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New experimental data on the frequency and damping of Faraday water waves in glass tanks are
presented to demonstrate the contact-line effect on free surface flows. We find a complicated
nonlinear relationship between wave frequency and amplitude near contact lines: The amplitude
dispersion for decaying standing waves directly progresses from a nonlinear regime due to large
amplitude to a regime due to contact-line nonlinearity. The relative damping rate is also a function
of the wave amplitudejncreasing significantly at smaller wave amplitude. These results are
discussed in relation to different formulations of contact-line conditions for oscillatory motions and
free surface flows. A new model is proposed to explain the observed amplitude scaling in the
frequency and damping rate, and to relate these behaviors to slip-length and other contact-line
measurements by Ting and Pefflih Fluid Mech.295 263(1995]. © 2004 American Institute of
Physics. [DOI: 10.1063/1.1644151

I. INTRODUCTION small. Near the contact line this approximation avoids the
singularity in the Stokes-flow formulation and simplifies the
It is well known that the static shape of a fluid free contact angle dynamics to the forgn-Cal®. This is often
surface near a solid surface is determined by the grduity referred to as Tanner’s lafwvhere Capillary number Ca rep-
other potential forceand wetting force balance. In general, resents the viscous-to-capillary force ratio and is propor-
the contact angle can be described by Young's equation for #ional to contact-line relative velocity. For brevity, we refer
balance between the surface energies of the three phases.ttn more comprehensive review§ of these models for
a dynamic configuration, however, additional viscous, iner<contact-line dynamics.
tia, and surface force®.g., electrostatic, van der Wapte- Although we focus on oscillatinqunsteady flows with
termine the contact-line motion and the free surface near theontact-line effects where these models do not directly apply,
contact line. There have been an increasing number of studkhe scaling of capillary and viscous effects can be similar
ies of the role of wetting forces and various spreading andvith those of unidirectional flows. Thus we want to explore
dewetting phenomena. Herein, we are interested in the effecommon features and differences between wetting behaviors
of “macroscopic” contact angle and its interaction with free in oscillatory versus unidirectional flows. Through our ex-
surface flows, not the complex dynamics of the three-phasperiments and comparison with previous analysis, we find
contact line on the nanometer scales. We further restrict ousuch scaling similarity exhibited in both loc&tontact-ling
selves to some interesting nonlocal effects of contact lin@nd nonlocalfrequency and dampinglynamics.
dynamics on oscillating flows. This paper is organized as follows. We first review the
Most previous studies on contact line dynamics have focontact-line models and analysis for oscillatory flows and
cused on low-Reynolds number, unidirectional flow wheresurface waves in Sec. Il. In Sec. Ill, we describe some inter-
viscous and capillary forces dominate. For simplicity, it is esting observations and experimental analysis of surface wa-
often assumed that the flow is unidirectional, such as in dropter waves in a container, mainly the wave frequency and
let spreading. With these assumptions, Dussamd subse- damping in various wave tanks and wetting conditions.
quent studiege.g., Cox) introduced slip conditions to re- These data are compared with both a scaling model and more
move the contact-line singularity and derived equations tha@€tailed analytical and numerical analysis in Sec. IV.
relate contact angle with contact-line velocity. In many Casesy neviEw
a lubrication approximation is an accurate representation og'
local fluid dynamics(Greenspal) if the contact angle is A. Models for oscillatory contact lines

Contact-line oscillation has been studied by Young and
dElectronic mail: lei.jiang@intel.com Davis? with the assumption that the contact-line motion is
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(b)

FIG. 1. lllustrative contact-line mod-
els with contact angle vs contact-line
velocity. (@) The linear model of
Hocking (Refs. 10 and 11 with
(dashed ling and without hysteresis.
(b) The model used for droplet spread-
ing analysis (Dussan—Ref. 5, de
Gennes—Ref. 7 with m=3 as the
usual empirical exponentconsistent
with lubrication analysis

or

local to the vicinity of the contact line and decoupled from and with different container material. The total damping was
bulk fluid motion. A Stokes flow model describes the viscousmeasured by recording wave amplitude with time, and was
force that balances the capillary force, with contact-angleseparated into one component related to the viscous effect
hysteresis included. Hocking' then postulated that the dy- and another related to the surface tension, based on dimen-
namic contact angledy is linearly proportional to the sjonal analysis. Although there is a good correlation between
contact-line velocityV,, as shown in Fig. (). Adopting a  the damping coefficient and surface tension, Keulegan found
“macroscopic” contact angle assumption, he approximatedt difficult to explain the drastic increase in damping when
the local free surface slope ag= 63— /2 and used its switching from a glass container to one constructed of Lu-
relation to free-surface velocity to specify a “contact-line” cite™. However, he pointed out that water wets Lucite much
condition for free surface flow: less than glass. Keulegan also observed an interesting depen-
(1) dence of damping on wave amplitude by comparing damping
estimated from a different number of wave cyclesafter
wave excitation is stopped. Damping for large (thus
smaller amplitudgis considerably larger than that for small

n (larger amplitudg It was hypothesized that this “anomaly
mode” is related to how watefor other liquid$ wets the
surface and related to “meniscus deformation.” We will dis-
cuss this in more detail with our experiments. In summary,
Keulegar® was the first to notice that any effect of wetting
(%r contact-line motionon damping is also amplitude depen-
dent.

Cocciaroet al*" also examined frequency and damping
of standing waves and found discrepancies with linear wave
that the coefficienk . is a parameter similar to slip length. theory that can be explained p_artially as.contact_-line effec_:ts.
In the Navier slip conditionl is defined as the slip velocity FOr waves in a Plexiglas™ circular cylinder with a static
divided by the shear at the wafiMiles'® showed that when ~Ccontact angle of;=62°, the frequency and damping rates
the Navier slip condition models the contact-line region, the2r® also functions of the wave amplitude, as in the observa-
coefficient) is directly proportional to slip length,. Here-  tion of Keulegan. Cocciaret al."’ proposed that Hocking
after, we denote\. as the “slip coefficient” specific to and Miles’ theories would match experimental data if the
contact-line conditions of typél). Miles'® further suggested ~coefficient was proportional to the wave amplitude.
that the slip coefficient can be complex for an oscillatory
contact line, representing certain phase offset betweef- Experiments on contact-line oscillations
contact-line motions and flow motions. He derived both  Tjng and Perlit® studied contact-line dynamics with
damping and frequency shifts for linear waves that are funcpigh-speed imaging near a vertically oscillating plate im-
tions of the coefficient¢, but not a function of the wave mersed in water. Detailed measurements again revealed a
amplitude(i.e., linearity was assumgd complex contact angle versus contact-line speed relation,
with strong hysteresis and clear vortical motions in the vi-
cinity of the contact ling[Fig. 2@]. Using a formulation

Keulegan® studied the damping of surface standingsimilar to Hocking and Miles, they extracted a slip length
waves with several liquids, in containers of different sizesthat has a nonlinear dependence on oscillation amplitude.

7= C7x,
where 7 is the surface elevation at the contact line in fixed
coordinates, th& axis is perpendicular to the solid surface.
The coefficientt has the units of velocity. The contact angle
04 and the contact-line relative velocily, are represented
by n,+ 72 and 7, (with fixed wall), respectively. To sim-
plify this formulation, we assume &/2 static contact angle.

Using (1), Hocking!®! calculated the contact-line damp-
ing and meniscus waves caused by an oscillating plate in
liquid. In studies by Miles?~1*the coefficientc is made
dimensionless with capillary length=(o/pg)'?, i.e., A,
=c/wl, wherew is the oscillation frequency. Comparison of
(1) with contact-line models of unidirectional flow shows

|l7

B. Experiments on damping and frequency shift
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FIG. 2. (a) Relative contact angle vs contact-line velocity for a 2 Hz oscil-
lation (Ting and Perlin—Ref. 16 The insets demonstrate the corner vortex
formed at the maximum plate positions (Strek& mm). (b) Extracted con-
tact angle vs contact-line velocity data based on Cocaaral. (Ref. 17).

Note that the observations from Cocciagball’ also sug-
gest a dependence of slip length on wave amplitude, albeit
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small Weber numbey perhaps even for high Reynolds num-
ber cases.

Ill. EXPERIMENTS
A. Setup and analysis procedures

The following results on wave damping and frequency
shift were obtained with the Faraday wave setup that we used
to study nonlinear standing water wavd&nget al?®2}. In
those studies, a complex demodulation technique was used to
extract the accurate frequency of the time series measured by
a wave probe. It was already knoffithat the excitation
frequency of Faraday waves and its hysteresis are strong
functions of the contact-line behavior of water with the con-
tainer wall. For example, addition of Photo-Flo, a common
wetting agent, reduces the hysteresis significantly, and with-
out such an agent, the natural frequency as determined from
a neutral stability map for Faraday waves is higher than that
predicted from linear stability theory with negligible contact-
line effects. These results effectively correspond to small-
amplitude waves, as the excited waves are near the neutral
stability boundary.

Using the same experimental setup and probe measure-
ment techniqué?! we also excite high-amplitude standing
waves by Faraday resonance, and then remove or gradually
reduce the vertical forcing signal and measure the wave de-
cay over time. The complex demodulation, when applied to a
decaying wave signal, can also be used to extract the slowly
varying amplitude and the frequency. Henderstbial?? de-
rived the following expression for the decaying wave eleva-
tion:

n=e "[A(X)cog w;—Aw)t+B(X)sinw;—Aw)t],
2

where w; is the forced wave frequendyalf the forcing fre-

quency in Faraday resonan@ndAw is given by
2 2

wWs— W
Aw= f n,

i

©)

where w, is the natural frequency. Since the forcing fre-
quency is known and can be “demodulated” from the origi-
nal signal, we then estimate the actual wave frequency based
on the above formula. The digital filter is described
glsewheré!

linear one. However, the hysteresis behavior is very differ-
ent, as shown in Fig.(B).

As mentioned earlier, models for low-Reynolds number,
unidirectional contact-line motio¢e.g., drop spreadingisu-

B. Frequency and damping of standing waves in
rectangular tanks

Figure 3 shows the primary mode of an excited wave in

ally result in a cubic relation between contact angle and vethe narrow tank setup as used in our previous studies. The
locity. This can be explained based on a lubrication approxiwave probe is situated at the center of the tank to capture the

mation with and without slip, for the condition & (Cox?
Hocking'®), and verified with experimental datsee Ehrhard
and Davis'® and references therginHere, the capillary

largest wave elevation. The small aspect ratid.0) is cho-
sen to ensure the longitudinal mode excitation and minimal
interference of the sidewall on wave probe accuracy. A typi-

number Ca pwU/o represents the ratio of the viscous force cal decaying signal is shown in Fig(a} with the forcing

to the surface tension force. By analogy, a nonlinear relatiorsignal terminated at time=5 s. The length of the remaining
between contact angle and velocity for oscillatory flow istime series is~35 s, and the sampling frequency is 300 Hz
reasonable and consistent with the experiments of Ting an@inuch larger than the wave frequency of1.6 Hz). The
Perlin'® under the same assumption of<€4 (because of the original time series contains higher harmonics and noise for



Phys. Fluids, Vol. 16, No. 3, March 2004

Sidewall

D

End wall

A-A section

A

e

Glass side wall

Contact line dynamics and damping 751

two reasonsi(1) a nonanalog filter was applied®) the el-
evation signal was truncated at 0.001 rwave probe limit.
Complex demodulation is applied to filter the higher har-
monics and noise first, and to obtain the first-harmonic am-
plitude and phase as shown in Figgb{and 4d). The de-
modulation frequency is set at 1.6 Hforcing frequency.
The damping rate is estimated from the instantaneous slope
of the log-wave amplitude ratio to give us a more complete
history of damping as a function of time and therefore wave
amplitude. Figure &) shows interestingly that the damping
ratio (slope is more nonlinear as wave amplitude becomes
smaller, an observation to be discussed in more detail later.
Figure 5 shows the extracted natural wave frequency
versus instantaneous wave amplitude during the decay that
can be clearly divided into three regimes. Immediately after
forcing is stopped, both phase and amplitude show a transi-

FIG. 3. Our coordinate system for standing waves in a narrow rectangulaﬁon of 2-3 s During this transition. the wave frequency

tank. The contact-line close up and coordinatesed in the following analy-
sis is shown in section A-A. The fundamental wave model is shown with the
dashed line representing the contact lineso side walls are the main

contact-line effect contribution because of the perimeter yatio
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switches to that of free waves, thus lower than the forcing
frequency because of finite wave amplitude. This is consis-
tent with the second regime, where the nonlinear wave fre-
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FIG. 4. (a) Decaying surface elevation signéb) the complex-demodulated amplitude of the first harmonic fundamental wave hodibe wave amplitude
decay(damping ratg and(d) the phase angle of the first harmonic. The initial forcing amplitide 4.3 mm, the forcing frequency is 3.2 Kfirst-harmonic

amplitude of 35 mm



752 Phys. Fluids, Vol. 16, No. 3, March 2004 Jiang, Perlin, and Schultz

|
|
1681 |
|
|
|

Contact-line regime

&

1 .62\ % M———— Nonlinear wave regime——————Ma——— Transitiany __y,
regime

I
|
|
|
|
|
|
|
|
|
|
|

FIG. 5. Cyclic wave frequencw/2m
vs the square of the wave amplitude
square (first harmoni¢ during the

i wave decay.

Wave freauency { Hz)
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quency is approximated by the dispersion relatifam mod-  shows a— 2/3 power law between frequency shift and wave

erate wave amplitude amplitude (for 0.5 mm<a<7 mm), as in Fig. &) for the
average of the three time series. This trend is clear except for
0= wy[1-wy(ka)?], (4 the smallest wave amplitude recordgichited by the length
wherek is the primary wavenumber aralis the wave am-  Of the time series, not by the wave probe capability
plitude. The natural frequency is denoteda@sin rad/s or Although the frequency-amplitude correlation is classi-

f,=w,/27 in Hz, based on linear wave theory, and is the  fied as three regimes in the above analysis, the transitions
second-order correction to wave frequency, a constant basdxbtween regimes are smooth. We note thatctime during

on Stokes wave theory. Therefore the frequency increasede decay is the frequency constant as predicted by linear
linearly with decrease in dimensionless wave amplitudeheories. The amplitude dispersion directly progresses from a
(ka)?, as shown in Fig. 5. Extrapolation of the frequency-nonlinear regime due to large-amplitude nonlinearity to an-
amplitude dependence in this regime to zero amplitude corfgther nonlinear regime with even stronger dependence on
responds td,=1.615 Hz, very close to the theoretical esti- ympjitude to the smallest resolvable amplitude. One possible
mate(1.611 H3. We can infer that the contact-line effect is gy janation for the overlapping nonlinear regimes is the dif-
not 'mpgrta_r:jt n tn's re(‘t:jlrr;(:[:hbet(_:aus.e of t?ednt;oderate ;Yav?erent parameters governing the nonlinearity: The first re-
ampiitu e(S|. ewall most of the time 1S coated by a rece Inggime is dependent on wave steepné&sswhile the wave
water film with large fluid displacementand hence a free- . . . .

e S i . amplitude ratio to capillary length may be the determining
edge conditionimplicit assumption of standard linear wavef tor of nonlinearity in th nd reqime at low amplitud
theory) is valid. The small, high-frequency oscillation is at- actor of honlinearity e,se“? €9 ee} ow amplitude

(e.g., see Faraday waves in cylinder tanks in Sec.)llI C

tributed to digitization error and interaction with the digital o ! ;
filter. An averaging procedure removes such oscillation in ~ Similarly, we can extract the damping rétgscous and

subsequent data analysis. Decaying time series with excitg&ontact-ing dependence on wave amplitude, as shown in
tion amplitude and frequency shows ranging from 0.34 to  Fig. 7. The high-frequency oscillation appears larger, particu-
0.47, but the extrapolated frequentyat zero amplitude is larly for the series obtained with smaller amplitude forcing
consistently~1.615 Hz from(4) for this amplitude regime. (4.0 mm). All three, however, follow approximately & 1/3
The more interesting regime is the one close to the smalpower law during the transition from the nonlinear to the
amplitude limit: There is an unexpected rapid decay increaseontact-line regime, and increase from 0.05 to a maximum of
with further reduction of wave amplitude. To examine this0.25 s'!, a fivefold increasgwave amplitude 1.3 mria
regime in more detail, the same data set is plotted in Fig. 67 mm). This is consistent with higher damping due to
on a log—log graph. Three different time series with differentcontact-line effects. The damping rate decreases for even
forcing amplitude in fact demonstrate the same asymptotigmaller amplitudesg< 1.3 mm), suggesting a change in the
behavior, although those fd¥=4.0 mm (displacement am-  contact-line behaviofpossibly from a moving contact line to

plitude associated with the vertical forcinghow a larger 5 pinned one, as discussed by Cocciarall’). Data fitting
oscillation of unknown cause. Separately, neutral stability: ’

experiment® also revealed an actual wave frequericy Iindicates a 1/3 power-law exponent, although it is for only a
. . - . short span at the end of the time series.
=1.662 Hz; higher than the linear theory prediction. Therein P eendo

it was attributed to strong contact-line on the S|dewaII§ as g Surfactant, viscous, and tank geometry effects
result of the narrow 1:10 tank geometry. However, this de-
caying time series indicates there is no fixed wave frequency Although we demonstrated consistency with previous
even in this small wave amplitude limit. Figuréap clearly ~ experiments regarding the contact-line effect on the fre-
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guency shift and damping, we also observe that the nonlinquency was found to increase with contact angle, and damp-
earity in frequency and damping was not due solely to vising was found to decrease with increasing contact angle. It is
cous or static contact angle effects. Henderssiral?>  possible that the higher damping at small wetting angle
conducted standing wave experiments where the static corisimilar to water-on-glass as in our experimgnisuld be

tact angle was varieffrom hydrophobic to hydrophilicby ~ similar to the observation described herein. However, the
pairing different wall solid material and working liquid. Fre- same theory does not seem to provide any explanation for
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the frequency dependence on amplitude observed herein. Tlseus mode need be considered as part of the bulk motion
smaller frequency change at hydrophilic conditions probablywhen analyzing damping. This viscous effect requires at least
can be attributed to dissipation in the wetting film as ex-weakly nonlinear analysis, which could naturally introduce
plained by Miles in his viscous boundary-layer analysis foramplitude dependence, although different from the observed
the zero-contact angle cageo hysteresisthat does not ap- scaling herein. This additional effect can be the cause of the
ply in our experiments. discrepancy in frequency between theory and experiments in
Martel and Knoblocf point out that an additional vis- Henderson and Mile¥ To verify if these effectsviscous
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10— : — —T] treated-water and 2.530 Hz with a Photo-Flo mixture. Again,
] the Photo-Flo addition provides a wetting film on the surface
of the container that reduces the natural frequency closer to
the linear wave frequendyvithout contact-line effecjsThis
] is qualitatively similar to Cocciaret all’ and to Henderson
N~ - ] et al?? with regard to contact line observations. Addition of
Photo-Flo produces the same effect as stated above for rect-
angular tanks—no clear amplitude dependence is observed in
the frequency change or damping rate.
Any additional viscous mode as described by Martel and
Knobloct?® cannot be responsible for the differences be-
] tween Faraday waves in treated-water versus those with a
‘ ‘ ; Photo-Flo mixture. In fact, higher viscosity with the Photo-
Pinned sontact line | Moving contact line ] Flo mixture corresponds to behavior more closely predicted
"—L—A by previous analysis based on linear wave theory. Rather,
‘ ‘ ] removal of the contact angle hysteresis, partial wetting, or
other possible contact-line effects significantly reduces the

Freq difference(Hz)
S
[3
1

ol — . R “anomalous” frequency and damping behavides a func-
10° 10! tion of amplitude. We have no evidence these experiments
Wave amplitude (mm) apply to a broad range of wetting angles, although qualitative

agreement with observations by Keulefssuggest common
FIG. 8. Frequency shift for the axisymmetric mode in a circular tank with features of the contact-line dynamics on the partially wetted
treated water. surface(contact angle significantly smaller than 90° but non-
Zero.

As the above experiments with PhotoFlo and with circu-
and contact ang)econtribute to the “anomaly” observed lar cylinders show, the presence of corners in our narrow
here, we conducted experiments using water mixed witiL0:1 rectangular tank is not likely to be the main cause for
Photo-Flo(lubricating film and wetting agenwith increased the amplitude dependence in frequency and damping. We
viscosity and reduced contact angéee Jiangt al?’ for the  note that earlier studies by Keuled&rused several tanks
viscosity daty The measurements suggest that the frequencwith the same width-to-length ratio of 0.217 compared to 0.1
of the surface elevation approaches a value close to the lineere. The damping increases toward smaller amplitude
natural frequencywithout contact-line effecisas amplitude waves were observed in all cases, although the corner effect
approaches zero. However, in contrast to the treated watshould be less dominant for larger tanks with smaller
case, there is no clear amplitude dependence in either thgerimeter-to-area ratio. Although corner conditions may play
frequency shift or the damping. a key role in pattern selection for Faraday reson&fidhe

Additional experiments were conducted with Faradaywave studied here is the fundamental mode with the tank
waves (axisymmetric mode in a small circular cylinder length equal to wavelengttor in the case of Keulegan, half
(Pyrex glass, 12.8 mmand a larger cylindrical cylindrical the wavelength Therefore we expect limited corner effects
tank (Plexiglas 15.9 cm diameterAn example for the 15.9 on overall wave frequency and damping. However, the de-
mm tank with treated water is shown in Fig. 8. The fre-tailed contact-line dynamics or viscous contribution near cor-
quency of the decaying elevation shows amplitude depenners can only be determined by additional experiments or
dence ata>2 mm, while the frequency appears fixed for theoretical analysis. Hereafter, we assume the corner effect is
smaller amplitudesg< 2 mm). Note that for the rectangular negligible and focus on the contact-line condition at the pe-
tank, waves show amplitude-dependent frequencies as smaiphery of the rectangular tank, with its main contributions at
as 0.5 mm. This difference might be due to the smalleoundaries in theX-Y plane(Fig. 3.
contact-line displacement in the cylinder for the same wave
amplitgde as colmpared tp waves in the rectangular tank. Fay, RESULTS AND DISCUSSIONS
the axisymmetric mode in the circular tank, the maximum
displacement is only 1/3 to 1/2 of the maximum wave am-  The fundamental question regarding formulation of the
plitude measured at the tank center. At small amplitudecontact-line condition is to identify appropriate boundary
(<2 mm), the contact line is effectively pinned at the tank conditions at the three-phase interface that are also physi-
wall. We did not conduct detailed verification of the wave cally reasonable, such as the introduction of slip to remove
profile near the wall for the cylindrical tank, and the recordthe singularity. There also exists a key difference between
used to generate Fig. 8 may be too short to provide valuableacroscopic contact angle and the microscopic one. For
information (i.e., amplitude dependence scalingeeded in  many cases, using the dynamic macroscopic contact angle
the small-amplituddécontact-line dominatedange. (e.g., Dussah or even the static contact angle.g.,

The natural frequency without contact-line and viscousHocking'®) is sufficient to describe the outer fluid motion
effect is 2.537 Hz for the axisymmetric mode in the aboveeither numericallyby solving the Navier—Stokes equations
example. The measured final frequency is 2.570 Hz withor analytically (asymptotic analysjs Very near the contact
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TABLE I. Various contact-line models and implications on frequency and damping scaling with wave ampli-

tude.
Miles? Cocciaroet al? Present work

Wave amplitudea a<ol a> ol a<ol a> ol

Contact-line freq ~ constant ~constant  ~a 2 N/A ~a 2k
correction

Contact-line ~ constant ~a ~at ~al ~a 1?3
damping rate

Contact line model M=NeTys 7=Ac(a) 7y, (1) 7=N(a) 7, No~a
(dimensionless \.=constant Ne~a (2) 7=Ng(7,)%, \q~constant

Approach Boundary-layer  Ad hocextension of (1) Ad hocextension of Miles,

+ eigenvalue linear model(Miles) (2) New contact line condition

®References 12 and 13.
PReference 17.

line, either a Stokes flow analysis or a lubrication approxi-than the wavelength. Applying the contact-line conditi@h
mation can be used to describe the local angle—velocity reresulted in a first-order frequency model
lation that necessarily includes any slip model. Slip length

can therefore be regarded as a key parameter linking the wz—wﬁ I

microscopic and macroscopic levels in contact-line dynam- w2 - 1—in. ®)
. n Cc

ics.

Although the same approach should apply equally wellyhereT is a constant form factor determined by the wave
to oscillating flows and free surface-wave analysis, an accumode, and the “slip coefficienti ., is dimensionless. For the
rate and simple formulation of a contact angle—contact linqundamental mode with a wavelength of 60 cm in our ex-
model has been elusive, as all experimental and nUmeriC¢eriments(lo:1 tank aspect ratjothe form factor is (ZH
analyses indicate much more complex behavior including; 2/p)| =0.108 witha=60 cm, b=6 cm. For\. approach-
hysteresis, nonlinearity, and unsteady deleender_wce of angigg zero and infinity, the above equation predicts frequencies
versus velocity as observed by Cocciatoal“and in more  for fixed and perfectly wetted contact lines, respectively.
detail by Ting and Perlif® The hysteresis is explained par- when the difference between the actual frequency and the
tIaIIy by inertia and viscous effects and their interaction with natural frequenc)(without contact-line effeatwn is small,

flow in meniscus regionge.g., corner vortex Qualitatively  the above formulas can be reduced to
similar hysteresi§Fig. 2(a)] was reproduced in numerical

simulation by Dreyelprivate communicationwith FIDAP, Ilw,\¢

a finite-element method solver for the Navier—Stokes equa- Yc= .. . 2. (6)

. : : . » . 2(1+1\))

tions. Therein a linear contact-line condition relating contact

angle to contact-line displacement was used in addition tQq

the Navier slip condition on the solid surface. However, it 5

remains unresolved whether other aspects of the oscillating _w I'wy Ye 7
n

contact-line dynamics can be explained by inertial and vis- _2(1+)\§) - 20,
cous effects alone, i.e., the unsteady stick-slip motion and
nonlinear dependence on amplitude. where vy, represents the imaginary frequency components,
An additional difficulty with applying general contact- i.e., damping rate from the contact-line conditi@). The
line conditions to free surface-wave analysis is the compatboundary-layer assumption is applicable to frequency esti-
ibility of these conditions with the eigenvalue problem for- mates as long as the contact-line effect is confined within a
mulation. For example, variational formulations are requiredcapillary lengthl, as verified with the alternative approach
to solve the weak form of the linear water wave problemusing a variational formulation by Miles. The meniscus ef-
with fixed contact line(Benjamin and Scdft), because di- fect is also expected to be small, as estimated in Mies.
rect eigenfunction expansion is not feasible with such bound- Linearity of (1) is essential to ensure separable partial-
ary conditions. Other aspects of capillary effects for nonlin-differential equations in Miles’ boundary-layer and eigen-
ear waves are reviewed in more detail by Perlin andvalue approach. Cocciaet all’ assumed that the amplitude
Schultz?® For this work we will proceed based on previous dependence of wave frequency and damping can be repre-
linear analysis by Hocking and Miles, and focus on the time-sented by simply replacing the constantwith relation\ .
averaged contact-line behavior rather than the exact modeta. Applying this scaling in6) and(7) gives the power law
that would explain time-dependent contact-angle variation irdependence observed in the experiments of Coceibad. A

Ting and Perlint® similar argument suggests that our observed power-law de-
Miles'?!® showed that a boundary-layer approximationpendence on amplitude warrants an assumed scaling, of
can be applied when the capillary length(o/pg)¥?  ~a'” In other words, amad hocapproach to fitting this

1/3

(=2.7 mm for a pure, air—water interfgces much smaller linear model suggests that the scaling-a~ would repro-
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duce the observed 2/3 and— 1/3 scaling in frequency shift then proportional td=*a wherea is again the wave ampli-

and damping, respectively. Comparison of these conditions iside. Using(8) for a small angle we obtaifiy~ 62~V?3. If

summarized in Table I. we further assume thaf,~wa, the damping rate can be
The approach used by Cocciagbal. and in our exten- estimated by

sion (model 1 is only ad hocin that the nonlinear “slip

coefficient” N .(a) violates the assumptions in the linear ei- ="

genvalue approach of Mild$?® as does our conjecture Energy a

(model 2 with nonlinear dependence of contact angle onje., the amplitude dependence measured in our Faraday
contact-line velocity. A more general form of the proposedwave damping rate. The contact line is a dominant dissipa-
second model is tion source If these assumptions are correct. However, it is
_ PRNE unclear how the same hypothesis will result in the frequency
|Vr|_)\d|(0e 0c)| ' (8) . . .
scaling we observed when capillary and contact-line effects
where 6, is the static contact angle. We propose this secondre included.
model as a more appropriate condition for frequency and Finally, we note that one of the most important results of
damping analysis for the following three reasoftterein,6,  Ting and Perlif® is that the slip coefficient has quadratic
merely represents the contact angle corresponding to zeependence on stroke amplitude in the plate-driven contact-
velocity, while real static contact angle varies between thdine oscillation (Fig. 25 thereif Since the slip coefficient
advancing and receding angles because of hysteresis. therein is based on Hocking’s model and defined as velocity
First, as explored in Hockint;'' a “slip coefficient”is  divided by contact-angle variation, the time-averaged slip
proposed to incorporate fundamental slip behavior at theoefficient should be proportional to slip length, a micro-
contact line, a physical behavior occurring at very localscopic parameter that should be independent of wave ampli-
scale, not at the “macroscopic” contact angle level consid-tude. Interestingly, wheii8) is used, we note that the slip
ered here. Therefore we expect a better contact-line modebefficient) . in Fig. 25 of Ting and Perlin is equivalent to
will adhere to the same principle of constant “slip coeffi- A4 (6,— 6.)2. For a stroke amplitude less than 5 mm, the
cient” that represents microscopic dynamics in ourcontact-angle variationé,— 6.) is approximately linearly
macroscopic/continuum model, even though it is notproportional to amplitude in their measuremé&htherefore
straightforward to relate our second conjecture to Milesthe quadratic dependence of the slip coefficienbn ampli-
analysis and demonstrate the?/3 amplitude dependence in tude is in fact consistent with E¢8) with a fixed\ 4. Equa-
the frequency shift. tion (8) also matches qualitatively the contact-angle-velocity
Second, the formulation of the second conjecture is simicurve for one oscillation cycle, as shown in Figag but
lar to many studies of contact-line behavior in unidirectionaldoes not represent the important hysteresis effects. The ac-
wetting/dewetting flows as reviewed in the introduction, andtual model for the contact line is likely to be much more
is qualitatively consistent with the experimental data of Tingcomplex, although8) might be a good representation of the
and Perlin'> Contact-line models and experiments for low- time-averaged behavigwithout the hysteresjsContact-line
Reynolds number flows often lead to a cubic relatidn characteristics(hysteresis, stick-slip, and slipfor high-
~ A 6(6%— 62), whereU is the contact-line velocity and is  Reynolds number oscillating flows were recently analyzed
only a function of fluid properties, surface tension, andby Perlin, Schultz, and Lilto be publishepwith compari-
viscosity>?"?8 For small contact anglé,, this is analogous sons of common features between different static contact
to conjecture(?) in Table | (U~ A #%). The mechanism be- angles.
hind Tanner’s law and (8) is probably the same, i.e., the
contact-angle varlatl(_)n is caused by hyd_rodynamlcs VerY, ~ONCLUSIONS
close to the contact line, and can be described by a balance
between capillary and viscous forces locally. For example, We have shown that the frequency and damping of free
when applying the boundary-layer analysis proposed byurface waves wave can be determined accurately using a
Miles,'? a stronger coupling with capillary forces might need Faraday-wave tank experimental setup. In particular, using
to be included in the first-order viscous boundary-layer cal-complex demodulation techniques permits finer resolution in
culation. However, the mathematical analysis will be ad-frequency and damping extraction from a decaying wave sig-
dressed in a subsequent paper. nal. We find that the frequency of waves generated in a nar-
When capillary effect is absent, Mei and Efidentified  row glass tank with treated water increases with smaller
the meniscus corner as a key energy transfer region betweevave amplitude rapidly during the initial decay, consistent
bulk flow and wall boundary layers in their study of gravity- with weakly nonlinear theory. With further decay in wave
wave damping. The importance of contact-line region is anaamplitude, however, the frequency continues to increase
lyzed in even earlier stud) on damping—Miles used an above the linear frequency, following-a2/3 power depen-
energy dissipation estimate to calculate damping rate thatence on wave amplitude. The extrapolated frequency for
emphasized an energy balance at the meniscus corner. Wdinitesimal waves is consistent with prior observation of
can apply a similar argument and assume that Young’s forceontact-line induced frequency increaskanget al?°), but
at the contact lineFy , is proportional too(cosf.—cosé,).  the dependence on amplitude is new. Similarly, the damping
This capillary force is balanced entirely by the viscous forcerate also follows a power law dependence on wave amplitude
locally, and therefore the dissipation over one wave cycle isn the same regime, with a 1/3 exponent. The maximum

Fva a’*a
5 ~a 1/37 (9)
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