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The growth of leading-edge distortions on a viscous sheet
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The results of a set of experiments to determine some features of the undulations that develop on the
leading edge of a sheet of fluid on an inclined plane are presented. A range of fluid viscosities, fluid
volumes, and plate angles was used. In nearly all the cases, the observed disturbances had a
triangular or sawtooth shape, with only a single example of a finger or parallel-sided shape
appearing. The power-law exponents for the position down the plate of both the tips of the
disturbances and their roots, that is, the points where they join the uniform sheet above them, were
calculated from a series of photographs, and the corresponding wavelengths measured. The
exponents are broadly in line with those that can be deduced from a simple model including
viscosity, gravity, and volume flux, and ignoring all capillary effects. This conclusion suggests that
the criterion for distinguishing the two types of disturbance does not depend on the global dynamics
of the developing structures, and that a detailed analysis of the tip and root regions, where capillarity
will be significant, is needed for further progress to be made. ©1999 American Institute of
Physics.@S1070-6631~99!00402-X#
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I. INTRODUCTION

The leading-edge instability of a sheet of viscous flu
moving under gravity down an inclined plane was first
ported by Huppert.1 A fixed volume of fluid was spread uni
formly across the plane and released. After the leading e
of the fluid had spread a certain distance down the plan
was observed that the edge spontaneously distorted in
spanwise direction. The structure of the distortion develo
nonlinearly in two different ways, depending in an unqua
tified manner on the parameters of the experiment. In
type, fingers of fluid with increasing length appeared, w
sides parallel to the lines of greatest slope. These fingers
their roots lying in a line across the plane, above which th
was a stationary undivided sheet of fluid. In the other ca
the leading edge had a sawtooth shape, with triangles of fl
developing, the tips of the triangles and their bases b
moving down the plane, but at different rates, so that
length-to-width ratio of the triangles increased with tim
These experiments, and variants of them, have been repe
by a number of other people~Silvi and Dussan, V,2 Jerrett
and de Bruyn3!. There have also been some numerical sim
lations ~Schwartz4!.

There are three aspects of these experiments that re
theoretical confirmation and explanation. The first conce
the properties of the sheet of fluid before instability. T
second is the onset of the instability, both in its location
time ~or distance from the point of release!, and in its span-
wise frequency. The third includes the nonlinear devel

a!Currently at Northwestern University, Department of Biomedical En
neering, 2145 Sheridan Road, Evanston, IL 60208.
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ment of the instability, the two different types, the criterio
for predicting which shape will appear, and the physic
cause that distinguishes fingers from triangles.

The first of these three problem areas was partially a
lyzed by Huppert.1 The motion follows from the balance
between the component of gravity acting down the plane
the viscous stress on the plane supporting the fluid. T
speed, extent, and thickness of the developing sheet ca
determined by this balance. To describe the flow in the
cinity of the edge, however, requires the addition of capill
ity into the theory, thus introducing two extra parameters,
surface tension, and~for nonwetting fluids! the contact angle.
It is also necessary, to complete the specification of the pr
lem, to make allowance for the removal of the contact-li
singularity, either by slip, by a cutoff, or by postulating
thin film ahead of the fluid front. For wetting fluids the re
gion near the leading edge was described by Troianet al.5

and for nonwetting fluids theoretically by Hocking6 and
Goodwin and Homsy7 and numerically by Moriartyet al.8 In
a complete description for wetting fluids, van der Waa
forces must be included~de Gennes9 and Hocking10!.

Although the motion near the front of the advancin
sheet has little effect on the dynamics of the sheet a
whole, it is precisely this part of the whole sheet that see
to play a crucial role in the stability question. The seco
problem, concerning the linear stability of the leading ed
of the sheet, has been studied by many authors: Tro
et al.,5 Hocking,6 de Bruyn,11 Hocking and Miksis,12 Fraysee
and Homsy,13 Lopez et al.,14 and Spaid and Homsy.15 The
presence of an instability and a preferred wavelength h
been established by these investigations, although the pre
© 1999 American Institute of Physics
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tions are weakly~logarithmically! dependent on the sma
factor which has to be introduced in one way or another
avoid the singularity at the edge. As long as the numer
value of this parameter remains undetermined, precise ag
ment between theory and experiment cannot be achieved
far as we know, there has been no attempt to determine
theoretical grounds, the delay in the appearance of the in
bility after the instant of release. Huppert1 states that the
instability occurs when the fluid becomes sufficiently th
The vertical profile of the sheet before instability contain
‘‘hump’’ upstream of the leading edge, and it has be
widely suggested that the cause of the instability is relate
the presence of this hump. Brenner16 has shown that, when
the normal component of gravity is included in the analys
the hump disappears when the angle of slope of the plan
reduced. Since this gravity component decreases in im
tance as the sheet thins, this might explain the delayed
pearance of the hump and of the instability. However, B
tozzi and Brenner17 have argued that, even when the hump
absent, the flow may be unstable through transient effec

Our objective here is to study experimentally and the
retically the nonlinear structures developing from the init
instability. These take one or other of two distinct forms,
first described by Huppert,1 and remain largely unexplained
Hocking and Miksis7 ~for a simpler geometry! and Schwartz4

have produced some numerical solutions, but these give
clue to the criterion distinguishing the two forms. One po
sibility is that the triangles are only a temporary feature, a
that the angle between the sides of the triangles slowly
creases, so that, given a long enough plate, they would e
tually transform into fingers. There is, however, no eviden
that such evolution takes place. Another possibility is t
there are always, or often, two possible modes of instabi
and that which one appears depends on microscopic eff
such as the smoothness of the surface of the plate and
presence of contaminants. However, if random effects
trigger two types of instability, one would anticipate th
triangles, for example, might appear on one part of the p
and fingers at another location. As far as we know, the
multaneous appearance of both types has never been
served.

The major contribution to the distinction between t
two modes of instability has been made by Silvi and Duss
V,2 who have argued that the distinguishing criterion is
value of the contact angle. They conducted similar exp
ments to those of Huppert,1 but for supporting plates made o
two different materials. In their experiments, all the para
eters of the problem were held constant, except for the c
tact angle. They observed fingers when a Plexiglas plate
used and the static contact angle was about 70°, and trian
for a glass plate and a contact angle of about 18°. In moti
involving moving contact lines, the dynamic, rather than
static, contact angle is likely to be the more significant. T
dynamic contact angle is a function both of static cont
angle and the capillary number, which is proportional to
speed of the contact line, and increases as the capillary n
ber is raised. Although Silvi and Dussan V~Ref. 2! only give
the values of the static contact angle, their results give so
support to a hypothesis that triangles are associa
o
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with small dynamic contact angles, and fingers with lar
ones. When the static angle is very small, the dynamic c
tact angle is dominated by the capillary effect and large
namic angles could be achieved by increasing the capil
number. Thus, it might be possible to obtain fingers even
nearly wetting fluids if the capillary number were to be ma
sufficiently large.

In the search for some understanding of the nonlin
development of the instability, one avenue that has not b
explored hitherto is the description of the fundamental str
ture of the flow in fingers and triangles. Some of the expe
ments already mentioned have included measurements o
growth rates of these structures. Huppert1 reports that the
locations of the extreme positions of either type of dist
bance were proportional to (time)q for some exponentq; for
the tips of the fingers the exponent was 0.6, while the trou
where neighboring fingers join was virtually stationary. F
the triangular shapes, the exponents for tips and troughs w
0.35 and 0.28, respectively. Jerrett and de Bruyn3 observed
fingers only in their experiments. They report that the av
age exponent for the tips of the fingers was 0.65 for glyc
ine ~kinematic viscosity 110 cSt! and 0.52 for a mineral oil
~kinematic viscosity 15 cSt!. The troughs showed only a ver
small downward motion. The slope of the plate was limit
in their experiments to values less than 15°, since otherw
the instability did not have sufficient time to develop.

The experiments to be described here were condu
for declinations up to 45° and for a wide range of viscosit
and fluid volumes. They were intended to study the devel
ment with time of the nonlinear shapes taken by the lead
edge for a wide range of parameters, with the object of
taining a set of results against which a possible theory co
be tested.

II. EXPERIMENTS

In our experiments, a fixed volume of fluid was releas
in a manner similar to that of Silvi and Dussan, V,2 at the
topmost portion of the plate, and the fluid volume provided
third variable parameter. The silicone oils used in the exp
ments had specific densities and nominal kinematic visc
ties of ~0.93; 10 cSt!, ~0.95; 20 cSt!, ~0.96, 50 cSt!, and
~0.96; 100 cSt!. The results for angles of decline of 10°, 15
20°, 25°, and 45° are reported here. In most cases, the ph
cal data were taken from the manufacturer’s literature, bu
the case of the 20 cSt oil the values of the density and
cosity were measured and found to be 0.945 and 19.1
respectively. A Cannon–Fenske tube was used to mea
the viscosity; a de Nouy balance gave a value of 0.0228 N
for the surface tension of the 20 cSt oil, which is close to
manufacturer’s average value of 0.021 N/m. The cont
angles of the fluids were determined by measuring the st
diameter of a microliter drop placed on a glass slide,
volume of the drop being deduced by weighing the sl
before and after the drop was placed on it. The drops w
allowed to spread for approximately 5 min before the m
surements were taken. The contact angles were found t
quite small, about 2° for the least viscous fluid and about
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for the most viscous. The measurement technique for
tilled water produced a value for the contact angle of ab
30°.

A glass plate that was somewhat wider than 0.8 m a
twice as long was mounted so that one end could be ra
with respect to the other. Millimeter graph paper as well
meter tapes were attached below the plate. These coul
viewed and photographed with a 35 mm camera that
mounted at a fixed distance above the plate, but which co
be moved to definite locations along the plate to photogr
the film front with a minimum of distortion. A stopwatc
was used and the time was recorded for each photograph
was taken. Slide film was used and the transparencies w
later projected to measure the position of the film fro
throughout each experiment.

Prior to starting an experiment, the glass surface w
cleaned in a consistent sequence with paper toweling
two solvents, listed as being infinitely soluble by one man
facturer, namely xylene and trichloroethylene.~A second sol-
vent was used in the hope that it would complement
other.! Afterward the angle of decline was set and chec
were made with a sensitive spirit level to ensure that
table was not tilted in the lateral direction. The oil w
placed in an unattached trough, sealed at each end, w
somewhat v shaped cross section, as shown in Fig. 1.

One of the edges was convex instead of straight~the
piece was actually brass edging for stairs! and this side was
placed against the glass. After it was ascertained that
trough was also level, it was slowly rotated along the gl
and raised so that the contents spilled out onto the p
toward the upper end. In this way the oil volume, from 40
120 cm3, was uniformly distributed across the plate witho
having any appreciable initial velocity.~In the Silvi and Dus-
san V experiments the liquids were contained behind a d
that was raised at the beginning of the experiment. T
method was not used by us because some difficulty was
perienced in sealing the edge of the relatively long dam
was needed.! While this method of release worked satisfa
torily, it may have been less free of disturbances than th
used by others, which in turn may have affected the wa
that were observed and the time for their initial appearan
In this regard, it should be noted that leading-edge dis
bances developed quickly, when the leading edge was
close to the point of release; see Fig. 2. The times and
tances associated with photographs in Huppert1 and Silvi and
Dussan V~Ref. 2! are much greater, but the liquids they us
were more viscous.

In all of the experiments reported herein, save one,
disturbance that was observed resembled in planform a

FIG. 1. A sketch of the fluid release mechanism.
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angular undulation, a sawtoothed wave. In only one exp
ment were parallel-sided fingers observed, similar to th
illustrated in Huppert1 and shown on the cover of the journ
in which that article appeared, which were investigated
tensively by Jerrett and de Bruyn.2 Photographs of the two
wave forms are reproduced in Figs. 2 and 3.

Each wave form is characterized by the downplate d
tances of the tips of the wave, the positions where two te
or fingers emerge from the continuous film, the roots, and
lateral distance between the tips, the wavelength of the
turbance. Note that in Fig. 2 the shape of the edge is sha
pointed both at the tip and the root, even when the dis
bance has become very long. In Fig. 2~c!, typical values for
the width and length of a triangle are 1.5 and 60 cm, resp
tively. The fact that the root remained sharp is in sharp c
trast to the form of the root regions when fingers are o
served, as in Fig. 3, and indicates that the triangular form
not a transient stage on the way to the development of
gers, at least in these instances.

The locations of the roots and tips were obtained fro
projected images of the slides and stored in a computer
analysis. About 20 roots or tips were observed in each ru
obtain the location–time histories. Log–log plots of positi
versus time were used because of the large time span of
run, and not because of anya priori inference from Hup-
pert’s analysis. The graphs of all the data were invaria
nearly straight lines. Indeed, if one omitted the first few d
points for times, say, under 10 s for an experiment last
200 s or more, the slope of the line for an individual tip
root was constant with a coefficient of correlation of 0.99
better in nearly every case. Two typical examples are sho
in Fig. 4.

The 40 cm3 experiment produced a finger-like distu
bance, and the 80 cm3 one a triangular shape. In both cas
only the disturbances close to the center of the plate
included. The straight-line graphs for all the experime
show that the tip and root locationsL and the timet are
related by laws of the formL5Xtq, for some positive expo-
nentsq. The computer was used to obtain a least-squa
estimate of the values of these exponents, and these re
are given in Table I. The number in parentheses next to
values of the average slopes is the associated standard d
tion.

The listings in this table are the average of the statis
for approximately 20 disturbances analyzed for each tes
appears that the distance traveled by the tip along the
decline varies with time in a power law with an expone
slightly greater than1

3 and that is practically independent o
the viscosity when this is 50 cSt or less. The experime
with 100 cSt oil show a somewhat larger exponent. In co
trast to the small differences in the exponent for the tips, t
for the roots show more variation, but are generally sligh
less than1

3. ~The data for the roots showed much more var
tion within an experiment, as indicated by the listed values
the standard deviation.!

Table II displays the wavelengths of the disturbanc
that occurred for the four liquids at a decline angle of 4
There appears to be no major change in wavelength fo
decade increase in viscosity.
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FIG. 2. The developing triangular shape of the leading edge at increa
times after release: viscosity 20 cSt, slope 20°, volume 80 cc. The s
squares in the background have sides measuring 1 cm.~a! 4 s, ~b! 66 s,~c!
307 s.
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In Table III the results for the downslope motion a
summarized for the~nominal! 20 cSt oil for different vol-
umes of fluid and different slopes.~Accurate values for the
properties of this fluid were determined as: kinematic visc
ity 19.1 cSt, surface tension 22.8 mN/m, density 0.9
g/cm3!. The results suggest no significant variation w
angle in the exponents for the tips. The results of Jerrett
-
5

d

de Bruyn2 similarly show little dependence of the expone
for the finger-like disturbances they observed for angles
decline less than 30°.

Again, the values of the exponentsq for the roots have a
higher standard deviation than those for the tips. In a f
cases, such as for the 25° slope and 40 cm3 volume, one
could note that there was an initial slope of the root gra
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which was followed by another straight line of greater slo
for the data at later times. This might have resulted from
change in the flow characteristics in the thin film uphill fro
the front. In addition, the data for the first six roots at 20° a
80 cm3 have a slope of about 0.16, but the slope jum

FIG. 4. A plot of distances.Y, down a glass plate for disturbances produc
when 50 cSt silicone flowed at 45° to the horizontal direction, as a func
of time, T.

FIG. 3. The finger-like shape of the leading edge at time 179 s after rele
kinematic viscosity 20 cSt, slope 45°, volume 40 cc. The small square
the background have sides measuring 1 cm.
e
a

d
s

abruptly to nearly twice this value for all the other roots. T
reason for this is not obvious because the corresponding
data is very consistent, from which one could infer that t
fluid had been placed uniformly across the plate. Note t
only the central 80% of any film was measured so as
minimize any effects of the sidewalls.

Finally, Table IV gives the wavelengths of the sawtoo
disturbances as a function of angle and fluid volume for
20 cSt oil. There is a marked decrease in wavelength as
angle is increased, as also noted by Jerrett and de Bruyn2 for
the finger-like disturbances.

The capillary number is defined by Ca5mU/s, for a
fluid with viscosity m and surface tensions, moving with
velocity U. Since the velocity of the tips varies througho
each experiment, a range of capillary numbers is covere
each run, with the ratio of high to low values usually lyin
between 5 and 10 with ratios of over 20 in some cas
Typical examples are provided by the case of 80 cm3 of 50
cSt oil at 45°, for which the largest and smallest capilla
numbers were found to be 0.012 and 0.002, and that o
cm3 of 20 cSt oil at 25°, where the capillary numbers d
creased from 0.004 to 0.0002. The extreme values atta
by the capillary numbers over all the experiments were 0.0
and 0.0002. Although there was a large decrease in the
illary number during the course of each experiment, the g
eral pattern of the triangles or fingers, once established,
not change

These experimental results are discussed in the foll
ing section, but certain anomalous results are present tha
difficult to explain. For example, disturbances of the fing
like form were observed only for the highest slope and lo
est volume, but for a viscosity in the center of the ran
examined. The range of capillary numbers in this case w
from 0.009 to 0.002, and is similar to that found in all th
other cases, in which triangles were formed. Neither

n

TABLE I. Tip and root exponents for a 45° slope.* 5fingers.~The numbers
in parentheses are the standard deviations.!

Volume, cc
Kinematic viscosity, cSt 40 80 120

10, tip 0.33 ~0.01! 0.33 ~0.02! 0.36 ~0.06!
10, root 0.36~0.06! 0.33 ~0.10! 0.32 ~0.08!
20, tip 0.34 ~0.01! 0.36 ~0.02! 0.44 ~0.02!
20, root 0.41~0.07! 0.33 ~0.09! 0.29 ~0.09!
50, tip 0.49* ~0.02! 0.36 ~0.02! 0.35 ~0.01!
50, root 0.00* 0.24 ~0.02! 0.28 ~0.07!

100, tip 0.41 ~0.01! 0.46 ~0.04! 0.42 ~0.03!
100, root 0.25~0.02! 0.35 ~0.08! 0.31 ~0.05!

TABLE II. Wavelengths in cm for a 45° slope.* 5fingers.

Volume, cc
Kinematic viscosity, cSt 40 80 120

10 2.1 2.3 2.1
20 1.8 1.8 2.2
50 1.8* 2.3 2.5

100 2.0 2.3 2.5

e:
in
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static nor the dynamic contact angle for the fingers was o
side the ranges covered by those for the triangles, whic
contradictory to the hypothesis mentioned in the Introd
tion, that triangles are associated with small contact an
and fingers with large ones. Another peculiarity of the resu
is that the exponent for the roots sometimes had a va
larger than that for the corresponding tips.

III. GROWTH OF TRIANGLES AND FINGERS

Theoretical work on the linear stability theory listed
the Introduction assumes that a steady or quasisteady b
state has developed, with a straight leading edge. Small
turbances with a spanwise wavelength are then introdu
and the initial growth rate and preferred spacing calcula
In the experiments described here, there was no such sm
initial state, and the disturbances were present very soon
ter the fluid was released. In particular, the wavelength c
not be deduced from the linear analysis, since an additio
length scale related to the size of the release mechanism
be present. Hence, there is no reason to suppose tha
conclusions of linear theory have any relevance to the w
developed structures observed in our experiments. Since
objective was to examine the properties of these struct
and not their initiation, the lack of a possible comparis
with linear theory is not a matter for concern.

In their developed form, both fingers and triangles ha
a length much greater than their width. Moreover, the Bo
number based on their width is given by

B5
rga2 sin a

s
,

TABLE III. Tip and root exponent for 20 cSt silicone oil.*5composite of
the first six triangles, averaging 0.16~0.004!, followed by ten, averaging
0.34 ~0.06! ~The numbers in parentheses are the standard deviations.!

Volume, cc
Slope in degrees 40 80 120

10, tip 0.39~0.02! 0.37 ~0.002! 0.37 ~0.003!
10, root 0.34~0.04! 0.37 ~0.02! 0.37 ~0.02!
15, tip 0.39~0.03! 0.40 ~0.02! 0.35 ~0.004!
15, root 0.46~0.02! 0.40 ~0.06! 0.40 ~0.02!
20, tip 0.36~0.02! 0.35 ~0.004! 0.36 ~0.02!
20, root 0.39~0.04! 0.27* ~0.01! 0.34 ~0.04!
25, tip 0.34~0.02! 0.35 ~0.01! 0.34 ~0.004!
25, root 0.45~0.03! 0.37 ~0.03! 0.36 ~0.05!
45, tip 0.34~0.01! 0.36 ~0.02! 0.44 ~0.02!
45, root 0.41~0.07! 0.32 ~0.09! 0.29 ~0.09!

TABLE IV. Wavelengths in cm for 20 cSt silicone oil.~Standard deviations
about 0.1 cm.!

Volume, cc
Slope in degrees 40 80 120

10 3.5 3.5 4.0
15 2.7 3.3 3.7
20 2.5 2.7 3.4
25 2.1 2.1 2.3
45 1.8 1.8 2.2
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where r is the density of the fluid,g is gravity, a is the
spanwise width,a is the angle of slope of the plate, ands is
the surface tension. The value of this parameter in the
periments was at least 10. It follows that the spanwise pro
is of near uniform thickness, with capillarity only effectiv
near the edges of the triangle or finger. Hence the fin
width of the structure is of little importance in determinin
the overall dynamics and the basic balance that controls
motion of the fluid in these structures is the same as tha
the sheet as a whole, namely, the balance between
downslope component of gravity and the viscous stress
the plate. There is, however, an important difference betw
them and the preinstability fluid sheet. For the sheet,
volume of the fluid remained constant. In the triangles, ho
ever, fluid may continually be fed into each triangle from t
fluid that remains above their roots. Thus, the amount
fluid in the triangles increases while the fluid remaining
the sheet decreases. This suggests that the overall dyna
of the triangles can be described by the suggested bala
with a volume constraint that is an increasing function of t
time for the triangles themselves, and a decreasing func
for the reservoir of fluid. For the fingers, this scheme must
modified. For the evidence suggests that when they app
the lower edge of the continuous sheet~and the roots of the
fingers! remains at rest. Since a static sheet is not possi
an acceptable description of this part of the fluid must all
for the draining of its volume into the top portions of th
fingers.

If the height of the fluid measured normal to the plate
small compared with the length and lateral dimension of
triangle or finger, lubrication theory can be used. The b
ance between gravity and viscous stress gives the differe
equation for the heighth as a function of the downslop
distancex and the timet in the form

3m
]h

]t
1rg sin a

]h3

]x
50,

wherem is the viscosity of the fluid. This equation can b
simplified into the form

]h

]t
1

]h3

]x
50,

by writing t5(rg sina/3m)t. A similarity solution of this
equation was derived by Huppert1 and, more generally, by
Lister18 to describe the flow of viscous sheets of fluid eme
ing from a line or point source of variable strength. The
solutions have the form

h5tp2qf ~h!, h5x/tq, q5~2p11!/3,

and

~p21! f 2~2p11!
d f

dh
19 f 2

d f

dh
50.

The length of the sheet is given byL5Xtq and the volume
of fluid in the sheet by

V5tpE
0

X

f ~h!dh.
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The constant-volume solution hasp50, q5 1
3 which is the

solution used by Huppert.1 For a constant flux of fluid,
p5q51 and the sheet has uniform thickness. Values op
between 0 and2 1

2 and of q between1
3 and 0 allow for a

decreasing volume of fluid and a leading edge that mo
down the plate.

We can now attempt to relate the results of the exp
ments described in Sec. II to these solutions.

~a! Fingers.Only one set of parameters resulted in t
appearance of fingers in these experiments, namely 4
volume, 50 cSt kinematic viscosity, and 45° slope. If t
volume of fluid in the finger were constant, the similari
solution would predict that the length of the finger wou
increase with an exponent equal to1

3. The observed exponen
is 0.49, which the similarity solution associates with a v
ume increase proportional tot0.23. This implies that fluid is
moving from the reservoir of fluid above the level of th
roots of the fingers into the fingers themselves. The root
the fingers, that is, the lower edge of the sheet between
fingers, appears in the experiments to be at rest. Since
depth of the fluid in the region above this portion of t
lower edge is thin, it is possible for its weight to be su
ported by surface tension, and consequently be statio
~the similarity solution only applies when surface tensi
plays an insignificant role!. Note that, in the experiments fo
small angles reported by Jerrett and de Bruyn,3 the average
exponents for fingers are 0.65~kinematic viscosity 110 cSt!,
and 0.52~kinematic viscosity 15 cSt!.

~b! Triangles. The exponents for the growth of th
lengths of the triangles varies in the experiments betw
0.33, which corresponds to a triangle of constant volume
0.46, for which the similarity solution indicates that the vo
ume is proportional tot0.19. The increase in volume mus
come from a draining of the fluid in the upper portion abo
the roots into the triangles. The roots of the triangles,
contrast to those of the fingers, move down the plane wi
range of exponents from 0.25 to 0.46, and sometimes
exponent for the root is greater than that for the tip of
triangle. However, in all cases the length of the triangle
tween tip and root is increasing. For the fingers, the ro
extend over a region comparable in width to that of the fi
gers themselves, while the triangles span the whole widt
the plate and the roots, like the tips, have no spanwise ex
Consider the whole region comprising one triangle and
region above its base, and suppose strict periodicity.
volume of the fluid in this region must be constant, and
similarity solution would indicate that both tip and ro
should move downward with the positions of both prop
tional to t1/3. Although some of the results shown in Table
and III fit this prediction, others do not. If there is a trans
of fluid from the upper region into the triangles, as the resu
suggest, then the similarity solution is not appropriate for
upper region, nor for the positions of the roots of the t
angles. It seems likely that, as for the fingers, a satisfac
analysis of the region where the triangles join the upper sh
of fluid, including the regions where two triangles meet,
quires the inclusion of surface tension as a significant c
tributor to the dynamics of the motion. However, for bo
fingers and triangles, the growth of these features, as
s
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served in the experiments reported here, is not inconsis
with the similarity solution of Huppert1 and Lister,18 which is
based on the balance between gravity and viscous stre
only.

IV. CONCLUSIONS

The comparison of these theoretical considerations
the results of the experiments suggests that the overall
namics of both fingers and triangles is the same as that f
uniform sheet, with constant or changing volume. It follow
that the simple model for the motion used here is not
equate to indicate the difference between the two types
structures that occur. To make further progress in the se
for a reason for the duality, the regions where surface tens
is significant will have to be examined, the edges of t
triangles and fingers, their tips, and also the root regio
where two neighboring features and the undivided portion
the sheet of fluid join.
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