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Effect of contact statistics on electrical contact resistance

Yong Hoon Jang®
School of Mechanical Engineering, Yonsei University, Shinchon-Dong 134, Seodaemun-Gu, Seoul, Korea

J. R. Barber”
Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125

(Received 4 April 2003; accepted 10 September 2003

The flow of electrical current through a microscopic actual contact spot between two conductors is
influenced by the flow through adjacent contact spots. A smoothed version of this interaction effect
is developed and used to predict the contact resistance when the statistical size and spatial
distribution of contact spots is known. To illustrate the use of the method, an idealized fractal rough
surface is defined using the random midpoint displacement algorithm, and the size distribution of
contact spots is assumed to be given by the intersection of this surface with a constant height plane.
With these assumptions, it is shown that including finer scale detail in the fractal surface, equivalent
to reducing the sampling length in the measurement of the surface, causes the predicted resistance
to approach the perfect contact limit. @003 American Institute of Physics.
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I. INTRODUCTION hypothetical corrosive fretting failure mechanism in electri-
cal contacts, incorporating asperity deformation, surface to-
pography, and other factors. Contact resistance has been
computed numerically by Nakamdréor a system of two

- : s i 1 ¥ cubic electrodes contacting through a set of square contact
p/_2a, Where;_) is the ele_ctrlcal resistivity. This _equatlon is spots, while Boyérhas extended the Greenwood formula to
widely used in the design and study of electrical contactsiq|de the presence of interfacial films by considering the
However, if the contacting bodies have rough surfaces, Coygctangular juxtaposition of square spots of equal size and
tact will rarely be restricted to a single area. Instead, ther%quare ring-shaped spots.

will be contact at.a.multitude of migroscopi_c “actual” con- Equation(1) provides a good approximation to the elec-
tacts clustered within @ macroscopic “nominal” or “appar- trical contact resistance for a deterministic distribution of
ent” contact area. Greenwobthas analyzed such clusters, coniact spots of known size and location, but information

treating a number of distributions of size gnd spacings, andyq ¢ the distribution of asperities is most likely to be statis-
has confirmed an earlier suggestion by Holimat the com- e in nature, since surface roughness is essentially a ran-
bined effect of the local constriction and the clustering is toy, process. Furthermore, surface roughness descriptions
generate a resistance are typically multiscale in nature, and on a sufficiently fine

1 1 ) scale the number of discrete contact spots is likely to be too

When two large conductors make perfect electrical con
tact over a small circular area of radias there will be a
constriction resistanceao electrical flow between them of

R=p er %0 (1) large to permit an efficient deterministic calculation. In the
present paper, we shall develop a statistical version of Green-

whereN is the number of circular contact spots amds the ~ Wood’s equation, in which the summation is replaced by an

radius of the cluster. integral over the nominal contact area with a kernel that de-
Many authors have attempted to genera”ze Greenwood’ﬁends on the statistical properties of the distribution. We

results to define the electrical and thermal conductance in thghall then test the predictions of the theory by comparison

presence of clusters of microcontacts. Bogeral® devel- ~ With a discrete deterministic realization developed using the

oped a model based on the assumptions that the number &ndom midpoint displacement algorithm. In particular, we

contact spots is small and that the total area of actual contaghall investigate the effect on the predicted contact resistance

is close to the nominal contact area. Maldaimulated deg-  Of the sampling length on the model surface, using recent

radation of the electrical conductance of aging contacts byesults due to Jarigfor relations between two- and three-

introducing an interfacial film whose thickness is a statisticaldimensional properties of random surfaces.

function of asperity deformation. In a later stutipe ex-

tended this approach by including the effects of contact

force, microhardness, and geometry as constraints in calcyr sTATISTICAL IMPLEMENTATION

lating the density of contact spots. Bry@nhvestigated a OF GREENWOOD'S EQUATION

2 _ . . Greenwood’s result is based on the approximation of the
Author to whom correspondence should be addressed; electronic mail: s . .
iyh@yonsei.ac.kr potential field due to current flow through a microscopic con-

YElectronic mail: jbarber@engin.umich.edu tact spot by that due to a point current source in all locations
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contact spot atx,y) is unaffected by the actual occurrence of
%o o °- a contact spot at a nearby point. The consequences of this
% o o o assumption will be discussed in Sec. VII.
° o The base potential at the poixty due to the distribution
2 h(x,y,a) can now be written
o )
° o B(x.y)
- o ’
Ooo ° OO
S =2nANE, n,a)[ p(£,7)— B, n)]adadédn
@) fo) = .
. © o TN(x= )2+ (y—n)
(7)
FIG. 1. Configuration of contact. where the domain of integration is the nominal contact area

and the range of contact spot radii.
If the integral with respect ta can be performed, defin-
other than the immediate vicinity of the contact spot. Thusjng the function
the potentiakp; at thejth contact spot in a set &f randomly

disposed contact spots as shown in Fig. 1 is F(g,n)sznAh(g,n,a)ada (8)
0
_ pl; p I
¢j_4aj + 2’7Ti#j Sij ' (2) then
wherel; is the current through thigh contact spota; is its _ 2h(E D) d(&n)— d(& m)]dédy
radius,s;; is the distance between the centers of itteand B(x Y)Zf f N 2 C)
jth contact spots, and the summation is performed over all X+ (y =7

the N contact spotexcept i=j.
Ill. THE BOUNDARY VALUE PROBLEM

A. The base potential If two half spaces make electrical contact at a number of
areas on their common plane surface, the potential problems

We will define thebase potentialp; through the relation in the two bodies will be geometrically similar and the actual

(2): contact areas will form an equipotential surface. In particu-
— pli p I lar, the potential difference between this surface and the ex-
bi=d;— 48, 2n s (3 tremity of bodyi (i=1,2) will be

With this notation, we have b= +P| , (10

4aJ o P17 P2
-=—(¢, é;) 4

wherep; denotes the resistivity of the material of boidgnd
U is the potential difference between the extremities of the
two bodies. In more general problemg,may not be con-
— 2 a(pi— &) stant. For example, if one of the bodies conducts a current in
j:;#j T ©) a direction tangential to the common interfagewill be a
linear function ofé, 7.
Thus, ¢(¢,7) is a known function, as (¢, n,a), and
hence we can determine the function

and, using this result to substitute fiorin Eq. (3), we obtain

B. Integral form of the equation

Suppose that in some nominal ar@athere exists a
single circular contact spot and that the probability of its 2h(&,m) (€, 7)dédy
radius being between and a+ da and of its center being f f =62+ (y— )2
located in the rectangle defined by the linex+ 8X, v, y

+ 8y is h(x,y,a) 6xdyda, whereh(x,y,a) is a probability |t follows that the base potentiat is the solution of
distribution function that satisfies the equation
f j 2h(&,7) p(&,n)dédn
A

ffA mN(x— &)+ (y—n)?

A similar definition can be used for the case where there ar&hich is a singular integral equation of the second kind, for
n contact spots per unit nominal area, in which case thavhich various solution methods are available.

probability of a contact spot of radius a+ da having its Once ¢(x,y) has been determined from this equation,
center within the infinitesimal rectangle will be the current through each individual contact spot is defined in
nAh(x,y,a)dadxdy This definition implicitly assumes that the discrete formulation of E@4) so that the current through
the distribution is uncorrelated—i.e., that the probability of aall contact spots can be summed as

11

Fh(x,y,a)da dxdy=1. (6) +oxy)=fxy), (12
0
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13

The integral form of this equation can be written as

'=%J fAj:nAh@,n,a)[qb(s,n)

— $(&,m)]adadédy (14)

4 T —_—
We can also define the local mean current density as

4 _
i(x,y)=;h(x,y)[¢(x,y)—¢(x,y)]- (16)
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those due to Greenwood and Williamsbfor flat surfaces or
Greenwood and Tripp for nonconforming surfaces. In the
present paper, we shall illustrate the method by making the
assumption that the distribution of contact spots is defined by
the set of “islands” generated by cutting through the rough
surface at constant height. This assumption was used by Ma-
jumdar and Bhushahin their fractal theory of contact and is
related to the concept of “bearing area,” which is arguably
appropriate when the contact deformations are predomi-
nantly plastic.

For this purpose, we generated a randomly rough surface
using therandom midpoint displacement algorith(RMD)
(Voss™). Suppose the values of the process are defined at the
nodal points of a square grid. The grid is now subdivided by
introducing new nodal points at the midpoints. The value of
the process at each midpoint is determined as the sum of the

Notice thati(x,y) is averaged over the local discontinuities average of the two adjacent end points and a zero mean
associated with the actual contact areas, but it will vary ovefandom process with a Gaussian distribution. This procedure
the nominal contact area. Statistically, it can also be regarde@f subdivision is applied recursively, and the standard devia-

as the expected value of current density at the poiy}.

IV. INTERPRETATION OF THE FUNCTION h_(§, n)

tion of the random process at each scale is chosen so as to
ensure that the algorithm generates a self-affine fractal sur-
face.

Starting with a square of dimensidnx L, m applica-

Suppose that the spatial distribution of contact spots anglons of the algorithm will generate a square grid of"(2

the size distribution are uncorrelated, so théf, »,a) can
be written in the normalized separated variable form

h(€,7.a)=hy(é, m)hs(a), 17
where
f fh1<§,n>d§dn=1, fmh2<a>da=1. (18)
A 0
We then have
R, m)=nAhy(£,7) f:m(a)ada:nAhl(g,n)E (19

from Eq.(12), wherea is the mean value od. If the distri-
bution functionh,(&, ) is uniform in A, we have

1
hy(&,m)= % (20
from Eqg. (18) and hence
h(¢n)=na (21)

More generally, the functioﬁ(f, 7) is equal to the prod-

uct of the number of contact spots per unit area and the meaj)stribution of islandsh

radius, both of which may be functions of position.

V. MICROCONTACT SPOT DISTRIBUTION

+1)x(2M+1), corresponding to a fractal surface measured
with a sampling length oE/2™.

Figure Za) shows a typical rough surface generated by
this algorithm in the unit square and Fig(b? shows the
corresponding bearing area raB¢z). The bearing area ratio
is defined as the proportion of the surface above the height
The z axis in these figures is normalized with respect to the
standard deviationr (i.e., the rms roughnegsf the resulting
surface.

Figure Zc) shows the contact spots defined by cutting
through the surface at the level where the bearing area ratio
is 5%/i.e., B(z)=0.05], with a grid sizesampling length
of 1/2’. Atotal of 27 contact spots are identified, but they are
clearly not circular, as required by the analysis of Sec. II. A
distribution function for “equivalent” contact radii might be
obtained by defining a set of circles whose areas are equal to
those of the islands in Fig.(®. However, we note that in
most cases the complete topographical description implied in
Fig. 2(a) is not available. Instead, we typically have profilo-
meter output, which is equivalent to a sampling of the sur-
face along one or more lines. This permits the bearing area
ratio [Fig. 2(b)] to be determined, but information about the
»(a) must be deduced from the cor-
responding distribution of line segmerftd) above a given
height in the profile. Jarfighas shown that a distribution
h,(a) of circular contact spots will lead to a distributidé(l)

Equations(10), (12), and(15) permit us to determine the ©f line segments above the specified height, where
electrical contact resistance

Re=— (22) 2a d [~
! hy(a)=— 22 J

for any rough surface contact problem, provided we can de- ™ daJa I7-a
termine the corresponding statistical distribution functions

h,(¢&,7) andh,(a). Various methods exist for this purpose.

For example, we might use an asperity model theory such asnd the mean radius of the circles is

dl, (23



7218 J. Appl. Phys., Vol. 94, No. 11, 1 December 2003

4
2\
N
R 0
&
2
00 02 04 06 08 10
B(z)
(b)
1.0 -
[
qﬁ‘
x 0.5 a s~
“?\i%@; o
3 §~8,°““
0000 05 1.0
y
(c)

FIG. 2. Rough surface generated by the RMD algorithi@. Three-
dimensional view{b) the corresponding bearing area rdi(z); (c) the set
of islands generated by cutting through the surfacB(a)=0.05.

_ = f(1)
a=/ Zj I—dl . (24
0
The number of contact spotsper unit area is
B 2n, 25
n=—, (295
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FIG. 3. Variation of (a) the functionh=na from Eqg. (21 and (b) the
electrical contact resistané®, with bearing area rati8(z). The dashed line
in (b) was obtained from Eq27).

wheren, is the number of line segments per unit length.

To utilize the above equations, we first sample the model
surface along a set of lines to measure the number of line
segments per unit length, above a given height and the
length distribution of these line segmeii{$). Equation(24)
then allows us to evaluate the mean radausf the contact
spots in the corresponding three-dimensional section, and
Eq. (25 determines the number of contact spots per unit
area,n. Finally, Eq.(23) determines the probability density
of the distribution for the contact radius.

This method gives good results for the distribution of
contact spot sizes as long as the bearing area ratio is less than
10%. For larger values of bearing area ratio, more complex
contact spot geometries are obtaiffeshme involving mul-
tiply connected areas—i.e., one or more regions of separa-
tion completely surrounded by contact. However, these con-
ditions occur only under extremely high loads and are not of
much practical interest.

VI. RESULTS

As an example problem, we consider the contact be-
tween two half spaces over a square nominal contact area of
size 1X1 mn? at various values of the bearing area ratio
B(z). The resistivity of both half spaces was taken to be
p1:p2:25>< 1079 Q m.

Figure 3 shows the variation @& the functionh=na
from Eq. (21) and (b) the electrical resistancB, with the
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FIG. 4. Percentage difference between the predictions of the Greenwood
equation(27) and the solution of Sec. Ill as a function bfa. @
200
bearing area rati®(z). As we would expect, the contact - 150‘?\
resistance decreases with increasing bearing area ratio. For c \
comparison, Nakamufahowed that the electrical resistance 2100 \b
for conduction through a single square contact spot of kide Q‘é’ RN
is ol
50 el
0.86& B ¢
e = (26 ,
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Thus, if there were perfect electrical contact over the entire m
nominal contact area, the resistance would be 2427 (b)

FIG. 5. Variation of(a) the functionh=na from Eqg. (21) and (b) the
. . , . electrical contact resistan€, with sampling length 1/2 for a bearing area
A. Comparison with Greenwood’s equation ratio of 5%. The dashed line ifb) was obtained from Eq27).

Equation(1) applies specifically to the case of a circular
nominal contact area of radiug containing a distribution of

N contact areas, each of radiasHowever, it is readily gen-

. . . . B. Effect of sampling length
eralized to the present case tiyreplacing the cluster resis- ping feng

tance termp/2a by RsN of Eq. (26) and (ii) replacing the Experimental measurements with the stylus profilometer

productNa by L?na, giving show that, when using a large sampling interval, the surface
exhibits only a few asperities with a large radius of curva-

Rezg(L_+0.868). (27) ture, whereas with a smaller sampling interval, larger num-

L{2Lna bers of asperities of smaller radius are revealed. Classical

This simple expression is shown by the dashed line in FigdSPerity-based models of contact appear to give reasonable
3(b) and it clearly gives a very good approximation to the predictions of eIe_ctngaI and thermal resistance, but. it is not
present numerical predictions. In fact, EQ7) is always clear yvhat samplmg interval should be used in defining t_he
slightly lower than the corresponding numerical calculation,€Sulting asperities. Ideally, we would hope that the predic-
the percentage difference being shown in Fig. 4 as a functiof{onS obtained using progressively refined surface descrip-
of na. The reason for this difference is that the numericallions would tend to a limit at small sampling length, thus
treatment allows for the effect of the microscopic resistanc@roviding some justification for truncating the description at
in modifying the mean current density in the “cluster-scale” @ finite length scale. _

problem, whereas E@27) assumes that the cluster resistance 1S effect can be simulated in the present example by
is always that which would be obtained in the perfect contactcreasing the grid refinement of the RMD model. Figure
problem. This is most significant when the microscopic re-5(@) shows the functiot=nafrom Eq.(21) as a function of
sistance is large, in which case the mean current density wilirid refinementn for a bearing area ratio of 5%. This corre-
be approximately uniform in the nominal contact area, rathepponds to the sampling of the rough surface at an interval of
than having the square-root singular behavior implied by Na1/2™ mm. The results show a considerable increadeith
kamura’s solutiohand Eq.(26). However, in this limit, the increasingm and this translates to a comparable reduction of
resistance is dominated by the microscopic resistance ternspntact resistandg., as shown in Fig. &). The dashed line
and hence Eq(27) still gives a good approximation to the in Fig. 5b) corresponds to the Greenwood equati@).
numerical results. The maximum percentage differenc&hese numerical calculations were extended to larger values
therefore occurs at intermediate valued ofa, being 3.86% of na and confirm that the resistance tends to the perfect
atLna=1.35. contact limit of Eq.(26) asna—oo.
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VIl. DISCUSSION

The multiscale model predicts a lower electrical contact
resistance when a finer scale is used, since the finer scale
reveals larger numbers of additional microscopic contact
spots. In particular, the mean radiaglecreases, but there is
a larger increase in the number of contact spots per unit area

n, leading to a net increase m Similar behavior has been
reported in other recent studies of the contact of quasifractal
surfaceg1®
The “bearing area” hypothesis used in the example in
Sec. V predicts a distribution that contains some relativelf'G' 6. Contact spot clusters due to large scale waviness of the surface. This
) P L . tends to make the probability of a contact spot higher in the vicinity of other
large contact spots along with increasingly large numbers odpots and lower in remote regions.
smaller spots as the sampling length is reduced. Similar char-
acteristics are implied in the fractal contact model of Majum-
dar and Bhushatf This theory is most appropriate when the imply an electrical resistance equal to that based on the
microscopic problem is dominated by plastic deformation,simple assumption of perfect electrical contact in the nomi-
since in this case each local asperity contact is analogous twal contact area.
a hardness_lndentatlon. Blyz contrast, _the elastic C(l)gltact theg:_ Correlated distributions
ries of Borri-Brunettoet al.”” and of Ciaverelleet al.™ pre- _ o
dict that the size ol contact spots decreases with decreas- ~ All of these results are predicted on the assumption in
ing sampling length, so that in the theoretical fractal limit we Sec. Il that the distribution of contact spots is statistically
have an infinite number of contact spots of zero size. uncorrelated—i.e., that the probability of a contact spot at

Elastic fractal contact theories also show that the productx,y) is unaffected by the actual occurrence of a contact spot
h=na would be unbounded in the limin—o. while the @&t @ nearby point. Most theories of electrical and thermal

total area of actual contact contact resistance are based on this same assumption, since
they draw on data about the height distributions of surface
points, asperity summits, etc., but not on data about the rela-
tive spatial location of these features. However, it is in the
nature of a multiscale surface that the distributions are cor-
related, since the larger scale waviness will tend to cluster
the next scale of asperity contacts into groups, as shown in
Fig. 6. Further evidence of the importance of correlation is
provided by a recent result due to Barb®mvhich places
load-dependent bounds on the electrical contact resistance in
an elastic contact problem, with the lower bound being gen-
erally tighter than the perfect contact limit.

3 ¢
Y o

ot O P O™
NeX¥a X! i
D o(b" & \aR"/l
o =

N
A=, ma? (28)
=1

tends paradoxically to zef8:° If we define a new function
(&,m) such that

W& m)=nal p(&,7)— d(£,7)],

and use this expression and E#9) to substitute forp( £, 7)
andh(¢, ) respectively in Eq(9), we obtain

(29

=p(X,y).
(30

If na increases without limit, the second term in E80)
tends to zero, giving

J f 2Ahy(&,m) (&, m)dédn
AV (x= )%+ (y— )
This equation has a bounded solution §@¥,7) except along

+—
A m(x= )%+ (y— ) na

=d(Xy). (31

Some allowance for the effect of clustering on the coars-
est scale could be made by subdividing the nhominal contact
area and sampling the surface separately in each subarea
generated. The results could then be used to défirgy,a)
as a piecewise constant functionxgy. The limitation of this
technique is that the accuracy of the sampling technique of
Sec. V depends upon the contact areas being substantially
smaller than the subareas sampled.

A more promising approach to the inclusion of correla-
tion effects might be to generalize the analysis of Sec. Il to
allow the functionh(x,y,a) to be correlated and to devise a

the boundary of the nominal contact area and hence in thﬁ/ay to estimate the correlation functions for the distribution
fractal limit ¢=¢ from Eq. (29). In other words, the base from measurements of the correlation of the line segment
potential becomes equal to the potential at the contact integistributionf(l) of Eq. (23). These questions are the subject
face and Eqs(16) and(12) give of ongoing research.

i(¢,7)dédn

p
ZJ JA —§)? —

V=9 (y=m) We have presented a model for the electrical contact of
which is the equation defining perfect electrical contactrough surfaces, extending Greenwood’s equation for conduc-
throughout the nominal contact aréa Thus, any contact tion through a cluster of circular contacts to a system in
theory that predicts a distribution functidm=na that in-  which the probability of a contact spot at a given location is
creases without limit with decreasing sampling length will defined in statistical terms. The model was illustrated using a

VIIl. CONCLUSIONS

_=p(x.y), (32
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