systems within the framework of the macroscopic dielectric continuum model. This method
facilitates systematic calculations for complex structures where the conventional method is very
difficult to implement. Several specific cases are treated to illustrate the advantages of the general
formalism. © 1997 American Institute of PhysidsS0021-897807)03019-3

I. INTRODUCTION interaction Hamiltonian for IF phonons in this multilayered
) . ] system composed of polar semiconductors. As in the calcu-

It is well known that confinement effects modify both |5tion of electronic envelope functiodthe transfer matrix
acoustic and optical-phonon modes as well as their interagreatment for the IF phonons reduces the complex derivation
tions with carriers in semiconductor nanostruc?drésr nar- - of the potential to a simple matrix multiplication. A number
row polar—semiconductor quantum wells, carrier interactiong,f examples are provided to illustrate the advantages of the
W|th_ interface 0pt|caI(I_F) phonons play a dominate role in general formalism.
carrier energy relaxation proces€eSuch narrow quantum-
weII_systems_ have begn of extreme importance in recent TRANSFER MATRIX METHOD
studies of unipolar semiconductor lasers, which now produce
infrared radiation in room-temperature operatidn.theoret- The electrostatic potentials and the corresponding dis-
ical treatments of electron-optical-phonon interactions in hetpersion relations for IF phonons in an arbitrary heterostruc-
erostructures, both macroscobit and microscopit® ap-  ture may be obtained by applying the transfer matrix tech-
proaches have been app”ed_ Detailed microscopi@ique in a manner similar to the electronic envelope
calculations of optical-phonon modes in polar semiconducfunctions. As is well known, the electrostatic potentials of IF
tors indicate that the dielectric continuum model provides arPhonon modés® are linear combinations of exponentially
accurate formalism for modeling electron-optical-phonongrowing and exponentially damped spatial functions. Spe-
interactions™> However, most of these theoretical analysescifically, for a given IF phonon mode in aminterface het-
have been confined to highly symmetric and/or simple strucerostructure, as depicted in Figal, the electrostatic poten-
tures such as single or double quantum wells composed dfal ®;(r) in the region Ri=[z,z.,] and its two-
binary semiconductors. Application of even a simple macrodimensional Fourier transfori;(q,z) are defined by
scopic model, not to mention the microscopie initio mod- .
els, becomes highly complicated due to the coupling between ®;(r)= Z e 'TPdi(q,2), (1)
adjacent interfaces when the structure has multiple hetero- 4
interfaces or is asymmetric. At the same time, ternary or @ (q,z)=c,_e %%+c; e"%=c,_¢_+C ., (2

guaternary materials may be used along with the binary ma- » )
terial systems. wherep=(x,y) andq denote the position and wave vector in

In this work, we develop a general transfer matrix for- the two-dimensional plane of the interface. Theaxis is

malism to determine the electrostatic potentials and dispe/SN0Sen as the direction of crystal growth. Furthermore, elec-
trostatic boundary conditions of the dielectric continuum

sion relations of IF phonons in a multiple-interface hetero- s X ;
structure(MIH) within the frame work of the macroscopic model for IF phonons require that the electrostatic potential
gand the tangential component of the electric field be

dielectric continuum model. Furthermore, the optical-phono i 47
normalization condition is generalized to derive thétfign ~ continuous,” thus, ;(z) and €(d/9z)®;(z) must be con-
tinuous at each interface. It then follows thatatz; , i.e., at

the interface between the regioRs andR;_ 1,

dAlso with the Department of Physics, North Carolina State University,
Raleigh, NC 27695-8202. ®i(q.z)=D;_1(q,7), ©)]
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& (w) | & (v for a binary compound semiconductor or as a double-pole
e function,
| | | | : z (0= w2op) (0P — w2og)
zq 2p zj Zjpq zy €i(w)=¢€(®) — ;OA 5 |2'OB , (11
(a) (0° = wTop) (0~ wT0p)
which provides an approximate dielectric function for a ter-
Al Gaphs Alas ALGa A nary compound semiconducttr.Moreover, extension to
— AlGay s — more complex systems such as quaternary semiconductors
@ﬂ_l_ Gans “_IMS may be possible by using an appropriate form of the dielec-
4a/3 | 2a tric function. In Egs.(10) and(11), LO (TO) stands for the
~lal- ~af el 2 al- longitudinal (transversg optical mode, and\ and B denote
(b) © (d) material types.

The dispersion relation for a particular IF phonon mode
FIG. 1. Schematic drawing dB) an arbitraryn-interface heterostructure; s obtained by requiringc,, =0 andcy,_=0. This choice

and conduction-band-edge profiles f@b) single-barrier, (c) multiple- leads to admissibl(aexponentially decreasimg;olutions ax

barrier, andd) five-interface asymmetric heterostructures used in the calcu-

lations. In(c), the distance between each barrier is assumed t@bd ez approachestoo. Thus, with Eq'(8)’ it follows that the dis-

axis is chosen as the growth direction of the structures. persion relation of the mode under consideration is deter-
mined by setting thé2,2) component of the transfer matrix
to zero, i.e.,

J J [Qn(zn1q1w)anl(anl=q!w).“Ql(zliqiw)]ijzoi
i — Di(9,z)=¢_1 = Di_1(9,7). 4 L
€j 9z i(0,z) =€ 17 i 1(0,2) (4) i=j=2. (12)
These results can be written compactly in a matrix form agOnce the wave-vector dependencewdé obtained, the prob-
follows: lem of determining the potential reduces to matrix multipli-

cation, as indicated by Ed8). Indeed, these matrix equa-
Mi(z)Ci=Mi-1(z)Ci-.. ®) tions define the coefficients in our general expression for the
Here, the definitions of the matric€ andM;(z) are given  phonon potential of Eq(9). This procedure can be com-
by pleted for each of the IF phonon mode solutions for MIHs.
The number of IF phonon modes in arinterface het-
C = ( Ci‘), (6)  erostructure is readily determined by examination of the dis-
persion relation of Eq(12). Specifically,Q; is proportional
bi_(2) bi.(2) to €/(w) ei__l(w). Thus, withn interfacesC,, is a produc_t of
, , ) (7 n Q matrices andC,. For a MIH composed of the binary
€¢i-(2) €. (2) layers only, thew? dependence in the dispersion relation
By applying the chain rule, the matrig; may be expressed 90€s as a function of«f*)>" due to the adoption of the one-
as pole model of dielectric functiofiEg. (10)]. Hence, for an
n-interface all-binary heterostructure, there arel2 phonon
Ci=Qi(z)Ci-1=Qi(z)Qi-1(zi-1)"*Q1(z1)Co.  (8)  modes. For a MIH with alternating binary and ternary layers,
where a transfer matrix Q,(z) is defined as thereare & modes, since there are two binarylike modes for
M(z) *M;_,(z) relating the region®;_, andR;. Thus, the termary layer. The number of physical IF modes for a
given the matrixC, for the regionR, and the matrixQ; , the ~ MIH of general composition is readily determined from the
electrostatic potentiab;(q,z) can be determined in any re- Product of all of the appropriate(w) entering into Eq(8).
gion of the structure by following the sequence of ES8).

Finally, the phonon potential for the-interface heterostruc-
ture is the combination ob; for each regiorR, , i.e., IIl. NORMALIZATION OF IF PHONON MODES

Mi(Z):(

®y(q,2), zeR, The transfer matrix solutions of Sec. Il provide all the

. information needed to completely specify the functional

’ forms of the IF phonon modes in MIH systems. However,
®(q,2)=4q Pi(a,2), zeR, (9  the overall normalization constant for each mode must be

: derived in a manner that is compatible with the transfer ma-
trix method. For the-th region of the MIH structure, the IF
phonon potential is given by Eq$l) and (2). From this

Following the generalized Lyddane—Sachs—Teller relapotential, it follows that the electric-fiel# and polarization

tion, the dielectric functiore; for the regionR; in Egs. (4) P associated with the IF phonon potential in the regRyn
and(7) may be taken as that of a single-pole function, are given by

(I)n(qaz)v ZERI’]'
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| . by(a,2) : _
E(0,2)=~ V(0,2 = ~ig®y(d,2)8 - — " @ i<

(13 S
il 1<

and

z|, (19

. . 09i(q,2) .
Pi(d,2)= — €oxi(w) |q<I>i(q,Z)q+T

a0 F 3

whereq andz are the unit vectors fog and thez direction,
respectively. Assuming the standard foPifs:for the con-
tinuum expressions of the ionic force equation and the polar-
ization of the polar medium,

35 f 7

Phonon Frequency (meV)

2 o . . .
i WUi(f,t)=—,uiwéiui(r,t)Jrei*E:OC(r,t), (15)

and 0.15»
Pi(r,t)=n;e* u;(r,t)+ N EI°(r 1), (16)

whereu(r) is the relative displacement of an ion péie., a

unit cell), u; is the reduced mass of an ion pairg; is the
frequency associated with the short-range forces between
ions, e is the effective charge of a unit cetfi; is the num-

ber of unit cells per unit volume, and; is the electronic
polarizability per unit cell. The local electric-field'°° is
given by the Lorentz relation &&'°°=E+ P/3¢,. From an
appropriate generalization of the optical-phonon normaliza-

tion condition?®12

Potential (Arb. Units)

h .
Ei LZJR'dz| \/,uiniui(q,z)|2=Z, (17 Position (a)

. . . FIG. 2. (a) Dispersion relations ancb) electrostatic potentials of the IF
and the relation between the displacement and potéﬁtlal,phonons for the two-interfacésingle-barrier GaAs—ALGa, _ As—GaAs

ie., heterostructure of Fig.(h) with an Al mole fractionx of 0.6. S(A) denotes
the symmetrigantisymmetri¢ modes; 1, 2, and 3 correspond to the lower

5 ) ) GaAs, upper GaAs, and AlAs modes, respectively. The arrows on the right
[Vuiniui(9,2)|°=| g%|®i(q,2)| vertical axis of (8) represent the phonon frequencies of GaAs-like
TO(Aly(GayAs), GaAs-ike LQAlyGaAs), TOGaAs, LO(GaAs,
od,(q,2) 2 1 de(w) AlAs-like TO(Al Ga 4As), and AlAs-like LOAI, (Ga, As) in the ascend-
+ '—q’ € — — @ (18 ing order in frequencies. The unit for the wave vectog@ and that for the
0z 20w Jw position isa. In (b), the wave vector is taken to lwg=0.5.
From Egs.(17) and(18), it follows that the normalization of
the potential of each IF phonon mode is given by IV. APPLICATION OF TRANSFER MATRIX
FORMALISM
f - € J€i(w) dd a2l )
20 4 20 do Jr 2 9°|®i(q,2)] As an example of the application of the general transfer
|

matrix method, we consider the two-interface heterostructure
of Fig. 1(b) and examine the influence of the ternary mate-
rial. The IF phonon modes for this single-barrier structure are

, . . complicated by the fact that the Mg _,As ternary barrier
The result of Eq(19) is derived for both binary and ternary layer has both AlAs-like and GaAs-like modes. By applying

systems and may be applicable to more complex materials 8¢ transfer matrix method, the dispersion relations and pho-
well, if an appropriate expression is used for the dielectriGy, hotentials for the six allowed IF modes are found to be
function following the scheme of Ref. 12. Finally, the R¥o those presented in Fig.(@ith an Al mole fractionx of 0.6).
lich interaction Hamiltonian is given directly in terms of the 4 yajues for the dielectric constants and the phonon fre-
potential; i.e., quencies of GaAs, AlAs, and Ba _,As used in these cal-
_ culations are shown in Table'f.The high-frequency sym-
He=e> e '9Pd(q,z)(a’ ,+ay), (200 metric and antisymmetric modésss andws,) show similar
d behavior for the corresponding AlAs—GaAs heterostructure,
where the functional form and the normalization®(q,z) these IF phonon frequencies fall near the zone-center LO and
are given by Egs(1) and (19), respectively, as discussed TO phonon frequencies of AlAs modes similar to the results
before. of Ref. 5. However, there are four GaAs-like modes; this is

aq)i(qiz)
0z

J’_

2
) "
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TABLE |. Dielectric constants and phonon frequencies used in the disper-

sion relation calculation. 50 'v%«iAS-.l.\ (a)
AlAS2 ™ — TR e
GaAs AlAs AlLGa _,As S N SR S
[ Aagg =i

€. 1089 8.6 10.89- 2.73 X X B,

fhoo (GaAs-like (meV)  36.25 -+ 36.25-6.55<x+ 1.79xXx?

fwro (GaAs-like (meV)  33.29 -+ 33.29-0.64xx— 1.16X X2

fiw o (AlAs-like) (meV) 50.09 44.63 8.78<x—3.32xx?

fiwto (AlAs-like) (meV) 44.88  44.63 0.55<x—0.30X x?

double the number found for the corresponding AlAs—GaAs
structure. The upper two mode frequenciess and w,,)
fall between the LO and TO phonon frequencies of GaAs L L
while the lower two mode frequencids g and w,,) fall 0 1 2
between the LO and TO phonon frequencies ofG¥, _,As
as indicated by the arrows in Fig(a&. This result is ex- Wavevector (qa)
pected since the GaAs-like mode frequency in the
AlL,Ga _,As ternary barrier region differs from the GaAs | . p
mode frequency in the regions adjacent to the barrier. Henct I (b)
a doubling of the GaAs phonon modes arises from the for ™
mation of IF modes that are joint modes of the slightly dif- :
ferent GaAs-like modes of the GaAs and &b, ,As mate-
rials. Due to the fact that the frequency difference betweer
GaAs-like LO and TO phonons of /Ba_,As is very
small, the lower GaAs-like IF phonons show little disper-
sion. In Fig. Zb), it is found that within each group of modes
(i.e., AlAs, upper GaAs, and lower Gapghe symmetries
are approximately the same although the normalizations dit
fer. This is due to the symmetric dielectric function outside -
the barrier. A0
The structure depicted in Fig(d represents multiple-
barrier heterostructures consisting of binary semiconductor Position (a)
(e.g., Gas—AlAs The transfer matrix method readily yields
the dispersion relations of Fig. 3. The results of Fig. 3 areFIG. 4. () Dispersion relations of the IF phonons for the five-interface
especially interesting, since they illustrate the beginning®yGa-yAs—GaAs-AlGa_,As-GaAs-AlGa _,As-GaAs heterostruc-

. . . ure of Fig. Xd) with y=0.25 andx=0.6. 15 modes are grouped into the
phases of the_ formatlon Of_ Phonon minibands in a GaAS_Iower GaAs-like, upper GaAs-like, and AlAs-like modes in the ascending
AlAs superlattice, just as minibands are formed for the eleCorder in frequencies. There are five phonon modes in each group. The low-
tronic states in a multiple quantum-well system as the numest two modes of the lower GaAs-like branch are too close to distinguish

ber of wells becomes so large that the structure behaves a8 frpm the othe_r. The unit for the wave vectorqi_a. (b) Electrostatic
lattice. As each additional barrier is added to thé)otentlals vs the distance for the AlAs modes. The line types used to denote
super ' he different IF phonon modes correspond to thosdapf The value of

multiple-barrier system, the number of IF phonon modes iNwave-vectoma is fixed at 0.5 and the unit for the positionas

creases and the dispersion curves fall in bands around the

modes that are present in the single-barrier structure. This
means that am-barrier structure splits each mode of disper-
sion curves for the single-barrier structure into thenodes.

Phonon Frequency (meV)
s

0.051 Daiass

N
! ‘QA!AS-T\\

i TR
0.00 | Dr1ass
I Dalrsg, -~
.7
7

. L v\,
0.057 70y 1a52

Potential (Arb. Units)

g | e e ] Thus, the formation of phonc_)q minibands is very similar to
F I T Bl the formation of electron miniband$.As shown in Figs.
E, o | == = ] 3(a)—3(e), the phonon miniband width approaches saturation
g @ ® © @ © in only a few periods except in the region wheye:0. The
g central reason for this fast convergence of the phonon mini-
: - I S | SR S band width is that the penetration depth of the phonon am-
§ - [ — — —_;\' plitude is, typically, only one or two monolayers. However,
£ many more periods need to be considered for IF phonons
A R R R [ — ' near the zone center due to their long wavelength. For the
Wavevector (qa) case of a superlattice, the calculation of phonon dispersion

FIG. 3. Di _ ati  the IE o @ ) o, © can be much simplified by utilizing the symmettgr peri-
. 3. Dispersion relations of the IF phonons faj one-, o-, (C ‘G ; ;
three-, andd) four-barrier AlIAs—GaAs heterostructures as well@sthose odicity) of the structure as discussed in Refs. 15 and 16

for a superlattice shown in Fig.(d). The GaAs—AlAs material system is although it is possi_ble to apply the tra_nSfer matrix method to
assumed. The unit for the wave vectomja. heterostructures with any number of interfaces.
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