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Solution of a second order difference equation
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A recently proposed technique to solve a class of second order functional difference
equations arising in electromagnetic diffraction theory is further investigated by
applying it to a case of intermediate complexity. The proposed approach is concep-
tually simple and relies on first obtaining well-defined branched solutions to a pair
of associated first order difference equations. The construction of these branched
expressions leads to an equation system whose solution requires relationships akin
to Riemann’s bilinear relations for differentials of the first and third kinds; their
derivation necessitates the application of Cauchy’s theorem on Riemann surfaces
of, in this particular instance, genera one and three. Branch-free solutions of the
second order difference equation are then obtained by taking appropriate linear
combinations of the branched solutions of the first order equations. Analysis and
computation demonstrate that the resulting expressions have the desired analytical
properties and recover known solutions in the appropriate limit. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1445287#

I. INTRODUCTION

The Sommerfeld–Maliuzhinets technique1,2 remains today the most general approach to so
electromagnetic scattering problems involving wedge-shaped structures with faces charac
by impedance boundary conditions3 under plane wave illumination. Within its framework solu
tions are sought by expressing components of the total electric and magnetic fields in te
unknown plane wave angular spectra, defined here in the complexa plane, which, besides bein
meromorphic, must satisfy a number of analyticity requirements. In particular, since poles
spectral functions give rise to plane wave contributions, the spectra are required to be ana
save for a pole necessary to reproduce the illuminating incident field—in a strip of the com
plane corresponding to the angular opening of the wedge. Additionally, besides the bou
conditions characterizing the surfaces of the wedge, obtaining a unique solution of the
equation also requires knowledge of the behavior of the fields at the tip of the wedge and en
ment of the resulting edge condition4 specifies the asymptotic behavior2,3 of the spectral functions
for large imaginary values ofa. The imposition of the boundary conditions on the spectral rep
sentation of the fields together with a theorem put forward by Maliuzhinets5 leads to a pair of first
order difference equations for the spectra and their periods are related to the open angle
wedge. The problem is thus reduced to obtaining spectra that satisfy both the difference eq
as well as the analyticity requirements outlined above.

In the special case of normal incidence, where the illuminating plane wave is inciden
pendicularly to the edge of the structure, the technique leads to uncoupled first order diffe
equations whose coefficients are rational trigonometric functions and solutions subject
required constraints are readily obtained in terms of Maliuzhinets functions.1 At skew ~non-
normal! incidence, the equation pair is generally coupled and solutions are obtainable for
particular wedge/angle combinations for which uncoupled first order equations for linear c
15980022-2488/2002/43(3)/1598/24/$19.00 © 2002 American Institute of Physics
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nations of the spectra can be found. Recent examples of this include the polarization indep
wedge studied by Bernard6 and the right-angled anisotropic impedance wedge with one perfe
conducting face examined by Manara and Nepa.7 In general the equation pair cannot be uncoup
and we are faced with solving a second order functional difference equation whose coefficie
rational functions of trigonometric polynomials. Its solutions are linear combinations of the
sired spectral functions, a consequence of the decoupling procedure, and must therefore
analyticity requirements analogous to those of the spectral functions. A pair of associate
order difference equations can be obtained from the second order one, but these, as we s
below, typically involve branched functions and Maliuzhinets’s technique does not apply.

There have been few attempts published in the literature to solve second order diffe
equations due to the complicated nature of the problem. A successful example is provid
Gaudin8 who considers the second order difference equation that arises in the study of the
tum mechanical problem of two electrons interacting with a localized magnetic moment
particular equation studied is of a high order of complexity and the ensuing analysis is pr
tively complicated. In electromagnetic theory, the second order functional difference equat
form

t~a13p!22H 122
cos2 h2cos2 u

cos2 a2cos2 uJ t~a1p!1t~a2p!50 ~1!

was recently solved by Senior and Legault.9 It is a generalization of the one considered
Demetrescuet al.10 in their study of the penetrable composite right-angled wedge consistin
abutted resistive and perfectly conducting semi-infinite half-planes. In this particular instanc
parametersh andu are both related to the resistivity of the wedge. As noted above, the fun
t(a) represents a combination of the unknown spectral functions and it therefore satisfies re
ments related to those imposed on the spectral functions. Accordingly, the solutionst(a) obtained
in Ref. 9 are (i ) meromorphic, (i i ) free of poles and zeros in the strip of analyticityS2p

5$a:uReau<p% ~the inclusion of zeros here is a consequence of reciprocal symmetry bet
solution pairs in certain limits!, and, in accordance with the edge condition, (i i i ) O(1) as
uIm au→`. Two linearly independent solutions satisfying the above analyticity requirements
constructed by successively eliminating the undesired singularities in the stripS2p . The concep-
tual simplicity of the technique hinges on recognizing that expressions recovered during the
of the analysis are of the same nature as those occurring in Riemann’s bilinear relatio
differentials of the first and third kinds.11,12 In contrast, the solution based on a Fourier transfo
approach proposed in Ref. 10 fails to satisfy requirement (i ) above since it is free of branch poin
only in the strip of analyticityS2p as opposed to the entirea plane.

Equation ~1! may be qualified as being of moderate complexity due to the relatively
number of singularities~poles and branch points! which must be eliminated to successfully com
plete the analysis. In comparison, geometries of contemporary interest such as the right-
wedge characterized by isotropic impedance boundary conditions on both faces or the anis
impedance half-plane~see Ref. 13 for an approximate solution! lead to substantially more com
plicated equations. To gain insight into the applicability of the technique in such cases an
provide some details on the procedure, as opposed to focusing on a particular physical pr
we examine here a case of intermediate complexity by considering an equation of the sam
as ~1! but with the period doubled to 4p, viz.

t~a15p!22H 122
cos2 h2cos2 u

cos2 a2cos2 uJ t~a1p!1t~a23p!50, ~2!

and, consistent with the requirement for~1!, a solution is sought which is (i ) meromorphic, (i i )
free of poles and zeros in the strip of analyticityS4p5$a:uReau<2p%, and (i i i ) O(1) asuIm au
→`. The increase in complexity arises from the doubling of the strip of analyticity as
effectively doubles the number of singularities, both poles and branch points, that must b
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sidered in the course of the analysis. Consequently, whereas the solution for~1! required analysis
on a Riemann surface corresponding to a torus~handlebody of genus one!, in the case of~2! it will
be seen that we are required to work on Riemann surfaces whose corresponding handlebo
of genera one and three.

In what follows, Sec. II gives the solution procedure for the branched first order equa
associated with~2! and provides the derivation of a system of four equations in four unknown
be satisfied in order for their solutions to be well-defined. The unknowns consist of two mu
cative constants associated with elliptic integrals of the first kind with periods 2p and 4p, and the
location of the logarithmic singularities associated with two elliptic integrals of the third kind
of periods 2p and 4p. Section III shows how to solve for the quantities associated with thep
periodic elliptic integrals. The analysis, which is carried out on a torus, is of the same natu
that required in Ref. 9 but it is examined here in greater detail. Section IV gives the solutio
the quantities associated with the elliptic integrals of period 4p and it is now required to carry ou
the analysis on a Riemann surface which is the topological equivalent of a handlebody of
three. The branched solutions to the first order equations are used in Sec. V to construct b
free solutions to the second order equation. A fully analytic solution that satisfies all o
prescribed requirements is provided. The only shortcoming of the solution is that it vanishe
certain limit and, in an effort to address this shortcoming, an alternative approach that rel
numerically locating zeros is also examined.

II. FIRST ORDER EQUATIONS AND SOLUTIONS

Since there is no available technique to directly attack the type of second order diffe
equation with which we are concerned, it must first be recast as an associated pair of more
handled first order difference equations. Unfortunately the latter generally involve branch p
the price paid for this reduction in order is that the established solution technique for first
equations by Maliuzhinets1 fails to apply. However, solutions to the first order difference equati
can, in principle at least, be obtained by applying a logarithmic derivative and this is the app
taken here. This yields a solution expressed in terms of an initially ill-defined path integra
multiplicative terms of period 4p, corresponding to the period of the difference equation, mus
added to rectify this. This ultimately leads to the derivation of a system of four equations in
unknowns which can be partially decoupled into two systems in two unknowns, one involvinp
periodic quantities and the other 4p periodic ones.

A. Reduction to first order equations

The second order functional difference equation~2! can be rewritten in terms of first orde
difference equations quite straightforwardly by exploiting the periodicity of the functional co
cient. To see this consider the second order difference equation

t~a15p!1p~a!t~a1p!1
1

p~a!
$t~a1p!1p~a!t~a23p!%50 ~3!

whose solutionst(a), provided p(a) is 4p periodic, must also explicitly satisfy first orde
difference equations. Enforcing equality between~3! and ~2! then yields the equation pair

t~a12p!

t~a22p!
5g~a,1u~a!!5

u~a!2u~u!

u~a!1u~u!
, ~4!

t~a12p!

t~a22p!
5g~a,2u~a!!5

u~a!1u~u!

u~a!2u~u!
, ~5!

where

u~a!5Acos2 a2cos2 h. ~6!
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Alternatively, one could also proceed by factoring the associated second order difference o
in ~2! into a pair of first order difference operators and recover the same result as above. Th
order equations obtained are generally branched owing to the presence of the rootu(a) which has
branch points ata56h,6(h2p),6(h1p),6(2h12p) in the strip of analyticityS4p and is
made well defined in the complexa plane by introducing the cuts shown in Fig. 1. These are s
that u(a) has the same symmetry as cosa so that

u~a!5u~2a!52u~a6p!. ~7!

Note that the functiont(a) is used here to generally denote solutions of the second order equ
and each of the first order equations above identifies one such solution. Ift(a)5w(a,u(a)) is a
solution of~4!, thent(a)5w(a,2u(a)) is a solution of~5!, and this follows from the symmetry
of the right-hand sides of~4! and~5! with respect to the sign~the branch! of u(a). It is therefore
sufficient to considerw(a,u)—writing w(a,u) instead ofw(a,u(a)) for convenience—and
sinceg(2a,u)5g(a,u), we can constructw(a,u) such that

w~2a,u!5
1

w~a,u!
5w~a,2u!. ~8!

In terms of the solutions of the first order difference equations, solutions to~2! are

t~a!5C1~a!w~a,u!1C2~a!w~a,2u!, ~9!

where C1,2(a) are 4p periodic functions. This generally conflicts with the requirement fo
branch-free solution but there are particular cases of~9! that overcome this difficulty and the
simplest two such linearly independent expressions free of branch points are

t~a!5w~a,u!1w~a,2u!, and t~a!5
1

u~a!
$w~a,u!2w~a,2u!%. ~10!

While the branch-free property of these two symmetric forms can be ascertained rigorou
means of Taylor expansions in the neighborhood of branch points ofu(a), it can also be appre
ciated from the fact that both are invariant under a change of the branch ofu(a). This crucial
feature makes the constructs~10! the fundamental building blocks from which branch-free so
tions to the second order difference equation can be assembled once branched solution
associated first order equations have been obtained. As we shall soon see, the presence o
points makes this task quite challenging and the brunt of the subsequent analysis focu
deriving solutions to the first order equations.

FIG. 1. The strip of analyticityS4p5$a:uReau<2p%. The thick lines indicate the branch cuts ofu(a), the positive and
negative signs indicate relative changes in sign ofu(a) across the different cuts. The clockwise cyclesa, b, c andd used
to define the cyclic periods are as indicated. Note that the cyclesa andc cross from the upper Riemann sheet~solid line!
to the lower Riemann sheet~dashed line! whereasb andd are confined to the upper sheet.
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B. Special cases of interest

It is worthwhile to first consider the special casesh50 andh5p/2 as the branch points the
vanish and known solutions, which are useful when characterizing the behavior of the g
solution obtained below, can be obtained in terms of Maliuzhinets functions. The first one
h5p/2 proves to be especially interesting since the branch cuts ofu(a), as illustrated in Fig. 1
and chosen so that~7! holds, vanish ash→p/2. In this instance~4! becomes

w~a12p,u!

w~a22p,u!
5

cosa2cosu

cosa1cosu
,

and, despite the fact that the right-hand side is now meromorphic, the dependence ofw(a,u) on
u(a) is maintained to distinguish it fromw(a,2u), the solution to Eq.~5! in the same limit. A
solution free of poles and zeros inS4p and O(1) as uIm au→` follows directly from
Maliuzhinets.1 It may be written as

w~a,u!5C1~a!

5
cp~a1p/22u!

cp~a2p/21u!

5expE
0

a 2 ~a8/2p!cosu sina81g11g2 cos~a8/2! 1g3 cosa81g4 cos~3a8/2!

cos2 a82cos2 u
da8,

~11!

where

g152 1
4 sinu cosu,

g25
1

4 S 2cos
u

2
1sin

u

2D1
1

2
cos

u

2 S cos
u

2
1sin

u

2D ,

~12!

g35S u

2p
2

1

4D sinu,

g45
1

4 S 2cos
u

2
1sin

u

2D ,

and cp(a) is the Maliuzhinets function.1 Since C1(2a)51/C1(a), consistent with~8!, two
linearly independent solutions of~2! are

t1~a!5C1~a!, t2~a!5C1~2a!,

and these are bothO(1) as uIm au→`. The other case of interest where the branch points
vanish ish50 and in that instance two linearly independent solutions, alsoO(1) asuIm au→`,
are provided by

t1~a!5C2~a!5cos
a

4

cp
2 ~p/22u!

cp~a1p/22u!cp~a2p/21u!
, t2~a!5

1

t1~a!
, ~13!

and we must now contend with poles or zeros ata562p.
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C. General case

We now proceed to solve~4! in the general case wherehÞ0, p/2 and Maliuzhinets’s tech-
nique does not apply. The solutions sought should preferably reduce to one or both of the
limiting functions whenh goes to the appropriate limit and, consistent with the limiting cas
they must also beO(1) asuIm a u→` for all h. As we shall see, while the solutionC1(a) @and
1/C1(a)# are easily recovered ash→p/2, the recovery ofC2(a) @and 1/C2(a)# ash→0 proves
to be much more difficult. Taking the logarithmic derivative of~4!, we obtain

d

da
ln w~a12p,u!2

d

da
ln w~a22p,u!5

d

da
ln g~a,u!52

u~u!

u~a!

2 sina cosa

cos2 a2cos2 u
, ~14!

and if v0(a,u)5d/da ln w(a,u), then

v0~a12p,u!2v0~a22p,u!52
u~u!

u~a!

2 sinacosa

cos2 a2cos2 u

and a solution to~4! can tentatively be written as

w~a,u!5expE
a0

a

v0~a8,u!da8, ~15!

with

v0~a,u!52
a

2p

u~u!

u~a!

sinacosa

cos2 a2cos2 u
.

The form proposed in~15! is, however, ill-defined owing to the presence of the polar and
cyclic periods~we borrow here the terminology used in Ref. 11 when characterizing differen
of the third kind! due to, respectively, the poles and the branch points ofv0(a,u). In order to
obtain a single-valued integral expression, we must consider instead

w~a,u!5expE
a0

a

$v0~a8,u!1vS~a8,u!%da8, ~16!

where the added termvS(a,u) represents a sum of 4p periodic terms, of even parity like
v0(a,u), specifically selected to remove the offending periods. Not all classes of 4p periodic
functions are acceptable: it turns out thatvS(a,u) must fulfill certain order requirements in orde
for exp*vS(a)da to be a 4p periodic function and a simple analysis shows that, for the cas
hand, it is sufficient to consider expressions such thatvS(a,u)→0 asuIm au→`. It will be shown
below that vS(a,u) will consist of five terms:v1(a,u) to eliminate the polar periods an
v2p

1 (a,u), v2p
3 (a,u), v4p

1 (a,u), v4p
3 (a,u) to eliminate the cyclic periods.

It is worthwhile to discuss the nature of the lower limita0 at this juncture as its selection ma
appear at first glance to be somewhat arbitrary. This is not the case as consideration
symmetric forms in~10! together with the requirement for continuity reveals that the lower li
a0 must be a branch point inS4p so thata0P$6h,6(h2p),6(h1p),6(2p2h)%. Further-
more, oncevS(a,u) has been properly defined, the solution is independent of the choice o
particular branch point and this will become more obvious when we consider the eliminati
the cyclic periods. We first examine the elimination of the polar periods.

1. Elimination of polar periods

The presence of poles will generally make a path integral such as the one in~16! multivalued.
A pole of residue Res will give rise to a polar period equal to 2p iRes and, depending on th
orientation of the integration path and its winding number around the pole, the contribution
integral will be 2p iZRes. In the case of~15!, polar periods arise at the poles ofv0(a,u) at a
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56u, 6(u2p), 6(u1p), 6(2p2u). Elimination of these poles serves two purposes as it
only eliminates their associated polar periods but goes toward fulfilling the requirement
solution that is pole-free inS4p . We eliminate them by introducing the 4p periodic

v1~a,u!5
u~u!

u~a!

cos~a!

cos~u!

g11g2 cos~a/2! 1g3 cosa1g4 cos~3a/2!

cos2 a2cos2 u
,

which is even, vanishes asuIm au→`, and has poles coinciding with those ofv0(a,u). The
constantsgn are chosen to eliminate the residues and straightforward algebra yields the c
cients in~12!. It then follows from~11! that

v0~a,u!1v1~a,u!5
u~u!

u~a!

cosa

cosu

d

da
ln C1~a!,

which correctly reduces tod/da ln C1(a) when h5p/2. We therefore recognize that, in th
simpler case where the right-hand side of~14! is meromorphic so that~15! is free of cyclic
periods, the known solutions expressed in terms of Maliuzhinets can be recovered by foll
the above procedure of pole elimination. We also note in passing that poles with integer resZ
do not compromise path independence. Indeed, their capture leads to an additive 2p iZ contribu-
tion in the exponent of~16! which has no effect on the final value ofw(a,u).

2. Elimination of cyclic periods

In a fashion similar to polar periods, a cyclic period arises from the nonzero contrib
incurred when integrating along a loop encircling a branch cut inS4p , thereby making the path
integral multivalued. For example, such a period is obtained when integratingv01v1 along the
cycle b, shown in Fig. 1, which encircles the branch cut joining the branch pointsh and 2h
1p. As in the case of the polar periods, it is strictly speaking not required for the cyclic pe
to vanish identically to avoid jeopardizing single-valuedness since periods equal to 2p iZ do not
change the value of~16!. However, ash→p/2 the branch points of 1/u(a) in v0,1 coalesce into
poles at6p/2 and63p/2 and their associated cyclic periods then become polar periods.
sequently, the cyclic periods associated with the cyclesb and d in Fig. 1 must be annulled, a
opposed to setting them equal to some nonzero integer multiple of 2p i , to eliminate poles that
would otherwise arise ash→p/2. We observe that this requirement is equivalent to annulling
integral ofv01vS along the cuts betweenh andp2h as well asp1h and 2p2h. There is also
a similar requirement, which is not obvious when solely considering integration on either o
Riemann sheets, on the cyclic periods associated with the cyclesa and c which loop from one
Riemann sheet to the other. Its necessity is revealed by examining either of the symmetric
in ~10! together with the requirement for continuity. In short, the above implies, taking advan
of the even parity, the need to annul the cyclic periods ofv0(a,u)1vS(a,u) on the clockwise
cyclesa, b, c and d shown in Fig. 1. Alternatively, this can be thought of as requiring that
branch point to branch point integrals vanish inS4p and, under this condition, the lower limita0

can be arbitrarily chosen among any of the branch points located within the strip. This also e
that the resulting expressions will remain free of poles despite coalescing branch points
limits h→0 andh→p/2.

Four degrees of freedom are required to annul the cyclic periods ofv01v1 on the cyclesa,
b, c and d. We introduce the following four even 4p periodic terms which, likev0(a,u) and
v1(a,u), vanish asuIm au→`:

v2p
1 ~a,u!5

1

u~a!
, v2p

3 ~a,u!5
u~z2p!

u~a!

cosa

cosz2p

sinz2p

cosa2cosz2p
, ~17!

and
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v4p
1 ~a,u!5

cos~a/2!

u~a!
, v4p

3 ~a,u!5
u~z4p!

u~a!

cosa

cosz4p

1
2 sin~z4p/2!

cos~a/2! 2cos~z4p/2!
. ~18!

These all give rise to elliptic integrals with the first pair being 2p periodic and the second 4p
periodic. The subscript identifies the periodicity of the term while the superscript identifie
type of elliptic integral to which it gives rise. Hencev2p

1 (a,u) is 2p periodic and gives rise to an
elliptic integral of the first kind whilev2p

3 (a,u), also 2p periodic, gives rise to an elliptic integra
of the third kind with logarithmic singularities withinS4p at 6z2p ,6(z2p12p). Likewise,
v4p

3 (a,u) is 4p periodic and gives rise to an elliptic integral of the third kind with logarithm
singularities at6z4p . The use of expressions associated with integrals of the third kind~with
poles having nonvanishing residues! results from the impossibility of introducing the require
number of degrees of freedom without violating the order requirement. It must be emphasize
the poles of bothv2p

3 (a,u) andv4p
3 (a,u) have residues61 and their polar periods therefore d

not disrupt the single-valuedness of the path integral. Their elimination from the strip of an
icity is the objective of the last step in the construction of the solution and this is carried o
Sec. V. For future reference we define the cyclic periods

A2p,4p
1,3 5E

a
v2p,4p

1,3 ~a,u!da, B2p,4p
1,3 5E

b
v2p,4p

1,3 ~a,u!da,

~19!

C2p,4p
1,3 5E

c
v2p,4p

1,3 ~a,u!da, D2p,4p
1,3 5E

d
v2p,4p

1,3 ~a,u!da,

and use similar definitions forv0,1(a,u) @i.e., A05*av0(a,u)da#. Inspection of~17! and ~18!
reveals that the periods associated with the integrals of the third kind are functions of the polz2p

and z4p , providing two of the four degrees of freedoms required to annul the period
v0(a,u)1vS(a,u). In contrast, the periods associated with the integrals of the first kind
constant and two multiplicative constants,k2p andk4p , must be introduced to produce the tw
additional degrees of freedom. The solution to~4! then takes the form

w~a,u!5expE
a0

a

$v0~a8,u!1v1~a8,u!1k2pv2p
1 ~a8,u!1s2pv2p

3 ~a8,u!

1k4pv4p
1 ~a8,u!1s4pv4p

3 ~a8,u!%da8, ~20!

where the four unknowns to be determined arek2p , z2p and k4p , z4p . The quantitiess2p

561 ands4p561 have been introduced to avoid loss of generality in the definition of the te
associated with the integrals of the third kind. They account for the eventuality where the s
the logarithmic residues ofv2p

3 (a,u) or v4p
3 (a,u) must be changed, thereby swapping poles a

zeros ofw(a,u) between the two Riemann sheets. Their proper definition will be determine
the course of the analysis and, to reduce clutter, they will be omitted in what follows pending
reintroduction when appropriate.

An equation system consisting of four equations in the four unknowns is obtained by en
ing vanishing cyclic periods on the cyclesa, b, c andd. Doing so for the cycled, for example,
leads to

E
h1p2

2h12p2

~v01v11k2pv2p
1 1v2p

3 1k4pv4p
1 1v4p

3 !da50 ~21!

with the superscript negative sign in the limits indicating the corresponding side of the bran
~see Fig. 1! along which to integrate. Upon use of~19! this becomes

D01D11k2pD2p
1 1D2p

3 1k4pD4p
1 1D4p

3 50,
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which is further simplified by exploiting the symmetriesD2p
1 52B2p

1 , D2p
3 52B2p

3 and D4p
1

5B4p
1 . Introducing the notationD0115D01D1 , we finally obtain

D0112k2pB2p
1 2B2p

3 1k4pB4p
1 1D4p

3 50,

a relationship equivalent to~21!. Repeating the same process for thea, b andc cycles yields

A0111k2pA2p
1 1A2p

3 1k4pA4p
1 1A4p

3 50, ~22a!

B0111k2pB2p
1 1B2p

3 1k4pB4p
1 1B4p

3 50, ~22b!

C0112k2pA2p
1 2A2p

3 1C4p
3 50, ~22c!

D0112k2pB2p
1 2B2p

3 1k4pB4p
1 1D4p

3 50, ~22d!

with the explicit unknownsk2p andk4p and the unknownsz2p andz4p implied by the presence
of cyclic periods associated with the integrals of the third kind. Note thatC4p

1 vanishes since
v4p

1 (a,u), which is odd symmetric with respect top @see~18!#, does not contribute when inte
grated on cyclec ~see Fig. 1!. This seemingly intractable system can be fully solved analytica
The quantities associated with the 4p periodic elliptic integrals can be decoupled by adding E
~22a! to ~22c! and ~22b! to ~22d! to obtain

k4pA4p
1 1A4p

3 1C4p
3 52~A0111C011!, ~23a!

2k4pB4p
1 1B4p

3 1D4p
3 52~B0111D011!, ~23b!

and the elimination ofk4p produces

A4p
1 ~B4p

3 1D4p
3 !22B4p

1 ~A4p
3 1C4p

3 !52A4p
1 ~B0111D011!12B4p

1 ~A0111C011! ~24!

in which the only ~implicit! unknown z4p determines the periodsA4p
3 , B4p

3 , C4p
3 and D4p

3 .
Despite appearances, the above equation can be inverted to obtainz4p and the technique for doing
so is described in Sec. IV. Oncez4p has been obtained, the value ofk4p immediately follows
either from Eq.~23a! or ~23b!. One can then proceed to solve forz2p by subtracting Eq.~22c!
from ~22a! and ~22d! from ~22b! to obtain, respectively,

2k2pA2p
1 12A2p

3 52k4pA4p
1 2A4p

3 1C4p
3 2A0111C011 , ~25a!

2k2pB2p
1 12B2p

3 52B4p
3 1D4p

3 2B0111D011 , ~25b!

and the elimination ofk2p gives

A2p
1 B2p

3 2B2p
1 A2p

3 5 1
2 $A2p

1 ~2B4p
3 1D4p

3 2B0111D011!

2B2p
1 ~2k4pA4p

1 2A4p
3 1C4p

3 2A0111C011!%, ~26!

where the only unknown is nowz2p , the value of which determines the periodsA2p
3 andB2p

3 .
This equation is of the same form as the one obtained in Ref. 9 and the solution follows the
approach. To set the stage for the comparatively more complicated inversion required forz4p , we
first reexamine the analysis required forz2p in more detail.

III. DETERMINATION OF z2p AND k2p

The key to inverting forz2p in ~26! lies in the application of Cauchy’s theorem on th
Riemann surface delimited by the contourC1 shown in Fig. 2. Indeed, by judiciously choosing th
integrand it is possible to obtain an alternative expression for the left-hand side of~26! in which
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the unknownz2p appears more explicitly as the argument of an elliptic integral of the first k
paving the way for its inversion by means of the Jacobian elliptic sine function. This follows
recognizing that the relationship between cyclic periods on the left-hand side of~26! is of the same
form as the expressions found in Riemann’s bilinear relationships for differentials of the firs
third kinds;11,12 these equate expressions involving cyclic periods such as the one on the lef
side of ~26! to sums of residues. To achieve this, we seek to evaluate

E
C1

V2p
1 ~a,u!dV2p

3 ~a,u!52p i( Res, ~27!

where the elliptic integralV2p
1 (a,u) of the first kind andV2p

3 (a,u) of the third kind are defined
as

V2p
n ~a,u!5E

(h,0)

(a,u)

v2p
n ~a8,u!da8, nP$1,3%.

The path of integrationC1 , shown in Fig. 2, delimits a strip of width 2p centered at the origin o
both Riemann sheets and encloses the dissections and branch cuts contained therein.p
periodic functions the enclosed surface is topologically equivalent to a torus~a handlebody of
genus 1! as shown in Fig. 3. The canonical dissectionsa andb are introduced to make the surfac

FIG. 2. The contourC15CaøbøC6pøC6` on the upper~solid line! and lower~dashed line! sheets of the Riemann surface
The thicker inner lines are the dissectionsa andb introduced to make the Riemann surface simply connected. The
Caøb denotes the portion of the contour enclosing the dissecting cyclesa andb.

FIG. 3. The torus, handlebody of genus 1, is topologically equivalent to the Riemann surface in Fig. 2. It has bee
simply connected by introducing the dissectionsa andb.
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simply connected, a key requirement in order for Cauchy’s theorem to apply, and this is
easily appreciated on the dissected torus in Fig. 3. Examination of the integral in~27! shows that
only Caøb , the portion of the path enclosing the branch cuts and dissections, provides a con
tion. The rest of the integral vanishes either by symmetry, as for the parts along Rea56p on
C6p , or identically, as in the case whereuIm au56` on C6` . Evaluation of the integral along
Caøb produces11,12

E
Caøb

V2p
1 ~a,u!dV2p

3 ~a,u!5A2p
1 B2p

3 2B2p
1 A2p

3 ,

where, extending our notation, capitalized letters denote cyclic periods on cycles identified
correspond lower case letters so that, for example,A2p

1 5*av2p
1 da. The cycles defined by the

dissectionsa and b in Fig. 2 are the same as the cyclesa and b shown in Fig. 1 so thatA2p
n

5A2p
n andB2p

n 5B2p
n . We therefore obtain, in light of~26!, the remarkable result

E
C1

V2p
1 ~a,u!dV2p

3 ~a,u!5A2p
1 B2p

3 2B2p
1 A2p

3 5A2p
1 B2p

3 2B2p
1 A2p

3 , ~28!

which, by virtue of~27!, can be expressed as a sum of residues. On the Riemann surfac
residues of the integrand in~27! are given by

2
u~z2p!

u~a!

cosa

cosz2p

sinz2p

sina E
(h,0)

(a,u)

v2p
1 ~a8!da8U

a5(6z2p ,6u)

55 7E
(h,0)

(a,u)

v2p
1 ~a8!da8, a5~z2p ,6u!,

6E
(h,0)

(a,u)

v2p
1 ~a8!da8, a5~2z2p ,6u!,

and these, after carrying out the integration on the dissected Riemann surface, can be expr
terms of the elliptic integralV2p

1 (a) defined on the upper Riemann sheet. Being mindful of
dissections and exploiting the numerous symmetries involved, we obtain

( Res52A2p
1 62B2p

1 24V2p
1 ~z2p!, V2p

1 ~z2p!PH 2t8
A2p

1

4
6t

B2p
1

2
:0<t8,t<1J . ~29!

It would of course be impossible to obtain a unique expression for the above if the Rie
surface had not previously been made simply connected. Substitution of~28! and ~29! in ~27!
yields

V2p
1 ~z2p!52

A2p
1

4
6

B2p
1

2
2

s2p

8p i
~A2p

1 B2p
3 2B2p

1 A2p
3 !52

A2p
1

4
6

B2p
1

2
1s2piL2p , ~30!

where the only unknown isz2p and we have reintroduceds2p from Eq.~20!. The quantityL2p is,
from ~26!, defined as

L2p5
1

16p
$A2p

1 ~2B4p
3 1D4p

3 2B0111D011!2B2p
1 ~2k4pA4p

1 2A4p
3 1C4p

3 2A0111C011!%.

~31!

This is a known quantity provided equation system~23! has been solved, a procedure carried o
in the next section.
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A closed-form expression forz2p can be found by using the Jacobian elliptic sine function
to invert the elliptic integral of the first kind in~30!. Legendre’s standard form for the integral

F~x,k!5E
0

x dt

A~12t2!~12k2t2!
,

wherek is the modulus of the integral and the elliptic sine function is such that

sn@F~x,k!,k#5x

with x located in the fundamental period parallelogram of dimensions 4K and 2iK 8 centered at
the origin of the complex plane. The periodsK and K8 are the standard quantities define
respectively, by the complete elliptic integrals of the first kind with modulusk and complementary
modulusk8. The transformationx5cosa/cosh then shows that

V2p
1 ~a!5E

h

a da8

Acos2 a82cos2 h
5 i H FS cosa

cosh
,cosh D1 i

B2p
1

4 J ~32!

and we note the following useful relationships:

k5cosh, A2p
1 54K8, B2p

1 54iK . ~33!

Finally, taking into account the definition of(Res in terms of the range ofV2p
1 (z2p) given in ~29!

and inserting~32! in ~30!, we obtain after some algebraic manipulations

z2p5H arccos@ksn~ iK 813K1s2pL2p ,k!#, L2pPP 1
s2p,

arccos@ksn~ iK 82K1s2pL2p ,k!#, L2pPP 2
s2p,

~34!

which is an explicit expression forz2p . The correct expression to use in~34! as well as the correc
definition fors2p561 follow from locatingL2p in the appropriateP parallelogram in Fig. 4. For
instance, ifL2pPP 2

2 , thens2p521 andz2p5arccos@ksn(iK 82K2L2p ,k)#. The multiplica-
tive constantk2p follows immediately from~25a! or ~25b!. The period parallelograms in Fig.
were obtained by using~30! and~29! to specify the range ofL2p in terms of that ofV2p

1 (z2p). For

FIG. 4. The regionsP 1
6 and P 2

6 in terms of the complete integrals of the first kindK and K8 with k5cosh. The
parallelogramsP indicate the various ranges in whichL2p must lie when carrying out the inversion forz2p with Eq. ~34!.
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example, if we consider the case of12B2p
1 , then it follows that s2pL2pP@22K,0#

3@2 iK 8,0# and, sinces2p561, this corresponds to the requirement thatL2p lies in either of the
parallelogramsP 1

s2p shown in Fig. 4. One proceeds similarly for the case where we have22B2p
1

to obtain theP 2
s2p parallelograms in the figure. Taking into account the periodicity of the elli

sine function,~34! becomes

z2p5arccos@ksn~ iK 813K1s2pL2p ,k!#, L2pPP 1
s2pøP 2

s2p , ~35!

whereL2p is given in ~31! and the standard periodsK and iK 8 ~as well as the parameterk) are
given in ~33!.

IV. DETERMINATION OF z4p AND k4p

A similar procedure to the one given in the previous section is required to successfully
for z4p in ~24!. However, the cyclic periods appearing on the left-hand side of~24! are now related
to 4p periodic expressions and the application of Cauchy’s theorem must now be carried o
the Riemann surface delimited by the contourC2 of width 4p shown in Fig. 5. Proceeding as i
Sec. III we consider

E
C2

V4p
1 ~a,u!dV4p

3 ~a,u!52p i( Res, ~36!

with the elliptic integrals defined as in the previous section but using the 4p periodic terms
v4p

1,3(a,u). For 4p periodic functions, the enclosed surface is now the topological equivalent
handlebody of genus three~a sphere with three handles! as shown in Fig. 6 and it can be appr
ciated that making it simply connected involves a larger number of dissections than the to
the previous section. To make it so, three pairs of canonical dissectionsa,b; c,d ande,f are required
as well as the two auxiliary dissectionsg1 and g2 . They are shown in both Figs. 5 and 6; th
simple connectedness is once again better appreciated by examining the handlebody repres
of the Riemann surface. To keep the analysis relatively straightforward it is beneficial to dra
dissections such that only members of dissection pairs,a and b, for example, intersect. This

FIG. 5. The contourC25CaøbøCcødøCeøføCg1,2
øC62pøC6` on the upper~solid line! and lower~dashed line! Riemann

sheets. The thicker inner lines are the dissectionsa, b, c, d, e, f andg1,2 introduced to make the Riemann surface simp
connected. The pathCaøb denotes, for example, the portion of the contour enclosing the dissecting cyclesa andb.
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while simplifying the evaluation of the path integral around the dissections, entails the r
intricate set of dissections shown in Fig. 5. Carrying out the integration it is seen that
CaøbøCcødøCeøf , the portion of the path enclosing the dissection pairs, contributes. The re
the integral vanishes either by symmetry, as for the parts along Rea562p on C62p , or identi-
cally, as in the case whereuIm au56` on C6` . The contributions from the path enclosing th
three dissection pairs, following our previous work, are

E
Caøb

V4p
1 ~a,u!dV4p

3 ~a,u!5A4p
1 B4p

3 2B4p
1 A4p

3 , ~37!

E
Ccød

V4p
1 ~a,u!dV4p

3 ~a,u!5C4p
1 D4p

3 2D4p
1 C4p

3 , ~38!

E
Ceøf

V4p
1 ~a,u!dV4p

3 ~a,u!5E4p
1 F4p

3 2F4p
1 E4p

3 . ~39!

Comparing the canonical cycles defined by the dissections with those defined in Fig. 1, to
with symmetry, it is possible to rewrite the above canonical periods in terms of the cyclic pe
defined in~19!. The cyclic periods are defined on intervals between adjacent branch point
extending these definitions to the negative real axis, by means of the even parity of the e
sions, the contributions from the branch point to branch point integrals inS4p can then be
identified as shown in Fig. 7~a!. The canonical cyclesa, b, c, d, e and f from Fig. 5 are then
partitioned into branch point to branch point contributions, as shown in Figs. 7~b!–7~d!. By
comparing with Fig. 7~a!, they are easily expressed in terms of the cyclic periods and it can
be shown that

A5C, B52B,

C5A1B1C1D, D5B,

E5A1B12C, F5D.

This yields the following equalities for the right-hand sides of the above equations:

A4p
1 B4p

3 2B4p
1 A4p

3 5B4p
1 C4p

3 2C4p
1 B2p

3 ,

C4p
1 D4p

3 2C4p
1 D4p

3 5A4p
1 B4p

3 2B4p
1 A4p

3 1C4p
1 B4p

3 2B4p
1 C4p

3 1D4p
1 B4p

3 2B4p
1 D4p

3 ,

E4p
1 F4p

3 2E4p
1 F4p

3 5A4p
1 D4p

3 2D4p
1 A4p

3 1B4p
1 D4p

3 2D4p
1 B4p

3 12~C4p
1 D4p

3 2D4p
1 C4p

3 !.

FIG. 6. Handlebody of genus 3, the topological equivalent of the Riemann surface in Fig. 5. It has been made
connected by introducing the dissectionsa, b, c, d, e, f andg1,2.
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Summing up these contributions,

E
C2

V4p
1 ~a,u!dV4p

3 ~a,u!5S ECaøb

1E
Ccød

1E
Ceøf

DV4p
1 ~a,u!dV4p

3 ~a,u!

5A4p
1 B4p

3 2B4p
1 A4p

3 1A4p
1 D4p

3 2D4p
1 A4p

3 12~C4p
1 D4p

3 2D4p
1 C4p

3 !

5A4p
1 ~B4p

3 1D4p
3 !22B4p

1 ~A4p
3 1C4p

3 !, ~40!

where on the last line we have made use ofD4p
1 5B4p

1 andC4p
1 50. This is remarkable in that i

reproduces the left-hand side of~24! and can be expressed in terms of residues in accordance
~36!. The integrand in~36! has residues

FIG. 7. Figures used to express the canonical periods in Fig. 5 in terms of the basic cyclic periods in Fig. 1~e.g.,A in terms
of A, B, C, D!. The canonical cycles on the~solid lines! upper and~dashed lines! lower sheets in~b!, ~c! and ~d! are
written as chains of branch point to branch point segments—e into a sequence ofen , for example—which are easily
expressed in terms of the basic cyclic periods given in~a!.
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2
u~z4p!

u~a!

cosa

cosz4p

sin~z4p/2!

sin~a/2!
E

(h,0)

(a,u)

v4p
1 ~a8!da8U

a5(6z4p ,6u)

55 7E
(h,0)

(a,u)

v4p
1 ~a8!da8, a5~z4p ,6u!,

6E
(h,0)

(a,u)

v4p
1 ~a8!da8, a5~2z4p ,6u!,

which are expressed in terms ofV4p
1 (z4p) andV4p

1 (2p2z4p)—both taken on the top Rieman
sheet—after carrying out the path integrals on the dissected Riemann surface. Taking advan
the numerous symmetries and avoiding the crossing of any dissection leads to

( Res55 2A4p
1 64B4p

1 24V4p
1 ~z4p!, V4p

1 ~z4p!PH 2t8
A4p

1

4
6t

B4p
1

2
:0<t8,t<1J ,

2A4p
1 24V4p

1 ~2p2z4p!, V4p
1 ~2p2z4p!PH 2t8

A4p
1

4
6t

B4p
1

2
:0<t8,t<1J .

~41!

In the short analysis that follows, we restrict for now our attention to the first case given a
with the 14B4p

1 term for the sake of brevity. Using~40! and ~41! in ~36! then produces

V4p
1 ~z4p!52

A4p
1

4
1B4p

1 2
s4p

8p i
$A4p

1 ~B4p
3 1D4p

3 !22B4p
1 ~A4p

3 1C4p
3 !%

52
A4p

1

4
1B4p

1 1
s4p

cos~h/2!
L4p , ~42!

where the only unknown isz4p and the signs4p from Eq.~20! has been reintroduced. The cosh/2
term is used for future convenience and, in agreement with~24!, we have

L4p5
cos~h/2!

8p i
$A4p

1 ~B0111D011!22B4p
1 ~A0111C011!%. ~43!

In order to use the Jacobian elliptic sine function sn to invert the elliptic integral of the first
we recast V4p

1 (a) in terms of Legendre’s standard form. The transformationx
5(sina/2)/(sinh/2), together with the alternative expression to~6!,

u~a!52AS cos2
a

2
2cos2

h

2 D S cos2
a

2
2sin2

h

2 D ,

enables us to write

V4p
1 ~a!5E

h

a cos~a8/2!

u~a8!
da85

1

cos~h/2! H FS sin~a/2!

sin~h/2!
,tan

h

2 D2
cos~h/2!

4
A4p

1 J , ~44!

and we have the following relationships for the parameterk and the cyclic periods:

k5tan
h

2
, A4p

1 5
4K

cos~h/2!
, B4p

1 5
2iK 8

cos~h/2!
. ~45!

Inserting~44! in ~42!, solving for z4p then produces, after some algebraic manipulations,
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z4p52 arcsinFsin
h

2
sn~2iK 81s4pL4p ,k!G .

It follows from ~42! and ~41! that this holds ifs4pL4p lies in the period parallelogram@0,K#
3@2 iK 8,22iK 8#. As s4p561, the acceptable range forL4p is therefore6@0,K#36@2 iK 8,
22iK 8# with the plus sign corresponding tos4p51. These regions are identified in Fig. 8 by th
period parallelogramsQ 1

s4p. Repeating this process for the other cases in~41!, it can be shown
that

z4p55
2p22 arcsinFsin

h

2
sn~s4pL4p ,k!G , L4pPQ 0

s4p,

2 arcsinFsin
h

2
sn~2iK 81s4pL4p ,k!G , L4pPQ 1

s4p,

2 arcsinFsin
h

2
sn~22iK 81s4pL4p ,k!G , L4pPQ 2

s4p ,

~46!

which is an explicit expression forz4p . The proper expression and the sign ofs4p561 are
selected by using Fig. 8 in order to determine in which period parallelogramQ lies the quantity
L4p . The multiplicative constantk4p immediately follows from~23a! or ~23b!. Note that~46! can
be simplified by exploiting the periodicity of the sn function to obtain

z4p5H 2p22 arcsinFsin
h

2
sn~s4pL4p ,k!G , L4pPQ 0

s4p ,

2 arcsinFsin
h

2
sn~s4pL4p ,k!G , L4pPQ 1

s4pøQ 2
s4p ,

~47!

whereL4p is given in ~43! andk, iK 8 are given in~45!.

FIG. 8. The regionsQ 0
6 , Q 1

6 andQ 2
6 in terms of the complete integrals of the first kindK andK8 with k5tanh/2. The

parallelogramsQ indicate the various ranges in whichL4p must lie when carrying out the inversion forz4p with Eq. ~46!.
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V. BRANCH-FREE SOLUTIONS

The determination of the unknownsz2p,4p andk2p,4p completes the definition of the solutio
to the first order difference equationsw(a,u) as given in~20!. It still has branch points and is
therefore multivalued owing to the arbitrariness of the branch ofu(a) but its integrand is now
such that the path integral is single-valued on either of the Riemann sheets. Meromorphic
tions to the second order difference equation can now be obtained through the use of expr
~10!. We recall, however, that solutions free of poles and zeros in the stripS4p are required and
therefore seek to use specific linear combinations of~10! to finalize the construction of the
solutions. Knowledge of the poles and zeros ofw(a,u) is required to successfully complete th
endeavor and, since they arise solely due tov2p

3 (a,u) andv4p
3 (a,u), it is straightforward to show

that in S4p

w~a,6u!;H a1z2p

a2z2p

a1~z2p22p!

a2~z2p22p!

a1z4p

a2z4p
J 61

, ~48!

wheres2p5s4p51 is assumed for simplicity. With this information in hand, the poles of a
linear combinations involving~10! are easily determined. Zeros are by nature more elusive an
rely on knowledge of the limiting functions in order to determine their number as well as ge
location. The cancellation of the poles and zeros is also complicated by the order requirem
the solutions which must beO(1) asuIm au→`.

We first present an entirely analytic approach from which two independent solution
obtained. They satisfy the analyticity requirements, recover the known solutionsC1(a) and
1/C1(a) whenh→p/2, and their only shortcoming is that they vanish ash→0, though knowl-
edge of~13! circumvents this difficulty. In an effort to obtain expressions that also recover
known solutionC2(a) whenh→0, a number of approaches relying on numerically locating ze
were explored but, despite producing more desirable behaviors, they fail ash→0 due to inadmis-
sible poles that arise in the strip of analyticity in that limit. An example of such an approa
provided here which nearly succeeds in recovering both limiting functionsC1(a) andC2(a).

In the following, we use the primed functionstn8(a) to denote intermediate branch-free sol
tions of the second order difference equation~2! which still have undesired poles and zeros in t
strip S4p whereas the unprimed functionstn(a) denote the appropriate branch-free and pole/ze
free solutions.

A. Analytical solution

We proceed by constructing two meromorphic solutions of~2!, t18(a) and t28(a), sharing a
common pole atz4p but having distinct unknown zerosa1 anda2 , and then use a linear comb
nation to obtain an expression with a known pole/zero pair. Proceeding in a manner similar
technique presented in Ref. 9, we write

t18~a!5
T2p~a!

2 H S 11
f 1~a!

u~a! Dw~a,u!1S 12
f 1~a!

u~a! Dw~a,2u!J , ~49!

a linear combination of the branch-free forms~10!. The functionsf 1(a) and T2p(a) are 4p
periodic; f 1(a) is a trigonometric polynomial used to introduce zeros at appropriate locatio
the a plane while the external multiplicative functionT2p(a) is a rational trigonometric function
used to annul poles and zeros. We observe that the introduction of double zeros coincident w
poles of eitherw(a,u) or w(a,2u) produces, by~48!, a simple zero in the term in curly brace
above. Thus, if we require

12
f 1~a!

u~a!
;~a1z2p!2~a1~z2p22p!!2~a1z4p!, ~50!
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then the second term in braces in~49! has simple zeros coinciding with those ofw(a,u) at a
52z2p ,2p2z2p and is finite ata52z4p . This implies

S 11
f 1~a!

u~a! Dw~a,u!1S 12
f 1~a!

u~a! Dw~a,2u!;
a1z2p

a2z2p

a1~z2p22p!

a2~z2p22p!

a2a1

a2z4p
,

wherea1 is the unknown location of a zero in theS4p strip. While the exact location ofa1 is not
easily determined, its general location is known whenh is in the neighborhood ofp/2. Indeed, as
h→p/2 we havef 1(a)/u(a)→1 and

1

2 H S 11
f 1~a!

u~a! Dw~a,u!1S 12
f 1~a!

u~a! Dw~a,2u!J →
h→p/2

w~a,u!,

and we conclude, see~48!, that whenh is in the neighborhood ofp/2, a1 is in the neighborhood
of 2z4p . ChoosingT2p(a) to eliminate the poles and zeros associated withz2p gives

T2p~a!5
tan~z2p/2! 2tan~a/2!

tan~z2p/2! 1tan~a/2!

so that

t18~a!;
a2a1

a2z4p
.

The 4p periodic f 1(a) is obtained by letting

f 1~a!5n11n2 cosa1n3 sina1n4 cos
a

2
1n5 sin

a

2

and enforcement of~50! produces

n15
1

12cos~z2p2z4p! H u~z2p!2
1

u~z4p!
~sin2 h cosz2p cosz4p2cos2 h sinz2p sinz4p!J ,

n25cosz2pS 2n11
sin2 h

u~z2p! D ,

n35sinz2pS n11
cos2 h

u~z2p! D ,

with n45n550. We note that, in agreement with the analyticity requirements, the func
T2p(a) and the ratiof 1(a)/u(a) areO(1) asuIm a u→`. A related meromorphic solution to th
second order difference equation sharing the same pole but having a different zero is

t28~a!5
T2p~a!

2 H S 12
f 2~a!

u~a! Dw~a,u!1S 11
f 2~a!

u~a! Dw~a,2u!J , ~51!

where f 2(a) is now chosen, following the same kind of procedure as forf 1(a), such that

12
f 2~a!

u~a!
;~a2z2p!2~a2~z2p22p!!2,

11
f 2~a!

u~a!
;~a1z4p!,
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and hence

t28~a!;
a2a2

a2z4p
.

By the same reasoning as above, the zeroa2 is also in the neighborhood ofa52z4p whenh is
in the neighborhood ofp/2. The meromorphic solutionst18(a) andt28(a) then share the same po
and a linear combination can now be used to introduce a zero ata52z4p such that

t18~a!1jt28~a!;
a1z4p

a2z4p
~52!

and this requires

j52
t18~2z4p!

t28~2z4p!
52T2p

2 ~2z4p!
sinz4p cosz4p2u~z4p!~n2 sinz4p1n3 cosz4p!

sinz4p cosz4p1u~z4p!~n2 sinz4p1n3 cosz4p!
.

An acceptable solution of the second order difference equation~2!, free of poles and zeros inS4p

andO(1) asuIm au→`, is then

t1~a!5
tan~z4p/4! 2tan~a/4!

tan~z4p/4! 1tan~a/4!
$t18~a!1jt28~a!%, ~53!

and

t1~a! →
h→p/2

C1~a!, t1~a! →
h→0

0.

The first limit stems from the fact that, ash→p/2, 12 f 1(a)/u(a)→0, j→0 and, since in that
limit k2p,4p→0,

w~a,u! →
h→p/2 tan~z2p/2! 1tan~a/2!

tan~z2p/2! 2tan~a/2!

tan~z4p/4! 1tan~a/4!

tan~z4p/4! 2tan~a/4!
C1~a!,

where we are still assuming thats2p5s4p51. For the second limit, it is can be shown thatt18
→t28 and j→21 ash→0, andt1(a) therefore vanishes in that limit. Following the same p
scription as above, a second independent solutiont2(a) can be derived by seeking instead
common pole at2z4p and it can easily be shown that

t2~a!5t1~2a!, ~54!

but we now have, using the same arguments as above,

t2~a! →
h→p/2 1

C1~a!
, t2~a! →

h→0

0.

The pair of solutionst1(a) andt2(a) satisfy the prescribed analyticity requirements listed in S
I and recover the known solutionsC1(a) and 1/C1(a) ash→p/2. However, both vanish ash
→0 and they therefore fall short of the preferred behavior obtained in Ref. 9 where the sol
are seen to vary smoothly as a function ofh between the two known limiting functions whenh
5p/2 andh50. Although undesirable, this is not a serious shortcoming since a pair of line
independent solutions are known whenh50 and are given in~13!. This vanishing oft1,2(a) when
h→0 can be attributed to the use of linear combinations@see~52!# in order to create known zeros
a procedure which was not required in Ref. 9. Experience suggests that a purely multipli
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method for eliminating the poles and zeros would likely reproduce the desired behavior, but
far remains elusive. The continuation oft1(a) and t2(a) outside the stripuReau<2p is provided
by the first order difference equations~4! and~5!, and the results confirm the fact that the solutio
are free of branch points everywhere. Indeed, the expressions so obtained are linear comb
of the branch-free forms~10!. The technique has been implemented and sample curves forut1(a)u
are provided in Fig. 9 for various values ofh when u50.25(11 i ). We observe thatt1(a)
→C1(a) ash→p/2, andt1(a)→0 ash→0.

We close this section by summarizing the procedure for computing the solutionst1(a) and
t2(a). The fundamental building block isw(a,u), given in ~20!, the solution to the first orde
equation~4! and its computation requires the quantitiesk2p,4p , z2p,4p ands2p,4p . The prelimi-
nary step in obtaining those quantities is to first compute the cyclic periods~19! using numerical
integration. The quantitiesz2p ands2p then follow from~35! andk2p from ~25!. The quantities
z4p , s4p and k4p are likewise obtained from~47! and ~23!. The functionw(a,u) can then be
computed by carrying out numerically the path integral in~20!; the functionst18(a), t28(a) and
t1(a), t2(a) then respectively follow from~49!, ~51! and ~53!, ~54!.

B. Numerical solution

By foregoing an entirely analytical approach, it is possible to construct solutions that, u
t1,2(a), do not vanish ash→0 but we must however resort to the numerical identification
zeros, a somewhat unattractive prospect. The main motivation behind this approach is to p
with the pole/zero cancellation in a multiplicative fashion and avoid the use of linear combina
of the type ~52!. Interestingly, it is possible to reproduce in this manner the more desir
behavior obtained in Ref. 9 where Eq.~1! is solved. Therein, the solutions obtained are obser
to smoothly vary between two known limiting functions corresponding to, in the case at h
C1(a) ash→p/2 andC2(a) ash→0. This can be achieved here but at the price of having
numerically locate four zeros though, as discussed below, a pole that arises ath→0 proves to be
problematic. Turning once again to the by now familiar form, we write

t38~a!5
T4p~a!

2 H S 11
f 3~a!

u~a! Dw~a,u!1S 12
f 3~a!

u~a! Dw~a,2u!J , ~55!

and examination of the behavior of the solution in Ref. 9 now suggests using

FIG. 9. Magnitude of the branch-free solutiont1(a) given in~53! whenu50.25(11 i ) for various values ofh. The thicker
line corresponds to the known limiting functionC1(a), per ~11!, for h5p/2. The case forh51.57 is indistinguishable
from C1(a).
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f 3~a!5
cosz4p sin2 h cosa1sinz4p cos2 h sina

u~z4p!
,

so that

12
f 3~a!

u~a!
;~a1z4p!2~a1~z4p22p!!2.

The term in braces in~55! is then such that

$ %;
a1z4p

a2z4p

~a2a1!~a2a2!~a2a3!~a2a3!

~a1z2p!~a2z2p!~a1~z2p22p!!~a1~z2p12p!!

and the pole and zero associated withz4p are eliminated by choosing

T4p~a!5
tan~z4p/4! 2tan~a/4!

tan~z4p/4! 1tan~a/4!
.

In the limit ash→p/2 we have

t38~a!;
a1z2p

a2z2p

a1~z2p22p!

a2~z2p22p!
,

which implies that, whenh is in the neighborhood ofp/2, the poles ata52z2p anda52z2p

12p will each have a closely located pair of zerosan . Once the location of these zeros has be
obtained numerically by evaluatingt38(a) in ~55!, the desired solution may be written as

t3~a!5
cosa2cosz2p

12cosz2p S )
n51

4
sin~an/4!

sin
1

4
~an2a!D t38~a! ~56!

so thatt3(a) is free of poles and zeros inS4p . It is easily shown that

t3~a! →
h→p/2

C1~a!,

and sincef 3(a)/u(a)→61 ash→0, albeit in a branched fashion, it can also be shown~numeri-
cally! that

t3~a! →
h→0

C2~a!.

Figure 10 provides sample curves forut3(a)u for various values ofh whenu50.25(11 i ). The
behavior obtained is reminiscent of the one in Ref. 9 since the solution now varies smo
between the two limiting functionsC1,2(a) as a function ofh. Once again, a second solution
provided byt3(2a) and this recovers 1/C1(a) ash→p/2 andC2(a) ash→0. Despite this, the
approach is, however, flawed since one of the numerical zeros strays slightly outsideS4p when
h.0.001. This leads to failure of the solution in that limit since the corresponding zero canc
term in~56! gives rise to a pole within the strip of analyticity. It is unclear at this time if this is d
to numerical inaccuracies or a fundamental limitation of the approach. It does, however, s
that the construction procedure based on branch-free combinations of the functionw(a,u) has the
potential to recover solutions that vary smoothly between the two known limiting functions
vided a proper method can be devised for constructing the branch-free solutions.
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VI. CONCLUSION

A recently proposed solution technique for a class of second order functional diffe
equations was applied to a case of intermediate complexity in order to assess its potential
solving certain electromagnetic scattering problems. The essence of this conceptually sim
proach lies in the construction of branched solutions to first order difference equations and
achieved by systematically eliminating singular contributions to produce single-valued ex
sions. This requirement leads to an equation system whose analytical solution is made pos
obtaining, through the application of Cauchy’s theorem on Riemann surfaces, specialized ve
of relationships arising in the bilinear relations of Riemann. While the portion of the ana
carried out on a Riemann surface of genus one has the same order of complexity as the on
in Ref. 9, we were also now required to carry out a similar but more intricate analysis
Riemann surface of genus three in order to obtain well-defined branched solutions to the
first order equations. The final solutions, expressed in terms of branch-free linear combinat
the branched solutions to the first order equations, have all the desired analyticity properti
also recover the known solutionC1(a) as h→p/2. The fully analytical approach presente
satisfies all of the solution requirements and the fact that it vanishes ash→0 is not a critical
shortcoming since known exact solutions are available in that particular limit. The other var
provided, which requires the numerical identification of zeros in the complexa plane, represents
an attempt at resolving this shortcoming and, although it fails whenh;0, it otherwise recovers a
solution which varies smoothly between the two known limiting functionsC1(a) and C2(a).
This is encouraging since it suggests that the proposed approach has the potential to pro
solution that smoothly recovers the two known limiting functions provided a proper metho
constructing branch-free solutions can be found.

The results obtained demonstrate the promise of the proposed technique but there ar
large number of interesting issues to be addressed. Indeed, while the procedure for cons
branch-free solutions is fairly well understood, the construction of such meromorphic solu
free of poles and zeros in particular regions of the complexa plane, the stripS4p in this instance,
remains challenging. Consequently, a fully analytical solution displaying the more desirab
havior obtained for the numerical approach, where the solutions recoversC1(a) andC2(a) in the
appropriate limits, is still sought. The success of this endeavor is apparently dependent on g
more insight into the behavior of the zeros of the meromorphic functions constructed. Add
ally, a better understanding of the dependency of the quantitiesL2p,4p on the problem parameter
h andu is required. Ideally, this would take the form of specific requirements on, for instance

FIG. 10. Magnitude of the branch-free solutiont3(a) given in ~56! when u50.25(11 i ) for various values ofh. The
thicker lines corresponds to the known limiting functionC1(a), per ~11!, for h5p/2 andC2(a), per ~13!, for h50.
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impedances characterizing the structure and would provide a range over which the proced
determining the valuesz2p,4p can be carried out. Indeed, it is not inconceivable that under ce
circumstancesL2p,4p might lie outside theP and Q parallelograms, leading to a failure of th
technique. Another highly interesting item is the application of the approach when solutio
different orders~i.e., notO(1) as uIm au→`) are required since in such cases the integrand
w(a,u) is required not to vanish asuIm au→`. It is, however, apparent that, unless benefic
symmetries can be found in cases of higher complexity, a sufficiently large number of singul
in the strip of analyticity, while not precluding a solution in principle, may well make such
approach impractical. Despite this and some of the currently unresolved issues mentioned
the technique proposed in Ref. 9, as demonstrated herein, can be applied relatively stra
wardly to cases of intermediate complexity. Current efforts focus on its application to cas
higher complexity such as the diffraction from an anisotropic impedance half-plane illumina
skew incidence.
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