Multilayer film stability

N. Sridhar
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109

J. M. Rickman
Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015

D. J. Srolovitz®
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109

(Received 14 March 1997; accepted for publication 21 July 1997

We apply a linear stability analysis to examine the effect of misfit stress on the interface diffusion
controlled morphological stability of multilayer microstructures. The stresses could be the result of
misfit strains between the individual film layers and/or between film and substrate. We find that
misfit between the layers in the film can destabilize the multilayer structure in cases where the
thinner layer is elastically stiffer than the thicker layer. The rate at which these instabilities develop
increase with increasing misfit and decreasing interfacial energy. Even when there is no misfit
between layers, the misfit between the multilayer film and substrate can destabilize the interfaces.
This type of instability occurs whether the thinner layers are stiffer or more compliant than the
thicker ones. By appropriate choice of the elastic moduli mismatch between layers and relative layer
thicknesses, the presence of an interlayer misfit can suppress the instability caused by the substrate
misfit. We present stability diagrams that can be used to design stable, multilayer films using all of
the degrees of freedom commonly available in multilayer film deposition.1997 American
Institute of Physicg.S0021-89707)02421-3

I. INTRODUCTION logical instabilities of the interfaces between the layers
(primarily for immiscible layers or compositional modula-

for novel electronic and photonic device applicatiénéor tions in miscible muItiIay_er film_s. In thls artic_le, We ex_amine
example, short period superlattices of InAs/GaAs and InPPOSt,grOWth . morphological |nst_ap|llt|e§ in  immiscible
GaP are now being exploited as nanometer scale quantu|;Hult|layer mmrqgtructures. We will |dent!fy the factors tha}t
well and quantum wire heterostructufe@hese structures control the stab|I|Fy of.theselflnlms and estimate rates at which
exhibit superior laser diode device properties, includingt’€Se morphological instabilities develop.
lower threshold current, higher modulation bandwidth, and _ The stability of lattice-mismatched thin films has re-
greater temperature stability as compared with bulk hetero¢€ived a great deal of attention theoretically. A recently pro-
structure device3 Another example is InGaAsP-based mul- Poséd mechanism suggests that elastic stresses induce mor-
tiple quantum well structures, with alternating compressivePhological instabilities’~*?which can lead to the formation
and tensile strained layers, which are promising for optoelecof islands:® nonplanar surfacésr, in some cases, the for-
tronic device applications, such as light sources and detectorgation of deep, cusplike morphologi¥s:® Such morpholo-
in optical fiber communications systerhi addition to elec-  gies can then provide sources for the nucleation of stress-
tronic applications, multilayer fims find use as x-ray relieving dislocations® The wavelength of this type of
mirrors’ and as coatings that are both strong and tdugh. instability is set by the competition between the stabilizing
An important consideration, which determines the tech-influence of the surface energy and the destabilizing influ-
nological success of these materials, is their microstructuragnce of the misfit-induced elastic strain energy. The analyses
stability. For instance, alternating compressive and tensilélescribed may be/have been applied to the stability of single
strained layers in InGaAsP-based multiple quantum wellayer films. The case of multilayer films is significantly more
structures are often designed to be strain balanced. Howevasgmplicated because it must include the effects of the rela-
lateral variations in surface morphology and alloy compositive magnitudes of the interlayer misfit strain and that im-
tion have been observed which leads to degradation in optposed by the substrate in addition to the matdgay., inter-
cal properties. Lateral strain modulations, surface undula- facial energies, elastic constants of multiple phasawd
tions, and interface undulations have also been observed geometrical(i.e., layer thickness¢parameters.
strained heterostructures including I1I-V compounds as well  Recently, we examined the stability of lamellar, eutectic
as in SiGe/Sf. Dramatic thickness modulations have alsomicrostructured® The stability of such microstructures may
been observed in strained GalnASRY)INP multilayers  pe directly mapped onto the problem of multilayer fims. In
grown by gas source molecular beam epitdfhese experi- this article, we employ the results from Ref. 16 to the spe-
mental observations suggest that instabilities occur both dugsfic case of multilayer films. In Sec. Il we examine morpho-
ing and postgrowth. Postgrowth instabilities include morphoqggical stability by calculating the chemical potential along

the interface. The chemical potential is incorporated in a ki-
dElectronic mail: srol@umich.edu netic model in order to calculate the growth rate of a pertur-

Multilayer thin films are excellent candidate materials
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misfit strain e,,= €* in order to keep the problem pseudo-
two-dimensional. In the elastic analysis of this multilayer
film on a substrate, we explicitly assume that all of the in-

A NANNNAN W terfaces are elastically coherent, in the sense that all tractions
and displacements are continuous across the interfaces.
A NN NN NN OANNNNINNNNNNNNNY In examining the stability of the interfacial morphology,

we explicitly consider the case in which the two layers con-
sist of materials which are mutually immiscible and that the
only transport mechanism that operates is interfacial diffu-
sion. We further assume that the interface diffusivities of the
Substrate two materials are equal, and therefore there is no net matter
accumulation/depletion along the interface. In addition, the
interfaces are assumed to be coherent and characterized by
an isotropic interface energy. We also ignore surface stress

- > effects. Since the film consists of a very large number of
- | e A L . layers, we will focus the analysis on those layers which are
- \////M////// h o not too close to either the free surface or the substrate. In this
- | B L. way, the film geometry shown in Fig(d) can be simplified
: ///ﬂf////// A to the perfectly .perlodlc geom.etry_shown in F|gjb_IL While
s L these assumptions greatly simplify the analysis, there are

<. B e = et S e - . - . .

7 > many cases in real materials where each assumption is vio-
- WM T > lated. Therefore, care must be exercised in specific applica-

s B H

€ tions.

We examine the stability of the interfaces by considering
FIG. 1. (@ Schematic illustration of a periodic multilayer A/B film on a the effects of a small perturbation to the nominally flat inter-

substrate(b) A view of the multilayer film structure far from the free sur- face profile:
face and the substrate, considered here. The interfaces are perturbed by the

profile described in Eq(1). yi(x)==[(h/2)+ 6 cogkx)], 1)
wheredis the amplitude of the perturbation, the perturbation
. : , wave numbek=2mx/\, and\ is the wavelength of the per-
bation to the interface shape. In Sec. Il the influence Ofturbation We assume thak<1, which implies that the in-

maFerlgI p\)/(/operlues on the grovxt/)t.rl! ratde_ IS systerr;}aﬂc%ny ®Xterface has a small slope everywhere. The chemical potential
amlnbg ) i € afso E)rgs:ant dsta ||tyt .|a<;i]rams tt.at ! en_t|fy ) along the perturbed interface taking into account both
combinations of material and geometrical properties required .\ o+ e and elastic effectstid®

to maintain a flafi.e., stabl¢ interface.
N
7K+[W]f -7

= po=1 : (]

Il. PHYSICAL MODEL AND LINEAR STABILITY an

ANALYSIS

wherepu is the chemical potential of a flat interfade,is the
Consider a multilayer film, consisting of a very large atomic volume,y is the isotropic interface energy, is the
number of layers, grown on a substrate, as shown in Fignterface curvature\V is the strain energy density, is the
1(a). We assume that the multilayer consists of two types ointerfacial traction vectorgu/dn is the derivative of the total
layers (A and B) and that the relative thicknesses of thesedisplacement field with respect to the direction normal to the
layers remain constant through the entire film thickness. Thinterfacen, and the notatiofiq]” denotes the jumor dif-
overall wavelength of the multilayer is defined as H and theference in the quantityq across the interface. Note that the
thickness of the A and B layers are h and H-h, respectivelyinterface normal, traction, etc., are all defined with respect to
The two types of layers are assumed to be isotropic, lineathe actual(nonfla interface profile. Thet sign represents
elastic media and can have different elastic constants. Theslee B layer side of the interface in this notation. If the chemi-
layers may be misfitting with respect to one another. In thecal potential along the interface is not spatially constant,
present analysis, we assume that the misfit of the A layermatter transport from regions of high to low chemical poten-
with respect to the B layers are described by an eigenstraitial will occur. The elastic fields for the layered geometry
that is isotropic with componem‘q’] =€ §j;, which corre-  considered here were presented in detail in Ref. 16.
sponds to a uniform volume dilatation. The multilayer film Once the chemical potential is known, the force acting
may also be misfitting with respect to the substrate. If theon atoms along the interface is simpiy= — du/ds, wheres
multilayer film were strain balanced with respect to the subds the arc length along the interface. Using Fick’s first law,
strate(i.e., it would not deform if we separated the film from the atomic fluxJ along the interface i9=MF, where the
the substrate we would define this misfit strain with respect mobility M =D, %, /QkgT, D; is the interface diffusivity
to the substrates®=0. In the general cases, this misfit strain is the effective thickness of the interface layer participating
tensor can take on any set of values. In the present case, e the interface diffusion process, ahgT is the thermal
limit consideration to the special case of a uniaxial substratenergy at temperatufe. Employing the requirement of con-
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servation of matter, the interface velocity in the normal di-
rection (the normal pointing away from the interface into
phase B may be found in terms of the divergence of the
material fluxes along the interface:

EA| 2
vi=—0 2> =ma22% 3)

J
Js 9s?

Inserting the initial interface profil¢Eg. (1)] into Eq. (3)
yields an equation for the initial evolution of the interface
profile

X 9o

~— cogkx), (4)

Visnor =

wheren is the unit vector along the interface normiljs a
vector describing the position of the interface, anid the
time. Upon equating the right-hand sides of E@.and(4)
and substituting in foj, we arrive at a differential equation
that governs the time evolution of the interfacial amplitude,
d. The solution to this differential equation can be CONVE-g 1. 2. The dimensionless perturbation amplitude growth ¢ates a func-
niently written in the general form tion of the perturbation wave numbkh for different values of the normal-

o _ w2
8(7)=8(0)exp 1), (5) ized interface energy[ = y/E h(€*)“].

where the dimensionless time=tQ2M y/h* and the dimen-
sionless growth ratée=Gh* (°M y, whereG is the unnor-
malized growth rate. Thus, i is positive, the perturbation ). o ) ]

grows and, consequently, the flat interface is unstable. In the N the absence of a misfit straif{-=), $.=0 and¢is

present case, the growth rag, can be rewritten as always negative, implying that the flat interface is stdfle.
On the other hand, for finit® (a nonzero misfit strajn the

b= et pe=— (kh)*+ e, (6)  qualitative dependence of the growth rate on the wave num-
where ¢ and ¢, are the curvature and elastic contributionsPer is changed. The dominant terms in the small and large
to the growth rate, respectively. As seen from E8), the ~ Wave number limit can be written as
curvature contribution to the growth rate is always negative . 1 3a(a+4) .
and, therefore, the flat interface is stable in the absence of ¢c=—(kh) ¢e%¢_9(1——az)(kh) for kh<1
elastic effects. Sincé, is a complicated dimensionless func-

14

numberkh for different values ofg=y/E h(e*)? (at fixed

tion of the material and geometrical parameters, we restrict bo=— (kh)* & ~£ 12« (khy?  for khs1
ourselves to a graphical description of the dependence of the " °© € 0(4—a) '
growth rate on these variables in the next section. @

It is clear that the elastic term dominates the overall growth

IIl. RESULTS AND DISCUSSION rate for small wave numbers and the curvature term domi-
nates for large wave numbers. This competition between the
elastic and curvature effects dictates the stability of the in-

We first focus on a multilayer in which the A and B terface. Therefore, small wave number perturbations grow
layers have a dilatational mis#t' with respect to each other due to the destabilizing influence of the elastic effects and
and that the multilayer film is strain balanced with respect tdarge wave number perturbations shrink due to the stabilizing
the substratei.e., e=0). Such misfit strains may be the influence of curvature.
result of heteroepitaxy or from such effects as thermal ex-  Figure 2 shows the critical wave numbek k) corre-
pansion mismatch or phase transformations. The relative imsponding to the zero growth rate conditibpi=0). All wave
portance of capillarity and elastic effects on the growth ratenumbers withkh<k:h tend to grow. However, the growth
can be captured in the form of two-dimensionless controkate is a maximum for a particular wave numbkg,i) and,

A. Interlayer misfit strain

parameters:9=y/E h(e*)? and a=(E,—Eg)/(Ea+Eg), hence, this is the characteristic wave number which would
whereE, andEg are the moduli of the two layers, respec- likely be observed. On increasing the magnitude of the misfit
tively. We set the Poisson ratiog = vg=1/3. (decreasing)), the general behavior of the instability is not

qualitatively changed. Rathéth is increasedk,h shifts to

higher values, and the perturbation growth rate increases. In
We first consider the special case of a thin layer of Aother words, the instability wave number and its growth rate

within a relatively thick film of B, i.e., a buried layer. Using both increase with decreasing interface eneyggnd/or in-

the elastic fields in Ref. 16, we determine the chemical poereasing misfit.

tential everywhere and the perturbation growth rat&igure We next examine the effect of the elastic mismatch pa-

2 shows the variation ofp with the dimensionless wave rametera on interface instability. It is apparent from EQ)

1. Buried layer case
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that the stability condition at small wave numbers is dictated?. Multilayer case
by the sign ofa. The growth rate, which is controlled by the . - , .
elastic contribution for small wave numbers, is positive _. We now examme.the stability of multilayer flln[_see
. . o Fig. 1(@)]. When the thickness of the A and B layers is com-

(negative for a>0 (a<<0). Figure 3a) shows the variation of C . .
the growth ratep as a function of the wave numbektf) for parable, elastic interactions between them cannot be ignored.

©9 Y We again use the elasticity results of Ref. 16 to predict the
different values ofa. In the absence of an elastic mismatch

(@=0), ¢ is always negative implying that the flat interface spatial variation of the chemical potential and the growth rate

is stable. This is because, in the absence of an elastic cor(1)Ic the perturbation to the interface. In this case, we nondi-
' ’ ensionalize timer=tQ2My/H* and the growth ratap

stant mismatch, curvature effects lead to terms which are f'rngh“/QzM ¥ using the interlayer spacirg. The perturba-

order in(8/N\), whereas contributions due to elastic effects aret. .
second order ifé/). However, in theE,>Eq (a>0) case ion _grovvth rate¢p now has an explicit dependence on the
' ’ AT B ' relative thickness of the two layefé=h/H). As before, we

there is a range of wave numbers where the growth rate is_ ... . .
. . . partition the growth rate into the curvature and elastic con-

positive and consequently the interface is unstablekfor tributions separately as

<k:h. Therefore, a misfitting layer that is stiffer than the

surrounding film is inherently unstable. On the other hand,

we observe that foE < Eg (a<0) the growth rate is always b= bt pe=—(kH)*+ e 8

negative, and therefore the interface of an elastically compli-

ant misfitting buried layer is stable against shape perturbarhe dominant terms in the growth rate, for the small wave

tions. Finally, we present these results in the form of a stanumber limit, is

bilty diagram [Fig. 3(b)]. The stability diagram

reemphasizes that for a<0 (a>0), which corresponds to a

compliant(stiff) misfitting buried layer, the flat interface is do~—(kH)* o~

stable(unstablé. In addition, fora>0, contours of constant

kn,h are also shown. Using these contour plots, the maxi-

mally unstable wavelength for ar(y,6) can be estimated. =~ where the functiog(«,f ) is

9(a.f)
0

(kH)?2  for kH<1, (9

[(1—2f )(1—3f+3f?)a?+3(1—-3f+3f2)a—2(1—2f )]
[1-—a(1-2f )] [1—a?(1-3f+3f?)]

J(a,f )=12a(1—a)

Clearly in the small wave number limit, the total growth rateis apparent from Fig. 4 that the stability condition fdr, 4)

¢(= ¢+ &) Will be negative provided)(«,f )<0. Conse- is the same as that for (1f,— «). For example, we should
quently, for a specified layer A relative thicknes$ §, we  expect the stability condition pertaining te= 1/3 anda=1/4

can find a range of over which the flat interface is stable. should be exactly identical tb=2/3 anda=—1/4. Clearly,

For volume fractions less than 1/2, the flat interface is unfrom symmetry arguments, we should expect this result since
stable for 6<a<a. and stable for all othew. The critical  our definition of layers A and B is arbitrary in the multilayer

value «. is related tof by case. The net result is that a multilayer structure with a com-
) . 5 pliant minority phase is always stable. If the minority phase
. _3(1-3f+3f%)— V(1-3f+3f%)(1+5f-5f%) is stiff, the stability of the system is dependent on its volume

¢ 2(1—2f )(1—3f+3f?) ' fraction, as per Fig. 4. In general, we see that as we make the

(100 thicknesses of the two types of layers more and more similar,
the range ofx for which instabilities may occur gets smaller
and smaller. In the limit that the two types of layers are of
exactly the same thickness, the multilayer film is stable for
all a.

For a volume fraction of 1/%i.e., equal thickness layersve
observe that the flat interface is always stablg=0). On
the other hand, fof>1/2, the interface is unstable far,
<a<0 and is stable for all othe&. Also note that in the
limit f— 0, the stability criteria for the buried layer is recov-
ered.

The effect of the relative layer thicknessis=h/H) on In the previous case, we assumed that the film was strain
the stability criterion is shown graphically in the form of a balanced with respect to the substrate. By this, we meant that
stability diagram in Fig. 4. For small layer A thicknessesthe film was not constrained by the substrate., if the film
(small f ), the stability condition is essentially unmodified was removed from the substrate, it would not undergo any
from the buried layefof phase A case: i.e., the interface is instantaneous strginWWe now relax this assumption and con-
unstable if the misfitting layer is stiffe>0) and stable if the sider the case in which the substrate introduces a strain into
misfitting layer is soft(«<<0). However, asf increases to- the film €,,=€°. This can be thought of in the following
wards 1/2, the elastic interactions between layers becomeay: first consider a free standing film, with or without misfit
important and the stability is strongly affected. In addition, it between the layers. This film has a natural length. We now

B. Substrate misfit strain
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-0.05 -1.00 \ ' . \\
0.0 0.8 0.00 0.25 0.50 0.75 1.00
(@ f
100 T T 7 7 FIG. 4. Stability diagram for the interfaces in a multilayer filim which the
,l / Il A and B layers are misfitting with respect to each oftar a function of the
| / / 1 relative layer thicknessesf(=h/H) and the elastic mismatch parame(e).
! / // The shaded regions in the diagram indicate conditions under which the flat
s STABLE ,’ UNS;TAB;E interfaces are stable. The line demarcating the stable and the unstable re-
,I /l // /7' gions in the diagram is given by E¢L0).
| I /
/ /] e .
,' / / / face energy ag= y/E h(€%?. We initially consider the sta-
o s ob2 0(’)6 / / bility of a buried layer of A in B. The dominant terms in the
|— — . .
! Fata 2L Lo growth rate, for the small and large wave number limit, are
I 916 ,
:’I AR bo=—(kh)* ¢ L 135 (kh)3  for kh<1
/ = — ~ —_—-— <
4 s ¢ € 0 16(1—a?)
5 A N 1 13542
N po=—(kh)* e~ 2 (kh)?
II/// o k. h=040] 02(16—a°)(1+a)
e -
i1/ 27 =
i for kh>1. (12)
0 1 | !
-10 0.5 00 0.5 10 It is clear from Eq.(11) that the elastic term dominates the
o overall growth ratep (= ¢.+ ¢.) for small wave numbers

(b)
FIG. 3. (a) The dimensionless perturbation amplitude growth gafer the and’ ,he,nce’ the substrate misfit destabilizes the mter_face In
buried, misfitting layer as a function of the perturbation wave nurkhéor  this limit. On the other hand, the curvature term dominates
the growth rate at large wave numbers and, consequently, the

different values of the elastic mismatch paramete(for fixed interface

energy#). (b) Stability diagram indicating stability of the flat interfaces for interface is stable for |arge wave number perturbations_
b ; 2 ) -0, ]

all <0 and instability of the flat interfaces for adl>0. Also shown are Therefore, small wave number perturbatlons grow due to the

contours of constark,,h, as a function of the normalized interface eneégy A . -
and the elastic mismatch parameter stabilizing influence of the elastic effects and large wave
number perturbations shrink due to the stabilizing influence

of curvature.

The variation of the growth ratéh as a function of the

put this film onto the substrate. However, before doing so, : \
we Stretch(or Compres);the film by some amount, corre- wave number Kh) for different values of the modulus mis-

sponding to a straire,,= €. Such strains can be used to match parametex (and for fixed6) is shown in Fig. 5. In the
modify the stability of the multilayer structure and can beabsence of an elastic mismata=0), ¢ is negative(due to
introduced through heteroepitaxy or a temperature changée capillarity effect, implying that the flat interface is
(providing there is a thermal expansion mismatch betweestable. However, for#0, there is a range of wave numbers
film and substrate In order to focus on the effects of the kh<<k:ch where ¢ is positive(for both positive and negative

substrate misfit strain, we assume here that there is no misfiv). This implies that small wave number perturbations grow
and large wavelength perturbations shrink &é#0. Conse-

between the A and B layers of the multilayer film.
quently, as long as the elastic properties of the two phases
. are different, a flat interface is inherently unstable due to the
1. Buried layer case substrate misfit strain. Although the interface is unstable for
The substrate misfit strain is imposed in a direction par-all nonzeroa, the maximally unstable wave numbée,h,
allel to the unperturbed interface as shown in Figh)1In however, depends on the value and sigrwpfn addition to
this case, it is convenient to redefine the dimensionless inteits dependence on the normalized interface enérdyurther

Sridhar, Rickman, and Srolovitz
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FIG. 5. The dimensionless perturbation amplitude growthwterth(_e Casé G, 6. The maximally unstable wave numberH for a multilayer film
of substrate misfit and zero interlayer misfit strain as a function of thesubjected to a substrate misfit strafto interlayer misfitas a function ofx
perturbation wave numbech for different values of the elastic mismatch ¢, several different layer thicknesses=(h/H). The normalized interface
parametew (for fixed interface energy). energyd[ = y/E{H(e%?] is kept fixed, where; is the film modulus.

16 - .
analysis® shows that the wave number of the maximally ynderstood as follows. For small A layer thicknesses, the

unstable interface perturbation should increaselasin- gifferent A layers interact weakly and, therefore, the domi-
creases and/at decrease. The results shown here are in starkant effect of changing is to change the overall film modu-

contrast with the case in which the only misfit is between thqys. consequently, if9 is kept fixed, the instability wave

buried layer and rest of the film. In that case, the interfacegymber should not depend on the relative layer thicknesses.
were only unstable ifa<<O, while in the substrate misfit However, for large layer A thicknesses, where the interlayer

strain case, the interfaces are unstable fouaD. separatiorH is comparable to the A layer thickneks the
elastic interactions are strong. Therefore, the instability wave
2. Multilayer case number is altered despite having taken the film compliance

change into account. In addition, as expedtgt is symmet-

We now examine the effect of substrate misfit strain on; . . . .
- . . . . ric abouta=0, provided the thinner layer is defined as layer
the stability of interfaces in the case of a multilayer film. The . .
A. For example, the instability wave number fof, &)

modified boundary conditions and the method for obtaining . N
the elastic fields are described in Ref. 16. In the multilayer (1}5"1/2) 's exactly the same as that fof,d)=(3/4,
film case, the perturbation growth rageis an explicit func- '
tion of the relative thickness of the A and B layefs
(=h/H), in addition to the other parameters mentioned inC. Qombined effects of interlayer and substrate misfit
the previous section. strains

Our analysis shows that the interface stability condition  In the previous two sections, we examined the effects of
derived for the buried layer case is not qualitatively modifiedinterlayer and substrate misfit strains individually. In this
upon going to the multilayer casé>0. The interface is section we consider the combined effects of both. Based on
always unstable as long as the elastic properties of the twihe stability diagram in Fig. ®), we expect the interlayer
phases are differerftv#0), irrespective of the relative layer misfit strains can be chosen so as to counteract the destabi-
thicknesses. However, the maximally unstable wavelerggth lizing influence of the substrate misfit. Clearly, this compen-
affected by the value of, in addition toa and 6. Figure 6  sation depends on the sign of the mismatch paranaet€he
shows this variation, where the dimensionless maximally unflat interface is stable whe#<0 for all perturbation wave
stable wave numbeik(,H) is plotted as a function o&, for ~ numbers. For the buried layer case, this condition is satisfied
several different values of. In this plot, the normalized provided
interface energyd=y/E¢H(€%? is kept fixed, where the * 1
overall film modulus isE;=fE,+(1—f )Eg. We observe a(e
that at smalla| the instability wave numbers are not signifi- e (1+w)
cantly altered by changes in the relative thickness of the
layers. However, for largele|, the instability wave number wherew is the Poisson raticg* is the dilatational misfit, and
is dependent on these thicknesses. For instance, when € is the substrate misfit strain. The balance between the two
—0.5, the instability wave number increases from 0.6 to 0.8trains is depicted graphically in the stability diagram in Fig.
upon an increase im from 0.25 to 0.5. This result can be 7(a) (settingv=1/3). This diagram shows that, for any value

€* a(3—4v) _
e (1+v)|a(l-2v)+2(1-v)] <0,
(12
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. and« for (a) a buried layer {=0), (b) a multilayer film withf=0.25, and
i’ 00 (c) a multilayer film with f=0.50. The shaded regions indicate where the
‘W ’ f=0.25 flat interface is stablédenoted byS) and the unshaded regions indicate
regions where the flat interface is unstable due to elastic efféetsoted by
U).
-1.5 .
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y \ |
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of the elastic mismatch, there is a rangeedf €° for which  diagrams off <1/2, provided we label the thinner layer as A.
the flat interface is stable. Therefore, an interlayer misfit To summarize, the stability diagrams shown in Fig. 7
strain, of appropriate magnitude, is capable of stabilizing theredict the conditions under which the flat interface is stable.
interface morphology against substrate misfit induced morSuch diagrams can be used to provide guidelines for the
phological instabilities. design of stable, multilayer films.
The morphological stability diagram shown in Figay

|bs modified in going frqm the purled layer to multilayer case |V. CONCLUSIONS

ecause of the elastic interactions between layers. The result-
ant diagram is, not surprisingly, dependent upon the relative  This article shows that misfit stresses can destabilize a
thicknesses of the layers, as shown in Figs. (B) and 7c). multilayer film structure under conditions where interfacial
Figure 1b) shows the stability diagram fof=1/4, while  diffusion is significant. These results show that misfit be-
Fig. 7(c) shows that for the equal layer thickness case, tween the layers in the film can destabilize the multilayer
=1/2. These results show that increasing the thickness dftructure in cases in which the thinner layer is elastically
layer A from zero to one halfat fixedH) significantly alters  stiffer than the thicker layer. On the other hand, thin compli-
the shapeland topology of the stability diagram. This is ant layers stabilize the structure. The rate at which these
especially true near the=1 (rigid A) and a=—1 (rigid B) instabilities develop increase with increasing misfit and de-
limits. For the special case of equal A and B layer thick-creasing interfacial energy. Even when there is no misfit be-
nesses (=1/2), the stability diagram is antisymmetric tween the layers, misfit between the multilayer film and sub-
about the €*/€®,a) origin. Furthermore, fof >1/2, the sta- strate can destabilize the interfaces. This type of instability
bility diagrams will be physically equivalent to the stability occurs whether the thinner layers are stiffer or more compli-
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