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New experimental data on the frequency and damping of Faraday water waves in glass tanks are
presented to demonstrate the contact-line effect on free surface flows. We find a complicated
nonlinear relationship between wave frequency and amplitude near contact lines: The amplitude
dispersion for decaying standing waves directly progresses from a nonlinear regime due to large
amplitude to a regime due to contact-line nonlinearity. The relative damping rate is also a function
of the wave amplitude,increasing significantly at smaller wave amplitude. These results are
discussed in relation to different formulations of contact-line conditions for oscillatory motions and
free surface flows. A new model is proposed to explain the observed amplitude scaling in the
frequency and damping rate, and to relate these behaviors to slip-length and other contact-line
measurements by Ting and Perlin@J. Fluid Mech.295, 263~1995!#. © 2004 American Institute of
Physics. @DOI: 10.1063/1.1644151#

I. INTRODUCTION

It is well known that the static shape of a fluid free
surface near a solid surface is determined by the gravity~or
other potential force! and wetting force balance. In general,
the contact angle can be described by Young’s equation for a
balance between the surface energies of the three phases. In
a dynamic configuration, however, additional viscous, iner-
tia, and surface forces~e.g., electrostatic, van der Waals! de-
termine the contact-line motion and the free surface near the
contact line. There have been an increasing number of stud-
ies of the role of wetting forces and various spreading and
dewetting phenomena. Herein, we are interested in the effect
of ‘‘macroscopic’’ contact angle and its interaction with free
surface flows, not the complex dynamics of the three-phase
contact line on the nanometer scales. We further restrict our-
selves to some interesting nonlocal effects of contact line
dynamics on oscillating flows.

Most previous studies on contact line dynamics have fo-
cused on low-Reynolds number, unidirectional flow where
viscous and capillary forces dominate. For simplicity, it is
often assumed that the flow is unidirectional, such as in drop-
let spreading. With these assumptions, Dussan1 and subse-
quent studies~e.g., Cox2! introduced slip conditions to re-
move the contact-line singularity and derived equations that
relate contact angle with contact-line velocity. In many cases,
a lubrication approximation is an accurate representation of
local fluid dynamics~Greenspan3! if the contact angle is

small. Near the contact line this approximation avoids the
singularity in the Stokes-flow formulation and simplifies the
contact angle dynamics to the formu;Ca1/3. This is often
referred to as Tanner’s law,4 where Capillary number Ca rep-
resents the viscous-to-capillary force ratio and is propor-
tional to contact-line relative velocity. For brevity, we refer
to more comprehensive reviews5–8 of these models for
contact-line dynamics.

Although we focus on oscillating~unsteady! flows with
contact-line effects where these models do not directly apply,
the scaling of capillary and viscous effects can be similar
with those of unidirectional flows. Thus we want to explore
common features and differences between wetting behaviors
in oscillatory versus unidirectional flows. Through our ex-
periments and comparison with previous analysis, we find
such scaling similarity exhibited in both local~contact-line!
and nonlocal~frequency and damping! dynamics.

This paper is organized as follows. We first review the
contact-line models and analysis for oscillatory flows and
surface waves in Sec. II. In Sec. III, we describe some inter-
esting observations and experimental analysis of surface wa-
ter waves in a container, mainly the wave frequency and
damping in various wave tanks and wetting conditions.
These data are compared with both a scaling model and more
detailed analytical and numerical analysis in Sec. IV.

II. REVIEW

A. Models for oscillatory contact lines

Contact-line oscillation has been studied by Young and
Davis,9 with the assumption that the contact-line motion isa!Electronic mail: lei.jiang@intel.com
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local to the vicinity of the contact line and decoupled from
bulk fluid motion. A Stokes flow model describes the viscous
force that balances the capillary force, with contact-angle
hysteresis included. Hocking10,11 then postulated that the dy-
namic contact angleud is linearly proportional to the
contact-line velocityVr , as shown in Fig. 1~a!. Adopting a
‘‘macroscopic’’ contact angle assumption, he approximated
the local free surface slope ashx5ud2p/2 and used its
relation to free-surface velocity to specify a ‘‘contact-line’’
condition for free surface flow:

h t5chx , ~1!

whereh is the surface elevation at the contact line in fixed
coordinates, thex axis is perpendicular to the solid surface.
The coefficientc has the units of velocity. The contact angle
ud and the contact-line relative velocityVr are represented
by hx1p/2 andh t ~with fixed wall!, respectively. To sim-
plify this formulation, we assume ap/2 static contact angle.

Using~1!, Hocking10,11calculated the contact-line damp-
ing and meniscus waves caused by an oscillating plate in a
liquid. In studies by Miles,12–14 the coefficientc is made
dimensionless with capillary lengthl 5(s/rg)1/2, i.e., lc

5c/v l , wherev is the oscillation frequency. Comparison of
~1! with contact-line models of unidirectional flow shows
that the coefficientlc is a parameter similar to slip lengthl s .
In the Navier slip condition,l s is defined as the slip velocity
divided by the shear at the wall.15 Miles13 showed that when
the Navier slip condition models the contact-line region, the
coefficientlc is directly proportional to slip lengthl s . Here-
after, we denotelc as the ‘‘slip coefficient’’ specific to
contact-line conditions of type~1!. Miles13 further suggested
that the slip coefficient can be complex for an oscillatory
contact line, representing certain phase offset between
contact-line motions and flow motions. He derived both
damping and frequency shifts for linear waves that are func-
tions of the coefficientlc , but not a function of the wave
amplitude~i.e., linearity was assumed!.

B. Experiments on damping and frequency shift

Keulegan16 studied the damping of surface standing
waves with several liquids, in containers of different sizes,

and with different container material. The total damping was
measured by recording wave amplitude with time, and was
separated into one component related to the viscous effect
and another related to the surface tension, based on dimen-
sional analysis. Although there is a good correlation between
the damping coefficient and surface tension, Keulegan found
it difficult to explain the drastic increase in damping when
switching from a glass container to one constructed of Lu-
cite™. However, he pointed out that water wets Lucite much
less than glass. Keulegan also observed an interesting depen-
dence of damping on wave amplitude by comparing damping
estimated from a different number of wave cyclesn after
wave excitation is stopped. Damping for largen ~thus
smaller amplitude! is considerably larger than that for small
n ~larger amplitude!. It was hypothesized that this ‘‘anomaly
mode’’ is related to how water~or other liquids! wets the
surface and related to ‘‘meniscus deformation.’’ We will dis-
cuss this in more detail with our experiments. In summary,
Keulegan16 was the first to notice that any effect of wetting
~or contact-line motion! on damping is also amplitude depen-
dent.

Cocciaroet al.17 also examined frequency and damping
of standing waves and found discrepancies with linear wave
theory that can be explained partially as contact-line effects.
For waves in a Plexiglas™ circular cylinder with a static
contact angle ofus562°, the frequency and damping rates
are also functions of the wave amplitude, as in the observa-
tion of Keulegan. Cocciaroet al.17 proposed that Hocking
and Miles’ theories would match experimental data if the
coefficient was proportional to the wave amplitude.

C. Experiments on contact-line oscillations

Ting and Perlin15 studied contact-line dynamics with
high-speed imaging near a vertically oscillating plate im-
mersed in water. Detailed measurements again revealed a
complex contact angle versus contact-line speed relation,
with strong hysteresis and clear vortical motions in the vi-
cinity of the contact line@Fig. 2~a!#. Using a formulation
similar to Hocking and Miles, they extracted a slip length
that has a nonlinear dependence on oscillation amplitude.

FIG. 1. Illustrative contact-line mod-
els with contact angle vs contact-line
velocity. ~a! The linear model of
Hocking ~Refs. 10 and 11! with
~dashed line! and without hysteresis.
~b! The model used for droplet spread-
ing analysis ~Dussan—Ref. 5, de
Gennes—Ref. 7! with m53 as the
usual empirical exponent~consistent
with lubrication analysis!.
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Note that the observations from Cocciaroet al.17 also sug-
gest a dependence of slip length on wave amplitude, albeit a
linear one. However, the hysteresis behavior is very differ-
ent, as shown in Fig. 2~b!.

As mentioned earlier, models for low-Reynolds number,
unidirectional contact-line motion~e.g., drop spreading! usu-
ally result in a cubic relation between contact angle and ve-
locity. This can be explained based on a lubrication approxi-
mation with and without slip, for the condition Ca!1 ~Cox,2

Hocking18!, and verified with experimental data~see Ehrhard
and Davis,19 and references therein!. Here, the capillary
number Ca5mU/s represents the ratio of the viscous force
to the surface tension force. By analogy, a nonlinear relation
between contact angle and velocity for oscillatory flow is
reasonable and consistent with the experiments of Ting and
Perlin15 under the same assumption of Ca!1 ~because of the

small Weber number!, perhaps even for high Reynolds num-
ber cases.

III. EXPERIMENTS

A. Setup and analysis procedures

The following results on wave damping and frequency
shift were obtained with the Faraday wave setup that we used
to study nonlinear standing water waves~Jianget al.20,21!. In
those studies, a complex demodulation technique was used to
extract the accurate frequency of the time series measured by
a wave probe. It was already known20 that the excitation
frequency of Faraday waves and its hysteresis are strong
functions of the contact-line behavior of water with the con-
tainer wall. For example, addition of Photo-Flo, a common
wetting agent, reduces the hysteresis significantly, and with-
out such an agent, the natural frequency as determined from
a neutral stability map for Faraday waves is higher than that
predicted from linear stability theory with negligible contact-
line effects. These results effectively correspond to small-
amplitude waves, as the excited waves are near the neutral
stability boundary.

Using the same experimental setup and probe measure-
ment technique20,21 we also excite high-amplitude standing
waves by Faraday resonance, and then remove or gradually
reduce the vertical forcing signal and measure the wave de-
cay over time. The complex demodulation, when applied to a
decaying wave signal, can also be used to extract the slowly
varying amplitude and the frequency. Hendersonet al.22 de-
rived the following expression for the decaying wave eleva-
tion:

h5e2gt@A~x!cos~v f2Dv!t1B~x!sin~v f2Dv!t#,
~2!

wherev f is the forced wave frequency~half the forcing fre-
quency in Faraday resonance! andDv is given by

Dv5
v f

22vn
2

v f
, ~3!

where vn is the natural frequency. Since the forcing fre-
quency is known and can be ‘‘demodulated’’ from the origi-
nal signal, we then estimate the actual wave frequency based
on the above formula. The digital filter is described
elsewhere.21

B. Frequency and damping of standing waves in
rectangular tanks

Figure 3 shows the primary mode of an excited wave in
the narrow tank setup as used in our previous studies. The
wave probe is situated at the center of the tank to capture the
largest wave elevation. The small aspect ratio~1:10! is cho-
sen to ensure the longitudinal mode excitation and minimal
interference of the sidewall on wave probe accuracy. A typi-
cal decaying signal is shown in Fig. 4~a! with the forcing
signal terminated at timet55 s. The length of the remaining
time series is;35 s, and the sampling frequency is 300 Hz
~much larger than the wave frequency of;1.6 Hz). The
original time series contains higher harmonics and noise for

FIG. 2. ~a! Relative contact angle vs contact-line velocity for a 2 Hz oscil-
lation ~Ting and Perlin—Ref. 15!. The insets demonstrate the corner vortex
formed at the maximum plate positions (Stroke53 mm). ~b! Extracted con-
tact angle vs contact-line velocity data based on Cocciaroet al. ~Ref. 17!.
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two reasons:~1! a nonanalog filter was applied,~2! the el-
evation signal was truncated at 0.001 mm~wave probe limit!.
Complex demodulation is applied to filter the higher har-
monics and noise first, and to obtain the first-harmonic am-
plitude and phase as shown in Figs. 4~b! and 4~d!. The de-
modulation frequency is set at 1.6 Hz~forcing frequency!.
The damping rate is estimated from the instantaneous slope
of the log-wave amplitude ratio to give us a more complete
history of damping as a function of time and therefore wave
amplitude. Figure 4~c! shows interestingly that the damping
ratio ~slope! is more nonlinear as wave amplitude becomes
smaller, an observation to be discussed in more detail later.

Figure 5 shows the extracted natural wave frequency
versus instantaneous wave amplitude during the decay that
can be clearly divided into three regimes. Immediately after
forcing is stopped, both phase and amplitude show a transi-
tion of 2–3 s. During this transition, the wave frequency
switches to that of free waves, thus lower than the forcing
frequency because of finite wave amplitude. This is consis-
tent with the second regime, where the nonlinear wave fre-

FIG. 3. Our coordinate system for standing waves in a narrow rectangular
tank. The contact-line close up and coordinates used in the following analy-
sis is shown in section A-A. The fundamental wave model is shown with the
dashed line representing the contact lines~two side walls are the main
contact-line effect contribution because of the perimeter ratio!.

FIG. 4. ~a! Decaying surface elevation signal,~b! the complex-demodulated amplitude of the first harmonic fundamental wave mode!, ~c! the wave amplitude
decay~damping rate!, and~d! the phase angle of the first harmonic. The initial forcing amplitudeF is 4.3 mm, the forcing frequency is 3.2 Hz~first-harmonic
amplitude of 35 mm!.
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quency is approximated by the dispersion relation~for mod-
erate wave amplitude!:

v5vn@12v2~ka!2#, ~4!

wherek is the primary wavenumber anda is the wave am-
plitude. The natural frequency is denoted asvn in rad/s or
f n5vn/2p in Hz, based on linear wave theory, andv2 is the
second-order correction to wave frequency, a constant based
on Stokes wave theory. Therefore the frequency increases
linearly with decrease in dimensionless wave amplitude
(ka)2, as shown in Fig. 5. Extrapolation of the frequency-
amplitude dependence in this regime to zero amplitude cor-
responds tof n51.615 Hz, very close to the theoretical esti-
mate~1.611 Hz!. We can infer that the contact-line effect is
not important in this regime because of the moderate wave
amplitude~sidewall most of the time is coated by a receding
water film with large fluid displacement!, and hence a free-
edge condition~implicit assumption of standard linear wave
theory! is valid. The small, high-frequency oscillation is at-
tributed to digitization error and interaction with the digital
filter. An averaging procedure removes such oscillation in
subsequent data analysis. Decaying time series with excita-
tion amplitude and frequency showsv2 ranging from 0.34 to
0.47, but the extrapolated frequencyf n at zero amplitude is
consistently;1.615 Hz from~4! for this amplitude regime.

The more interesting regime is the one close to the small
amplitude limit: There is an unexpected rapid decay increase
with further reduction of wave amplitude. To examine this
regime in more detail, the same data set is plotted in Fig. 6
on a log–log graph. Three different time series with different
forcing amplitude in fact demonstrate the same asymptotic
behavior, although those forF54.0 mm ~displacement am-
plitude associated with the vertical forcing! show a larger
oscillation of unknown cause. Separately, neutral stability
experiments20 also revealed an actual wave frequencyf n

51.662 Hz; higher than the linear theory prediction. Therein
it was attributed to strong contact-line on the sidewalls as a
result of the narrow 1:10 tank geometry. However, this de-
caying time series indicates there is no fixed wave frequency
even in this small wave amplitude limit. Figure 6~a! clearly

shows a22/3 power law between frequency shift and wave
amplitude~for 0.5 mm,a,7 mm), as in Fig. 6~b! for the
average of the three time series. This trend is clear except for
the smallest wave amplitude recorded~limited by the length
of the time series, not by the wave probe capability!.

Although the frequency-amplitude correlation is classi-
fied as three regimes in the above analysis, the transitions
between regimes are smooth. We note that atno time during
the decay is the frequency constant as predicted by linear
theories. The amplitude dispersion directly progresses from a
nonlinear regime due to large-amplitude nonlinearity to an-
other nonlinear regime with even stronger dependence on
amplitude to the smallest resolvable amplitude. One possible
explanation for the overlapping nonlinear regimes is the dif-
ferent parameters governing the nonlinearity: The first re-
gime is dependent on wave steepnesska while the wave
amplitude ratio to capillary length may be the determining
factor of nonlinearity in the second regime at low amplitude
~e.g., see Faraday waves in cylinder tanks in Sec. III C!.

Similarly, we can extract the damping rate~viscous and
contact-line! dependence on wave amplitude, as shown in
Fig. 7. The high-frequency oscillation appears larger, particu-
larly for the series obtained with smaller amplitude forcing
~4.0 mm!. All three, however, follow approximately a21/3
power law during the transition from the nonlinear to the
contact-line regime, and increase from 0.05 to a maximum of
0.25 s21, a fivefold increase~wave amplitude 1.3 mm,a
,7 mm). This is consistent with higher damping due to
contact-line effects. The damping rate decreases for even
smaller amplitudes (a,1.3 mm), suggesting a change in the
contact-line behavior~possibly from a moving contact line to
a pinned one, as discussed by Cocciaroet al.17!. Data fitting
indicates a 1/3 power-law exponent, although it is for only a
short span at the end of the time series.

C. Surfactant, viscous, and tank geometry effects

Although we demonstrated consistency with previous
experiments regarding the contact-line effect on the fre-

FIG. 5. Cyclic wave frequencyv/2p
vs the square of the wave amplitude
square ~first harmonic! during the
wave decay.
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quency shift and damping, we also observe that the nonlin-
earity in frequency and damping was not due solely to vis-
cous or static contact angle effects. Hendersonet al.22

conducted standing wave experiments where the static con-
tact angle was varied~from hydrophobic to hydrophilic! by
pairing different wall solid material and working liquid. Fre-

quency was found to increase with contact angle, and damp-
ing was found to decrease with increasing contact angle. It is
possible that the higher damping at small wetting angle
~similar to water-on-glass as in our experiments! could be
similar to the observation described herein. However, the
same theory does not seem to provide any explanation for

FIG. 6. Cyclic frequency difference (v2v0)/2p vs
wave amplitudea for the contact-line regime. Initial
displacement amplitude associated with the forcing,F
54.0, 4.3, and 4.6 mm.~Bottom!: Combined depen-
dence of frequency on amplitude~average of three se-
ries with filtering of high-frequency signal!.
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the frequency dependence on amplitude observed herein. The
smaller frequency change at hydrophilic conditions probably
can be attributed to dissipation in the wetting film as ex-
plained by Miles in his viscous boundary-layer analysis for
the zero-contact angle case~no hysteresis! that does not ap-
ply in our experiments.

Martel and Knobloch23 point out that an additional vis-

cous mode need be considered as part of the bulk motion
when analyzing damping. This viscous effect requires at least
weakly nonlinear analysis, which could naturally introduce
amplitude dependence, although different from the observed
scaling herein. This additional effect can be the cause of the
discrepancy in frequency between theory and experiments in
Henderson and Miles.24 To verify if these effects~viscous

FIG. 7. Damping rate with~a! different initial displace-
ment amplitude associated with the forcing (F
54.0, 4.3, 4.6 mm), and~b! averaged among the three
series.
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and contact angle! contribute to the ‘‘anomaly’’ observed
here, we conducted experiments using water mixed with
Photo-Flo~lubricating film and wetting agent! with increased
viscosity and reduced contact angle~see Jianget al.20 for the
viscosity data!. The measurements suggest that the frequency
of the surface elevation approaches a value close to the linear
natural frequency~without contact-line effects! as amplitude
approaches zero. However, in contrast to the treated water
case, there is no clear amplitude dependence in either the
frequency shift or the damping.

Additional experiments were conducted with Faraday
waves ~axisymmetric mode! in a small circular cylinder
~Pyrex glass, 12.8 mm! and a larger cylindrical cylindrical
tank ~Plexiglas 15.9 cm diameter!. An example for the 15.9
mm tank with treated water is shown in Fig. 8. The fre-
quency of the decaying elevation shows amplitude depen-
dence ata.2 mm, while the frequency appears fixed for
smaller amplitudes (a,2 mm). Note that for the rectangular
tank, waves show amplitude-dependent frequencies as small
as 0.5 mm. This difference might be due to the smaller
contact-line displacement in the cylinder for the same wave
amplitude as compared to waves in the rectangular tank. For
the axisymmetric mode in the circular tank, the maximum
displacement is only 1/3 to 1/2 of the maximum wave am-
plitude measured at the tank center. At small amplitude
~,2 mm!, the contact line is effectively pinned at the tank
wall. We did not conduct detailed verification of the wave
profile near the wall for the cylindrical tank, and the record
used to generate Fig. 8 may be too short to provide valuable
information ~i.e., amplitude dependence scaling! needed in
the small-amplitude~contact-line dominated! range.

The natural frequency without contact-line and viscous
effect is 2.537 Hz for the axisymmetric mode in the above
example. The measured final frequency is 2.570 Hz with

treated-water and 2.530 Hz with a Photo-Flo mixture. Again,
the Photo-Flo addition provides a wetting film on the surface
of the container that reduces the natural frequency closer to
the linear wave frequency~without contact-line effects!. This
is qualitatively similar to Cocciaroet al.17 and to Henderson
et al.22 with regard to contact line observations. Addition of
Photo-Flo produces the same effect as stated above for rect-
angular tanks—no clear amplitude dependence is observed in
the frequency change or damping rate.

Any additional viscous mode as described by Martel and
Knobloch23 cannot be responsible for the differences be-
tween Faraday waves in treated-water versus those with a
Photo-Flo mixture. In fact, higher viscosity with the Photo-
Flo mixture corresponds to behavior more closely predicted
by previous analysis based on linear wave theory. Rather,
removal of the contact angle hysteresis, partial wetting, or
other possible contact-line effects significantly reduces the
‘‘anomalous’’ frequency and damping behaviors~as a func-
tion of amplitude!. We have no evidence these experiments
apply to a broad range of wetting angles, although qualitative
agreement with observations by Keulegan16 suggest common
features of the contact-line dynamics on the partially wetted
surface~contact angle significantly smaller than 90° but non-
zero!.

As the above experiments with PhotoFlo and with circu-
lar cylinders show, the presence of corners in our narrow
10:1 rectangular tank is not likely to be the main cause for
the amplitude dependence in frequency and damping. We
note that earlier studies by Keulegan16 used several tanks
with the same width-to-length ratio of 0.217 compared to 0.1
here. The damping increases toward smaller amplitude
waves were observed in all cases, although the corner effect
should be less dominant for larger tanks with smaller
perimeter-to-area ratio. Although corner conditions may play
a key role in pattern selection for Faraday resonance,26 the
wave studied here is the fundamental mode with the tank
length equal to wavelength~or in the case of Keulegan, half
the wavelength!. Therefore we expect limited corner effects
on overall wave frequency and damping. However, the de-
tailed contact-line dynamics or viscous contribution near cor-
ners can only be determined by additional experiments or
theoretical analysis. Hereafter, we assume the corner effect is
negligible and focus on the contact-line condition at the pe-
riphery of the rectangular tank, with its main contributions at
boundaries in theX–Y plane~Fig. 3!.

IV. RESULTS AND DISCUSSIONS

The fundamental question regarding formulation of the
contact-line condition is to identify appropriate boundary
conditions at the three-phase interface that are also physi-
cally reasonable, such as the introduction of slip to remove
the singularity. There also exists a key difference between
macroscopic contact angle and the microscopic one. For
many cases, using the dynamic macroscopic contact angle
~e.g., Dussan5! or even the static contact angle~e.g.,
Hocking18! is sufficient to describe the outer fluid motion
either numerically~by solving the Navier–Stokes equations!
or analytically ~asymptotic analysis!. Very near the contact

FIG. 8. Frequency shift for the axisymmetric mode in a circular tank with
treated water.
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line, either a Stokes flow analysis or a lubrication approxi-
mation can be used to describe the local angle–velocity re-
lation that necessarily includes any slip model. Slip length
can therefore be regarded as a key parameter linking the
microscopic and macroscopic levels in contact-line dynam-
ics.

Although the same approach should apply equally well
to oscillating flows and free surface-wave analysis, an accu-
rate and simple formulation of a contact angle–contact line
model has been elusive, as all experimental and numerical
analyses indicate much more complex behavior including
hysteresis, nonlinearity, and unsteady dependence of angle
versus velocity as observed by Cocciaroet al.17 and in more
detail by Ting and Perlin.15 The hysteresis is explained par-
tially by inertia and viscous effects and their interaction with
flow in meniscus regions~e.g., corner vortex!. Qualitatively
similar hysteresis@Fig. 2~a!# was reproduced in numerical
simulation by Dreyer~private communication! with FIDAP,
a finite-element method solver for the Navier–Stokes equa-
tions. Therein a linear contact-line condition relating contact
angle to contact-line displacement was used in addition to
the Navier slip condition on the solid surface. However, it
remains unresolved whether other aspects of the oscillating
contact-line dynamics can be explained by inertial and vis-
cous effects alone, i.e., the unsteady stick-slip motion and
nonlinear dependence on amplitude.

An additional difficulty with applying general contact-
line conditions to free surface-wave analysis is the compat-
ibility of these conditions with the eigenvalue problem for-
mulation. For example, variational formulations are required
to solve the weak form of the linear water wave problem
with fixed contact line~Benjamin and Scott25!, because di-
rect eigenfunction expansion is not feasible with such bound-
ary conditions. Other aspects of capillary effects for nonlin-
ear waves are reviewed in more detail by Perlin and
Schultz.26 For this work we will proceed based on previous
linear analysis by Hocking and Miles, and focus on the time-
averaged contact-line behavior rather than the exact model
that would explain time-dependent contact-angle variation in
Ting and Perlin.15

Miles12,13 showed that a boundary-layer approximation
can be applied when the capillary lengthl 5(s/rg)1/2

(52.7 mm for a pure, air–water interface! is much smaller

than the wavelength. Applying the contact-line condition~1!
resulted in a first-order frequency model

v22vn
2

vn
2 5

G

12 ilc

, ~5!

whereG is a constant form factor determined by the wave
mode, and the ‘‘slip coefficient’’lc is dimensionless. For the
fundamental mode with a wavelength of 60 cm in our ex-
periments~10:1 tank aspect ratio!, the form factor is (4/a
12/b) l 50.108 witha560 cm, b56 cm. Forlc approach-
ing zero and infinity, the above equation predicts frequencies
for fixed and perfectly wetted contact lines, respectively.
When the difference between the actual frequency and the
natural frequency~without contact-line effect! vn is small,
the above formulas can be reduced to

gc5
Gvnlc

2~11lc
2!

~6!

and

v2vn5
Gvn

2~11lc
2!

1
gc

2

2vn

, ~7!

where gc represents the imaginary frequency components,
i.e., damping rate from the contact-line condition~1!. The
boundary-layer assumption is applicable to frequency esti-
mates as long as the contact-line effect is confined within a
capillary lengthl , as verified with the alternative approach
using a variational formulation by Miles. The meniscus ef-
fect is also expected to be small, as estimated in Miles.12

Linearity of ~1! is essential to ensure separable partial-
differential equations in Miles’ boundary-layer and eigen-
value approach. Cocciaroet al.17 assumed that the amplitude
dependence of wave frequency and damping can be repre-
sented by simply replacing the constantlc with relationlc

;a. Applying this scaling in~6! and~7! gives the power law
dependence observed in the experiments of Cocciaroet al.A
similar argument suggests that our observed power-law de-
pendence on amplitude warrants an assumed scaling oflc

;a1/3. In other words, anad hoc approach to fitting this
linear model suggests that the scalinglc;a1/3 would repro-

TABLE I. Various contact-line models and implications on frequency and damping scaling with wave ampli-
tude.

Milesa Cocciaroet al.b Present work

Wave amplitudea ¯ a,v l a.v l a,v l a.v l
Contact-line freq

correction
;constant ;constant ;a22 N/A ;a22/3

Contact-line
damping rate

;constant ;a ;a21 ;a1/3 ;a21/3

Contact line model
~dimensionless!

h t5lchx ,
lc5constant

h t5lc(a)hx ,
lc;a

~1! h t5lc(a)hx , lc;a1/3

~2! h t5ld(hx)
3, ld;constant

Approach Boundary-layer
1eigenvalue

Ad hocextension of
linear model~Miles!

~1! Ad hocextension of Miles,a

~2! New contact line condition

aReferences 12 and 13.
bReference 17.
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duce the observed22/3 and21/3 scaling in frequency shift
and damping, respectively. Comparison of these conditions is
summarized in Table I.

The approach used by Cocciaroet al. and in our exten-
sion ~model 1! is only ad hoc in that the nonlinear ‘‘slip
coefficient’’ lc(a) violates the assumptions in the linear ei-
genvalue approach of Miles,12,13 as does our conjecture
~model 2! with nonlinear dependence of contact angle on
contact-line velocity. A more general form of the proposed
second model is

uVr u5ldu~ue2uc!u3, ~8!

whereue is the static contact angle. We propose this second
model as a more appropriate condition for frequency and
damping analysis for the following three reasons.~Herein,ue

merely represents the contact angle corresponding to zero
velocity, while real static contact angle varies between the
advancing and receding angles because of hysteresis.!

First, as explored in Hocking,10,11 a ‘‘slip coefficient’’ is
proposed to incorporate fundamental slip behavior at the
contact line, a physical behavior occurring at very local
scale, not at the ‘‘macroscopic’’ contact angle level consid-
ered here. Therefore we expect a better contact-line model
will adhere to the same principle of constant ‘‘slip coeffi-
cient’’ that represents microscopic dynamics in our
macroscopic/continuum model, even though it is not
straightforward to relate our second conjecture to Miles’
analysis and demonstrate the22/3 amplitude dependence in
the frequency shift.

Second, the formulation of the second conjecture is simi-
lar to many studies of contact-line behavior in unidirectional
wetting/dewetting flows as reviewed in the introduction, and
is qualitatively consistent with the experimental data of Ting
and Perlin.15 Contact-line models and experiments for low-
Reynolds number flows often lead to a cubic relationU
;Lu(u22ue

2), whereU is the contact-line velocity andL is
only a function of fluid properties, surface tension, and
viscosity.5,27,28For small contact angleue , this is analogous
to conjecture~2! in Table I (U;Lu3). The mechanism be-
hind Tanner’s law2 and ~8! is probably the same, i.e., the
contact-angle variation is caused by hydrodynamics very
close to the contact line, and can be described by a balance
between capillary and viscous forces locally. For example,
when applying the boundary-layer analysis proposed by
Miles,12 a stronger coupling with capillary forces might need
to be included in the first-order viscous boundary-layer cal-
culation. However, the mathematical analysis will be ad-
dressed in a subsequent paper.

When capillary effect is absent, Mei and Liu29 identified
the meniscus corner as a key energy transfer region between
bulk flow and wall boundary layers in their study of gravity-
wave damping. The importance of contact-line region is ana-
lyzed in even earlier study30 on damping—Miles used an
energy dissipation estimate to calculate damping rate that
emphasized an energy balance at the meniscus corner. We
can apply a similar argument and assume that Young’s force
at the contact line,FY , is proportional tos(cosuc2cosue).
This capillary force is balanced entirely by the viscous force
locally, and therefore the dissipation over one wave cycle is

then proportional toF* a wherea is again the wave ampli-
tude. Using~8! for a small angle we obtainFY;u2;Vr

2/3. If
we further assume thatVr;va, the damping rate can be
estimated by

g5
FYa

Energy
;

a2/3a

a2 ; a21/3, ~9!

i.e., the amplitude dependence measured in our Faraday
wave damping rate. The contact line is a dominant dissipa-
tion source If these assumptions are correct. However, it is
unclear how the same hypothesis will result in the frequency
scaling we observed when capillary and contact-line effects
are included.

Finally, we note that one of the most important results of
Ting and Perlin15 is that the slip coefficientl has quadratic
dependence on stroke amplitude in the plate-driven contact-
line oscillation ~Fig. 25 therein!. Since the slip coefficient
therein is based on Hocking’s model and defined as velocity
divided by contact-angle variation, the time-averaged slip
coefficient should be proportional to slip length, a micro-
scopic parameter that should be independent of wave ampli-
tude. Interestingly, when~8! is used, we note that the slip
coefficientlc in Fig. 25 of Ting and Perlin is equivalent to
ld (ue2uc)

2. For a stroke amplitude less than 5 mm, the
contact-angle variation (ue2uc) is approximately linearly
proportional to amplitude in their measurement.15 Therefore
the quadratic dependence of the slip coefficientlc on ampli-
tude is in fact consistent with Eq.~8! with a fixedld . Equa-
tion ~8! also matches qualitatively the contact-angle-velocity
curve for one oscillation cycle, as shown in Fig. 2~a!, but
does not represent the important hysteresis effects. The ac-
tual model for the contact line is likely to be much more
complex, although~8! might be a good representation of the
time-averaged behavior~without the hysteresis!. Contact-line
characteristics~hysteresis, stick-slip, and slip! for high-
Reynolds number oscillating flows were recently analyzed
by Perlin, Schultz, and Liu~to be published! with compari-
sons of common features between different static contact
angles.

V. CONCLUSIONS

We have shown that the frequency and damping of free
surface waves wave can be determined accurately using a
Faraday-wave tank experimental setup. In particular, using
complex demodulation techniques permits finer resolution in
frequency and damping extraction from a decaying wave sig-
nal. We find that the frequency of waves generated in a nar-
row glass tank with treated water increases with smaller
wave amplitude rapidly during the initial decay, consistent
with weakly nonlinear theory. With further decay in wave
amplitude, however, the frequency continues to increase
above the linear frequency, following a22/3 power depen-
dence on wave amplitude. The extrapolated frequency for
infinitesimal waves is consistent with prior observation of
contact-line induced frequency increase~Jianget al.20!, but
the dependence on amplitude is new. Similarly, the damping
rate also follows a power law dependence on wave amplitude
in the same regime, with a21/3 exponent. The maximum
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damping rate is reached at about 1 mm amplitude and the
damping rate subsequently decreases with wave amplitude
following a 1/3 power law.

Our measurements of damping rate and frequency are
consistent with observation by Keulegan.16 The techniques
used here allow a more accurate determination of amplitude
dependence that is different from results obtained by
Cocciaroet al.17 We verify that the increased damping and
frequency toward small amplitude are due to contact-line ef-
fect in a partial wetting condition, as addition of Photo-Flo
removes such dependence. The increase in damping and fre-
quency are consistent with the contact-line models of Hock-
ing and Miles, although none predicted the observed ampli-
tude dependence.

We have combined these new data with earlier work of
Ting and Perlin15 to show that the frequency and damping
dependence on amplitude is partially consistent with com-
plex, nonlinear contact-line behavior for oscillatory flows.
The scaling observed here indicates a contact-line condition
that represents a local capillary-viscous force balance similar
to model analysis of unidirectional and low-Reynolds num-
ber flows. We show that the proposed contact-line model
explains at least the observed damping rate scaling with am-
plitude, and matches the time-averaged slip coefficient mea-
surement in Ting and Perlin.15
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