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Hamilton's two-point characteristic function S(q2t2,qiti) designates the extremum value of the action 
integral between two space-time points. It is thus a solution of the Hamilton-Jacobi equation in two sets 
of variables which fulfils the interchange condition S( qi ti, q2 t2) = - S( q2 t2, qi ti)' Such functions can be used 
in the construction of quantum-mechanical Green's functions. For the Kepler-Coulomb problem, 
rotational invariance implies that the characteristic function depends on three configuration variables, say 
rl> r2, ri2· The existence of an extra constant of the motion, the Runge-Lenz vector, allows a reduction to 
two independent variables: x= ri + r2 + rl2 and y= ri + r2 - ri2' A further reduction is made possible by virtue 
of a scale symmetry connected with Kepler's third law. The resulting equations are solved by a double 
Legendre transformation to yield the Kepler-Coulomb characteristic function in implicit functional form. 
The periodicity of the characteristic function for elliptical orbits can be applied in a novel derivation of 
Lambert's theorem. 

1. INTRODUCTION 

Hamilton's two-point characteristic function can be 
defined as the action along a real trajectory connecting 
two space-time pOints i : 

S(q2t2,qltt) 00 Jt~2 L(q,q, t) dt. (1) 

By Hamilton's principle, the value of the integral be­
tween two fixed points represents an extremum wrt vari­
ations in path. The function S(q2t2' q Itt) might not exist 
for certain pairs of points or might be multivalued for 
others. The two-point characteristic function is a solu­
tion of the Hamilton-Jacobi equation in two sets of 
variables: 

as I. as ) 
at; + H,q2' aq2' t2 =0 (2) 

and 

oS ( as \ 
-at:,+H Ql' - aQI' tl) =0 (3) 

The second equation follows from the first by virtue of 
the interchange condition 

implied by the integral structure of the characteristic 
function. Initial and final momenta are given by rela­
tions of the form 

as as 
PI = - aQl' P2 = oQ2 • 

(4) 

(5) 

The two-point characteristic function finds utility in 
the construction of quantum-mechanical Green's func­
tions and density matrices. 2 An example is the kernel 
K(Q2t2' qltl) which represents a solution of the time­
dependent Schrodinger equation 

{illa~2 -H2}K(q2t2,qltl) =0 (6) 

subj ect to the initial condition 

K(q2tl' q l t1) = 6(q2 - Ql)' (7) 

This Green's function can be structured in the form 
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(8) K(Q2t2' qlt l) = F(q2 t2, ql t l) exp (tS(Q2t2' qltl)) 

exponentially dependent on the two-point characteristic 
function_ The exchange condition (4) is thus consistent 
with the Hermitian property 

(9) 

The pre exponential function F in (8) is determined such 
as to fulfil Eqs. (6) and (7). For the free particle and 
harmonic oscillator, this is relatively straightforward. 

The Coulomb Green's function K(r2t2, r1t1) has"not yet 
been worked out in closed form, 3 although the time­
independent function G(r2, r l' E) is known. 4 We have at­
tempted to construct the time-dependent function via 
the representation (8) and have thereby been led to 
evaluation of the corresponding characteristic function. 

2. KEPLER-COULOMB PROBLEM 

The Hamilton-Jacobi equation for the attractive 
Coulomb system reads 

~+....!....(VS)2_ze2=0. (10) 
of 2m Y 

This pertains as well to the Kepler problem under the 
substitution Ze 2 - GMm. We are, of course, in the non­
relativistic domain and are assuming M» m [or else 
reading m in Eq. (10) as the reduced mass]. For com­
pactness we shall employ atomic units, setting m = e = 1 
in Eq. (10). Equivalently, y is to be expressed in units 
of ao=t'i2/me2, t in units of t'i3/me4 = Olao/c, and Sin 
units of t'i. 

Accordingly, Eqs. (2) and (3) for the Kepler-Coulomb 
characteristic function take the form 

~+.!.(V S)2_ Z =0 
at

2 
2 2 Y2 ' 

(11) 

as 1 ( )2 Z - 0 
-~+2V1S -Yl- . 

The Hamiltonian is, of course, a constant of the motion, 
which implies 
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E __ ~_oS 
- ot2 - otl . (12) 

Thus S must depend on t2 and tl only through their dif­
ference t = t2 - t 1, and 

oS 
E=-ai' 

The angular momentum is likewise a constant: 

L=r1xPl=r2xP2 

=-r1XV1S=r2xV2S. 

(13) 

(14) 

Every trajectory is thus confined to the plane normal 
to the angular momentum vector. One can write 

oS oS 
V 2S= u2 -~ - + u21-~-

ur2 vr12 

in terms of the nonorthogonal unit vectors 

u1=r/r1, u2 =r/r2, uI2=-u21=rI2/rI2' 

r 12 = r 1 - r 2, r 12 = I r 1 - r21· 

We find thereby 

_r1 xr2 oS_ rlr2~ L- ---u1 xU2 • 
r 12 or12 r12 or12 

(15) 

(16) 

(17) 

Thus far, S(r2t2, r 1t1) has been shown to depend on the 
four variables rl' r2, r 12' and t. A further reduction is 
made possible by the existence of an additional constant 
of the motion for the Kepler-Coulomb problem, namely 
the Runge- Lenz vector5, 6: 

(18) 

We have therefore 

A= Z- I LxV2S+U2 = - Z-ILXVIS+U1. (19) 

The scalar product with u1 + U2 results in 

Lx (V IS+ V2S) . (ul + u2) = O. (20) 

Using (15) and (17), we find thereby 

~-~=O. (21) 
orl or2 

This shows that S is independent of the variable r l - r 2; 

it can depend on r1 and r2 only through their sum r1 + r2' 
We have thus reduced S to a function of r 1 + r2' r12 and 
t. Cross-derivatives in the Hamilton-Jacobi equation 
are avoided if one uses as independent variables the 
linear combinations 

x=rl +r2 + r12' y=rl +r2 - r l2 (0,,; y";x < 00). (22) 

These are, in fact, the same variables which appear in 
Lambert's theorem [cf. discussion following Eq. (64)]. 
The Coulomb Green's function G(r I, r 2, E) was also 
found to depend on just x and y. Hostler7 showed that 
this is likewise a consequence of the "hidden symmetry" 
associated with the Runge- Lenz vector. 

3. SOLUTION OF THE HAMILTON-JACOBI 
EQUATION 

We turn next to the Hamilton-Jacobi equations (11) 
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for the characteristic function S(x,y, t). USing (15) and 
(22), we find, in terms of the variables x and y, 

( oS)2 (oS)2 [(OS) 
2 

(oS)2] HV1S)2= oX + oy +U1'UI2 oX - oy , 

( oS)2 (oS)2 [(oS)2 (oS)2] HV2S)= oX + oy +u2'U21 ox - oy • 

Noting that 

ul . u12 - U2 . u21 = (U1 + u2) . U12 = r 1 - r 2 ~ , 
r 1r 2 x- y 

the difference between Eqs. (11) reduces to 

( OS)2 _!..=(oS)2 _!... 
ox x oy Y 

(23) 

(24) 

(25) 

With the help of (25), the sum of Eqs. (11) works out 
to 

OS+(OS)2 +(oS)2 -!..-!..=O. 
ot ox oy x y 

(26) 

Equations (25) and (26) are equivalent to the symme­
trical relations 

! oS +(oS)2 -!..=O .!as +(os)2 -!..=O (27) 
2 ot oX x '2 ot oy y 

which have precisely the form of the original Hamilton­
Jacobi equations (11) for L = 0 and r1, r2 replaced by 
x/2, y/2. 

In accordance with Eq. (4), S must fulfil the time­
reversal condition 

Sex, y, - t) = - sex, y, t) (28) 

which rules out solutions to (27) obtained simply by 
separation of variables. 

A further symmetry property makes possible a 
closed-form solution of these coupled equations. This 
is the invariance of (25)-(27) under the scale transfor­
mation: x, y - b2X, b2y; t - b3t; S- bS. Thus 

S(b2X, b2y, b3t) = bS(X, y, t), (29) 

showing that S is a linear homogeneous function of the 
variables x1/2, y1/2, t1/3. The condition (28) is, in fact, 
a special case of (29), for b = - 1. By virtue of this 
homogeneity property, the characteristic function can 
be represented in the following form: f 13 X function of 
Xii 2/t11 3 and yI/2/tI/3 . 

Specifically, the following definition of variables is 
convenient: 

S= (32Z2t)I/a.f(u, v), 

u"'- (x3/16Zt2)1/6, v= (l/16Zt2)1/6 

for t? 0, 0,,; v"; u < 00. 

Equations (27) thereby transform to 

tCt - u/u - vi) + u-2(fu - 1) = 0, 

tCt - u/u - v/v) + v-2(f., - 1) = o. 

(30) 

(31) 

These equations are most readily solved by a double 
Legendre transformation, whereby 

F=u/u+v/v-/, U=/u, V=/v, 
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Fu=u, Fy=v. 

We find thereby 

_(~ lJ2 _1)1/2 
F u - 4 F ' 

_(3 y2 -1) 1/2 
F Y -"4-r 0 

The positive square roots are appropriate since 

(33) 

u, v >-c O. Some further inequalities are required in order 
to precisely characterize the solution. Equation (25) 
implies, since x >-c y, that 

(34) 

Since the angular momentum vector is directed parallel 
to u1 xu2, Eq. (17) implies that 

~=as_as>-cOo 
ar12 ax oy 

The last two inequalities show that oS/oy '" O. 
all cases, 

Iv '" O. 

For E>-c 0, as/at'" 0 and 

l-ulu-vfv"'O. 

Since l>-c 0, 

ulll + vfv>-C 0, ulu-vl/vl>-co. 

Thus 

lu>-CO forE>-CO. 

(35) 

Thus, in 

(36) 

(37) 

(38) 

(39) 

Inequality (38) further implies, in conjunction with (31), 
that 

I/ul >-clivi >-c 1. (40) 

Combining with (36) and (39), 

1 "'Iu < 00, - 00 <Iv'" - 1. (41) 

In terms of the transformed variables (32), 

F>-c 0, 1", U < co, - 00 < V'" - 1. (42) 

It is convenient therefore to define 

(43) 

(One might also define a second branch of the function 
with 0 >-c Il >-c X> - 00 corresponding to points r 1, r 2 re­
flected wrt the axis of the Runge- Lenz vector. ) Integra­
tion of Eq. (33), with the appropriate choice of constant, 
now gives 

3Ss F3 12 = sinhX coshX - X - sinhll coshll + Il 

= sinh(X - Il) cosh(X + Il) - (X - jJ.)o (44) 

Reversion to the original variables is effected by the 
inverse transformation: 

1= UFu+ VF y - F u, u=Fu, v==-F y• 

After some algebra we obtain 

I(u, v) =u](X) - v](Il) 

where 

and 

2002 

sinhX coshX + 3X 
4sinhX 
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(45) 

(46) 

(47) 

By virtue of (30) and (48), the characteristic function 
can be expressed in the form 

sex, y, t) = (4Zx)1/2](X) - (4Zy) 1 12] (jJ.). (49) 

Alternatively, 

SeX t)=(Z2t)1/3 sIDh(X-Il)cosh(X+Il)+3(X-po) . 
,po, 2 [sinh(X - Il) cosh(X + Il) - (X - po)]i73 

(50) 

In verification that the preceding represents the solu-
tion to Eqs. (25), (26), and (27), it is shown that 

loS Z. Z . 
- -==---smh2X= -- smh21l 2 ot x y 

(51) 

oS (Z)1/2 oS (Z)1/2 -==- - coshX -==- - - coshll. 
ox x 'oy y 

(52) 

Since os/at= - E, it follows that E> 0 (hyperbolic or­
bits) is associated with real X and Il, E< 0 (elliptical 
orbits) with pure imaginary X and Il. The case E = 0 
(parabolic orbits) is obtained with X= Il ==- O. Equation 
(48) becomes indeterminate but (49) reduces to 

Sex, y) ==- (4 Zx) 1 1 2 - (4Zy) 1 1 2 • (53) 

This solution does not, however, fulfil the time-reversal 
condition (28). 

When 1l=0, then v=O, y==-O and either r 1 or r 2==-0. 
The characteristic' function reduces to S(r, 0, t). As 
X - Il * 0, S - O. 

The asymptotic region u, v - 00 pertainS to any of the 
limits Z - 0, x, y - 00, or t - O. The asymptotic form of 
the characteristic function is obtained in the limit X, Il 
- 00, whereby 

s- (~2t) 1/\ e2}. ~ e2"y/3, 

which represents the free-particle characteristic 
function. 

4. ELLIPTICAL ORBITS 

(54) 

(55) 

Negative-energy solutions are most directly obtained 
by continuation of the variables X and Il on the imaginary 
axis. Defining 

X", ia/2, Il '" if3/2 

(the factors 1/2 for 21T-periodicity), we obtain 

Sex, y, t) ==- (4Zx)1 /2F(a) - (4Zy)1/2F(f3), 

(56) 

(57) 

3a + sina 
F(a) '" ](ia/2) ==- 8 sin(a/2) (58) 

sm3(a/2) sin3(f3/2) (a - f3) . (a - f3) (a + f3) 
u3 v3 -2- - sm -2- cos -2- . 

(59) 
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Also, in analogy with (50), 

Sea, i3, t) 

( 
z2tl2 \ 1/3 

= [(a - {:3)/2] - sin[(a - {:3)/2] cos[(a + (3)/2]} 

x [3 (a; (3) + sin (a; (3) cos (a; (3) J. (60) 

The characteristic function representing an eliptical 
orbit should exhibit a periodic structure of the form 

Sea + na o, (:3 + n{:3o, t + nT) = sea, (:3, t) +nS(ao, i30, T), 

n=0,1,2,"', 

where T is the period of the orbit. For Eqs. (60) and 
(61) to be consistent, two conditions must be met: 

3 [(a; f:3) + n(a02- (30)] + sin [(a ; (3) +n(¥)] 

xcos[( a; (3)+n(a o; (30)] 

=3(a;i3) + sin (a;i3) cos(a;i3) 

+ n [3 (a 0 ; (:30) + sin (a 0 ; (30) cos (a 0 ; (30)] 

and 

[(a - 13)/2] - sin[(a - (3)/2) cos(a + {:3)/2] 

(61) 

(62) 

_ T (63) 
- (ao - (3 0)/2)- sin[(ao - 130)12) cos«ao - 130)/2] . 

The first is most easily fulfilled with ao - 13 0 = 27T, 
ao + f:3 0 = O. The second gives thereby a relation for the 
orbital time 

T[(a - 13) (a -13) (a + 13)] t=1i -2- - sin -2- cos -2-

T 
= 27T [(a - sin a) - (i3 - sin(3)]. (64) 

This is, in fact, a classical result known as Lambert's 
theorem. 9 In the original form of the theorem, a and 13 
are defined by 

. a_(x)1/2 . f:3_(y\1/2 
SlUZ = 4a ,Sl~ = 4aJ ' (65) 

a being the semimajor axis of the ellipse. By virtue of 
(51), (13), (56), and the relation E=-ZI2a, our defini­
tions of a and f:3 are shown to coincide with (65). 

Very similar in form to (64) is Kepler's equation 

_T[(®2-®I) . (®2-®1) (®2+®1)] -- --- -esm --- cos ---
7T 2 2 2 

(66) 

in which e is the eccentricity and ®t. ®2 the eccentric 
anomalies at rl and r 2, respectively. Comparing (66) 
with (64) we can identify 

(
a + 13) (®2 + ®1 ) a-{:3=®2- ®1, cos -2- =ecos --2- . (67) 

Setting a - (:3 = 2n7T, t = nT in Eq. (60), we obtain the 
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characteristic function for n complete cycles 

S = -hz(27TZ)2 13T 1 13. (68) 

This is related to W, the corresponding solution of the 
time-independent Hamilton-Jacobi equation, bylO 

S=W-Et. (69) 

Since for elliptical orbits 

T= 27TZ(- 2E)-3/2, (70) 

we find 

W = nJ, J = (27Tz)2 /31'1/3, (71) 

in agreement with the value of the canonical action 

J= § (Prdr+Pede +P'b d</». (72) 

This is equivalent to the more familiar result that 

E=- 2rZ2/J2 (=_ 27TmZ2e4/J2) (73) 

which for J = nh (n = 1, 2, 3, ... ) gives the Bohr energy 
levels. 

5. REPULSIVE COULOMB POTENTIAL 

For a repulsive Coulomb potential, an analogous cal­
culation leads to the characteristic function 

Sex, y, t) = (4ZX)1 12g (A) _ (4Zy)1 12g (11), 

f. (A) sinhA coshA - 3A 
'.:J 4 coshA ' 

cosh3 A cosh31l 
---:-:r-=---:-:r-= sinh(A- 11) cosh(A + 11) + (A- 11) u v 

lSee, for example, J. L. Singe, "Classical Dynamics," in 
Handbuch der Physik Vol. Ill/I, edited by S. Fliigge 
(Springer, Berlin, 1960), p. 117ff. 

2R. P. Feynman, Rev. Mod. Phys. 20, 367 (].948); R. P. 

(74) 

(75) 

(76) 

Feynman and A.R. Hibbs, Quantum Mechanics and Path In­
tegrals (McGraw-Hill, New York, 1965); S.M. Blinder, 
Foundations of Quantum Dynamics (AcademiC, London, 1974), 
Chap. 6; S. M. Blinder, "Configuration-Space Green's Func­
tions," in International Review of SCience, Vol. I, Theoreti­
cal Chemistry (Butterworths, London, 1975). 

3For the present status of the problem, see M.J. Goovaerts 
and J. T. Devreese, J. Math. Phys. 13, 1070 (1972); R.G. 
Storer, J. Math. Phys. 9, 964 (1968). 

4L. Hostler, J. Math. Phys. 5, 591 (].964). The two Green's 
functions are related by Fourier transformation as follows: 

K(r2, rl, t) = lim._ 0 21T f:'[G(r2, rit E + iE) 

-G(r2,rt , E_iE)le-iEtlhdE. 

5C. Runge, Vector Analysis (Dutton, New York, 1919), p. 79; 
W. Lenz, Z. Phys. 24, 197 (].924); W. Pauli, Z. Phys. 36, 
336 (].926) [English translation in B. L. van der Waerden, 
Sources of Quantum Mechanics (Dover, New York, 1968), 
p. 3871. See also articles by H. V. McIntosh (p. 75) and C.E. 
Wulfman (p. 145) in Group Theory and its Applications, 
Vol. II, edited by E.M. Loebl (Academic, New York, 1971). 

6The properties of the Runge-Lenz vector can be developed as 
follows. Start with Newton's second law for a particle in a 
Colulomb field: 
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~ Ze2 

dt =--;:r r. 

Then 

This works out to 

d 
dt (Lxp+Ze 2mu) =0, 

showing that A is a constant of the motion. The equation of 
the orbit is obtained from 

A 'r=Arcos8=- (Ze2m)-1L2 +r, 

r= (Ze 2m)-1L2/(1-Acos8), 
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which represents a conic section. The vector A is directed 
towards the aphelion of the orbit; its magnitude equals the 
eccentricity. 

7L. Hostler, J. Math. Phys. 8, 642 (1967). 
8This also applies w. r. t. the original position variables: 

S(t; 2 rto t;2r2,t; 3t) =tS(r,r2' t). 

Newton's second law for a Coulomb force is likewise invari­
ant under the substitution r- t 2r, t- t 3t. This implies 
Kepler's third law of planetary motion, that the period of an 
orbit is proportional to the three-halves power of its linear 
dimension. 

9See , for example, E. T. Whittaker, A Treatise on the Analyt­
ical Dynamics of Particles and Rigid Bodies (Cambridge, 
U. P., Cambridge, 1965), 4th Ed., p. 91-92. 

1°See , for example, H. Goldstein, Classical Mechanics 
(Addison-Wesley, Cambridge, Mass., 1950), p. 299ff. 
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