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We apply a linear stability analysis to examine the effect of misfit stress on the interface diffusion
controlled morphological stability of multilayer microstructures. The stresses could be the result of
misfit strains between the individual film layers and/or between film and substrate. We find that
misfit between the layers in the film can destabilize the multilayer structure in cases where the
thinner layer is elastically stiffer than the thicker layer. The rate at which these instabilities develop
increase with increasing misfit and decreasing interfacial energy. Even when there is no misfit
between layers, the misfit between the multilayer film and substrate can destabilize the interfaces.
This type of instability occurs whether the thinner layers are stiffer or more compliant than the
thicker ones. By appropriate choice of the elastic moduli mismatch between layers and relative layer
thicknesses, the presence of an interlayer misfit can suppress the instability caused by the substrate
misfit. We present stability diagrams that can be used to design stable, multilayer films using all of
the degrees of freedom commonly available in multilayer film deposition. ©1997 American
Institute of Physics.@S0021-8979~97!02421-3#
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I. INTRODUCTION

Multilayer thin films are excellent candidate materia
for novel electronic and photonic device applications.1 For
example, short period superlattices of InAs/GaAs and I
GaP are now being exploited as nanometer scale quan
well and quantum wire heterostructures.2 These structures
exhibit superior laser diode device properties, includ
lower threshold current, higher modulation bandwidth, a
greater temperature stability as compared with bulk hete
structure devices.3 Another example is InGaAsP-based mu
tiple quantum well structures, with alternating compress
and tensile strained layers, which are promising for optoe
tronic device applications, such as light sources and detec
in optical fiber communications systems.4 In addition to elec-
tronic applications, multilayer films find use as x-ra
mirrors5 and as coatings that are both strong and tough.6

An important consideration, which determines the te
nological success of these materials, is their microstruct
stability. For instance, alternating compressive and ten
strained layers in InGaAsP-based multiple quantum w
structures are often designed to be strain balanced. Howe
lateral variations in surface morphology and alloy compo
tion have been observed which leads to degradation in o
cal properties.7 Lateral strain modulations, surface undul
tions, and interface undulations have also been observe
strained heterostructures including III–V compounds as w
as in SiGe/Si.8 Dramatic thickness modulations have al
been observed in strained GaInAsP/~001!InP multilayers
grown by gas source molecular beam epitaxy.9 These experi-
mental observations suggest that instabilities occur both
ing and postgrowth. Postgrowth instabilities include morph

a!Electronic mail: srol@umich.edu
4852 J. Appl. Phys. 82 (10), 15 November 1997 0021-8979/
/
m

g
d
o-

e
c-
rs

-
al
le
ll
er,
i-
ti-

in
ll

r-
-

logical instabilities of the interfaces between the laye
~primarily for immiscible layers! or compositional modula-
tions in miscible multilayer films. In this article, we examin
postgrowth morphological instabilities in immiscibl
multilayer microstructures. We will identify the factors th
control the stability of these films and estimate rates at wh
these morphological instabilities develop.

The stability of lattice-mismatched thin films has r
ceived a great deal of attention theoretically. A recently p
posed mechanism suggests that elastic stresses induce
phological instabilities,10–12 which can lead to the formation
of islands,13 nonplanar surfaces8 or, in some cases, the for
mation of deep, cusplike morphologies.14,15 Such morpholo-
gies can then provide sources for the nucleation of stre
relieving dislocations.15 The wavelength of this type o
instability is set by the competition between the stabilizi
influence of the surface energy and the destabilizing in
ence of the misfit-induced elastic strain energy. The analy
described may be/have been applied to the stability of sin
layer films. The case of multilayer films is significantly mo
complicated because it must include the effects of the r
tive magnitudes of the interlayer misfit strain and that i
posed by the substrate in addition to the material~e.g., inter-
facial energies, elastic constants of multiple phases! and
geometrical~i.e., layer thicknesses! parameters.

Recently, we examined the stability of lamellar, eutec
microstructures.16 The stability of such microstructures ma
be directly mapped onto the problem of multilayer films.
this article, we employ the results from Ref. 16 to the sp
cific case of multilayer films. In Sec. II we examine morph
logical stability by calculating the chemical potential alon
the interface. The chemical potential is incorporated in a
netic model in order to calculate the growth rate of a pert
97/82(10)/4852/8/$10.00 © 1997 American Institute of Physics
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bation to the interface shape. In Sec. III the influence
material properties on the growth rate is systematically
amined. We also present stability diagrams that iden
combinations of material and geometrical properties requ
to maintain a flat~i.e., stable! interface.

II. PHYSICAL MODEL AND LINEAR STABILITY
ANALYSIS

Consider a multilayer film, consisting of a very larg
number of layers, grown on a substrate, as shown in
1~a!. We assume that the multilayer consists of two types
layers ~A and B! and that the relative thicknesses of the
layers remain constant through the entire film thickness.
overall wavelength of the multilayer is defined as H and
thickness of the A and B layers are h and H-h, respectiv
The two types of layers are assumed to be isotropic, lin
elastic media and can have different elastic constants. T
layers may be misfitting with respect to one another. In
present analysis, we assume that the misfit of the A lay
with respect to the B layers are described by an eigenst
that is isotropic with componentse i j* 5e* d i j , which corre-
sponds to a uniform volume dilatation. The multilayer fil
may also be misfitting with respect to the substrate. If
multilayer film were strain balanced with respect to the s
strate~i.e., it would not deform if we separated the film fro
the substrate!, we would define this misfit strain with respe
to the substrate,es50. In the general cases, this misfit stra
tensor can take on any set of values. In the present case
limit consideration to the special case of a uniaxial subst

FIG. 1. ~a! Schematic illustration of a periodic multilayer A/B film on
substrate.~b! A view of the multilayer film structure far from the free su
face and the substrate, considered here. The interfaces are perturbed
profile described in Eq.~1!.
J. Appl. Phys., Vol. 82, No. 10, 15 November 1997
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misfit strain exx5es in order to keep the problem pseud
two-dimensional. In the elastic analysis of this multilay
film on a substrate, we explicitly assume that all of the
terfaces are elastically coherent, in the sense that all tract
and displacements are continuous across the interfaces.

In examining the stability of the interfacial morpholog
we explicitly consider the case in which the two layers co
sist of materials which are mutually immiscible and that t
only transport mechanism that operates is interfacial dif
sion. We further assume that the interface diffusivities of
two materials are equal, and therefore there is no net ma
accumulation/depletion along the interface. In addition,
interfaces are assumed to be coherent and characterize
an isotropic interface energy. We also ignore surface st
effects. Since the film consists of a very large number
layers, we will focus the analysis on those layers which
not too close to either the free surface or the substrate. In
way, the film geometry shown in Fig. 1~a! can be simplified
to the perfectly periodic geometry shown in Fig. 1~b!. While
these assumptions greatly simplify the analysis, there
many cases in real materials where each assumption is
lated. Therefore, care must be exercised in specific app
tions.

We examine the stability of the interfaces by consider
the effects of a small perturbation to the nominally flat inte
face profile:

yi~x!56@~h/2!1d cos~kx!#, ~1!

whered is the amplitude of the perturbation, the perturbati
wave numberk52p/l, andl is the wavelength of the per
turbation. We assume thatdk!1, which implies that the in-
terface has a small slope everywhere. The chemical pote
~m! along the perturbed interface taking into account b
curvature and elastic effects is17,18

m2m05VS gk1@W#2
12T•F ]u

]nG
2

1D , ~2!

wherem0 is the chemical potential of a flat interface,V is the
atomic volume,g is the isotropic interface energy,k is the
interface curvature,W is the strain energy density,T is the
interfacial traction vector,]u/]n is the derivative of the tota
displacement field with respect to the direction normal to
interfacen, and the notation@q#2

1 denotes the jump~or dif-
ference! in the quantityq across the interface. Note that th
interface normal, traction, etc., are all defined with respec
the actual~nonflat! interface profile. The1 sign represents
the B layer side of the interface in this notation. If the chem
cal potential along the interface is not spatially consta
matter transport from regions of high to low chemical pote
tial will occur. The elastic fields for the layered geomet
considered here were presented in detail in Ref. 16.

Once the chemical potential is known, the force acti
on atoms along the interface is simplyF52]m/]s, wheres
is the arc length along the interface. Using Fick’s first la
the atomic fluxJ along the interface isJ5MF, where the
mobility M5Dih i /VkBT, Di is the interface diffusivity,h i

is the effective thickness of the interface layer participat
in the interface diffusion process, andkBT is the thermal
energy at temperatureT. Employing the requirement of con

the
4853Sridhar, Rickman, and Srolovitz
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pa-
servation of matter, the interface velocity in the normal
rection ~the normal pointing away from the interface in
phase B! may be found in terms of the divergence of t
material fluxes along the interface:

Vi52V
]J

]s
5MV2

]2m

]s2 . ~3!

Inserting the initial interface profile@Eq. ~1!# into Eq. ~3!
yields an equation for the initial evolution of the interfa
profile

Vi5n–

]X

]t
'

]d

]t
cos~kx!, ~4!

wheren is the unit vector along the interface normal,X is a
vector describing the position of the interface, andt is the
time. Upon equating the right-hand sides of Eqs.~3! and~4!
and substituting in form, we arrive at a differential equatio
that governs the time evolution of the interfacial amplitud
d. The solution to this differential equation can be conv
niently written in the general form

d~t!5d~0!exp~ft!, ~5!

where the dimensionless timet5tV2Mg/h4 and the dimen-
sionless growth ratef5Gh4/V2Mg, whereG is the unnor-
malized growth rate. Thus, iff is positive, the perturbation
grows and, consequently, the flat interface is unstable. In
present case, the growth rate,f, can be rewritten as

f5fc1fe52~kh!41fe , ~6!

wherefc andfe are the curvature and elastic contributio
to the growth rate, respectively. As seen from Eq.~6!, the
curvature contribution to the growth rate is always negat
and, therefore, the flat interface is stable in the absenc
elastic effects. Sincefe is a complicated dimensionless fun
tion of the material and geometrical parameters, we res
ourselves to a graphical description of the dependence o
growth rate on these variables in the next section.

III. RESULTS AND DISCUSSION

A. Interlayer misfit strain

We first focus on a multilayer in which the A and
layers have a dilatational misfite* with respect to each othe
and that the multilayer film is strain balanced with respec
the substrate~i.e., es50!. Such misfit strains may be th
result of heteroepitaxy or from such effects as thermal
pansion mismatch or phase transformations. The relative
portance of capillarity and elastic effects on the growth r
can be captured in the form of two-dimensionless con
parameters:u5g/EAh(e* )2 and a5(EA2EB)/(EA1EB),
whereEA and EB are the moduli of the two layers, respe
tively. We set the Poisson ratiosnA5nB51/3.

1. Buried layer case

We first consider the special case of a thin layer of
within a relatively thick film of B, i.e., a buried layer. Usin
the elastic fields in Ref. 16, we determine the chemical
tential everywhere and the perturbation growth ratef. Figure
2 shows the variation off with the dimensionless wav
4854 J. Appl. Phys., Vol. 82, No. 10, 15 November 1997
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numberkh for different values ofu5g/EAh(e* )2 ~at fixed
a!.

In the absence of a misfit strain (u→`), fe50 andf is
always negative, implying that the flat interface is stable19

On the other hand, for finiteu ~a nonzero misfit strain!, the
qualitative dependence of the growth rate on the wave n
ber is changed. The dominant terms in the small and la
wave number limit can be written as

fc52~kh!4 fe'
1

u

3a~a14!

~12a2!
~kh!3 for kh!1

fc52~kh!4 fe'
1

u

12a

~42a!
~kh!3 for kh@1.

~7!
It is clear that the elastic term dominates the overall grow
rate for small wave numbers and the curvature term do
nates for large wave numbers. This competition between
elastic and curvature effects dictates the stability of the
terface. Therefore, small wave number perturbations g
due to the destabilizing influence of the elastic effects a
large wave number perturbations shrink due to the stabiliz
influence of curvature.

Figure 2 shows the critical wave number (kch) corre-
sponding to the zero growth rate condition~f50!. All wave
numbers withkh,kch tend to grow. However, the growth
rate is a maximum for a particular wave number (kmh) and,
hence, this is the characteristic wave number which wo
likely be observed. On increasing the magnitude of the mi
~decreasingu!, the general behavior of the instability is no
qualitatively changed. Rather,kch is increased,kmh shifts to
higher values, and the perturbation growth rate increases
other words, the instability wave number and its growth r
both increase with decreasing interface energyg and/or in-
creasing misfit.

We next examine the effect of the elastic mismatch
rametera on interface instability. It is apparent from Eq.~7!

FIG. 2. The dimensionless perturbation amplitude growth ratef as a func-
tion of the perturbation wave numberkh for different values of the normal-
ized interface energyu@5g/EAh(e* )2#.
Sridhar, Rickman, and Srolovitz
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that the stability condition at small wave numbers is dicta
by the sign ofa. The growth rate, which is controlled by th
elastic contribution for small wave numbers, is positi
~negative! for a.0 ~a,0!. Figure 3~a! shows the variation of
the growth ratef as a function of the wave number (kh) for
different values ofa. In the absence of an elastic mismat
~a50!, f is always negative implying that the flat interfac
is stable. This is because, in the absence of an elastic
stant mismatch, curvature effects lead to terms which are
order in~d/l!, whereas contributions due to elastic effects
second order in~d/l!. However, in theEA.EB ~a.0! case,
there is a range of wave numbers where the growth rat
positive and consequently the interface is unstable forkh
,kch. Therefore, a misfitting layer that is stiffer than th
surrounding film is inherently unstable. On the other ha
we observe that forEA,EB ~a,0! the growth rate is always
negative, and therefore the interface of an elastically com
ant misfitting buried layer is stable against shape pertu
tions. Finally, we present these results in the form of a s
bility diagram @Fig. 3~b!#. The stability diagram
reemphasizes that for alla<0 ~a.0!, which corresponds to a
compliant~stiff! misfitting buried layer, the flat interface i
stable~unstable!. In addition, fora.0, contours of constan
kmh are also shown. Using these contour plots, the ma
mally unstable wavelength for any~a,u! can be estimated.
te

.
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a
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2. Multilayer case

We now examine the stability of multilayer films@see
Fig. 1~a!#. When the thickness of the A and B layers is com
parable, elastic interactions between them cannot be igno
We again use the elasticity results of Ref. 16 to predict
spatial variation of the chemical potential and the growth r
of the perturbation to the interface. In this case, we non
mensionalize timet5tV2Mg/H4 and the growth ratef
5Gh4/V2Mg using the interlayer spacingH. The perturba-
tion growth ratef now has an explicit dependence on t
relative thickness of the two layersf (5h/H). As before, we
partition the growth rate into the curvature and elastic c
tributions separately as

f5fc1fe52~kH!41fe . ~8!

The dominant terms in the growth rate, for the small wa
number limit, is

fc'2~kH!4 fe'
g~a, f !

u
~kH!2 for kH!1, ~9!

where the functiong(a, f ) is
g~a, f !512a~12a!
@~122 f !~123 f 13 f 2!a213~123 f 13 f 2!a22~122 f !#

@12a~122 f !#2@12a2~123 f 13 f 2!#
.
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Clearly in the small wave number limit, the total growth ra
f(5fc1fe) will be negative providedg(a, f )<0. Conse-
quently, for a specified layer A relative thickness (f ), we
can find a range ofa over which the flat interface is stable
For volume fractions less than 1/2, the flat interface is
stable for 0,a,ac and stable for all othera. The critical
valueac is related tof by

ac5
3~123 f 13 f 2!2A~123 f 13 f 2!~115 f 25 f 2!

2~122 f !~123 f 13 f 2!
.

~10!

For a volume fraction of 1/2~i.e., equal thickness layers!, we
observe that the flat interface is always stable (ac50). On
the other hand, forf .1/2, the interface is unstable forac

,a,0 and is stable for all othera. Also note that in the
limit f→0, the stability criteria for the buried layer is reco
ered.

The effect of the relative layer thicknessesf (5h/H) on
the stability criterion is shown graphically in the form of
stability diagram in Fig. 4. For small layer A thickness
~small f ), the stability condition is essentially unmodifie
from the buried layer~of phase A! case: i.e., the interface i
unstable if the misfitting layer is stiff~a.0! and stable if the
misfitting layer is soft~a,0!. However, asf increases to-
wards 1/2, the elastic interactions between layers bec
important and the stability is strongly affected. In addition
-

e
t

is apparent from Fig. 4 that the stability condition for (f ,a)
is the same as that for (12 f ,2a). For example, we should
expect the stability condition pertaining tof 51/3 anda51/4
should be exactly identical tof 52/3 anda521/4. Clearly,
from symmetry arguments, we should expect this result si
our definition of layers A and B is arbitrary in the multilaye
case. The net result is that a multilayer structure with a co
pliant minority phase is always stable. If the minority pha
is stiff, the stability of the system is dependent on its volum
fraction, as per Fig. 4. In general, we see that as we make
thicknesses of the two types of layers more and more sim
the range ofa for which instabilities may occur gets smalle
and smaller. In the limit that the two types of layers are
exactly the same thickness, the multilayer film is stable
all a.

B. Substrate misfit strain

In the previous case, we assumed that the film was st
balanced with respect to the substrate. By this, we meant
the film was not constrained by the substrate~i.e., if the film
was removed from the substrate, it would not undergo a
instantaneous strain!. We now relax this assumption and co
sider the case in which the substrate introduces a strain
the film exx5es. This can be thought of in the following
way: first consider a free standing film, with or without mis
between the layers. This film has a natural length. We n
4855Sridhar, Rickman, and Srolovitz
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put this film onto the substrate. However, before doing
we stretch~or compress! the film by some amount, corre
sponding to a strainexx5es. Such strains can be used
modify the stability of the multilayer structure and can
introduced through heteroepitaxy or a temperature cha
~providing there is a thermal expansion mismatch betw
film and substrate!. In order to focus on the effects of th
substrate misfit strain, we assume here that there is no m
between the A and B layers of the multilayer film.

1. Buried layer case

The substrate misfit strain is imposed in a direction p
allel to the unperturbed interface as shown in Fig. 1~b!. In
this case, it is convenient to redefine the dimensionless in

FIG. 3. ~a! The dimensionless perturbation amplitude growth ratef for the
buried, misfitting layer as a function of the perturbation wave numberkh for
different values of the elastic mismatch parametera ~for fixed interface
energyu!. ~b! Stability diagram indicating stability of the flat interfaces fo
all a<0 and instability of the flat interfaces for alla.0. Also shown are
contours of constantkmh, as a function of the normalized interface energyu
and the elastic mismatch parametera.
4856 J. Appl. Phys., Vol. 82, No. 10, 15 November 1997
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face energy asu5g/EAh(es)2. We initially consider the sta-
bility of a buried layer of A in B. The dominant terms in th
growth rate, for the small and large wave number limit, a

fc52~kh!4 fe'
1

u

135a2

16~12a2!
~kh!3 for kh!1

fc52~kh!4 fe'
1

u

135a2

2~162a2!~11a!
~kh!3

for kh@1. ~11!

It is clear from Eq.~11! that the elastic term dominates th
overall growth ratef (5fc1fe) for small wave numbers
and, hence, the substrate misfit destabilizes the interfac
this limit. On the other hand, the curvature term domina
the growth rate at large wave numbers and, consequently
interface is stable for large wave number perturbatio
Therefore, small wave number perturbations grow due to
stabilizing influence of the elastic effects and large wa
number perturbations shrink due to the stabilizing influen
of curvature.

The variation of the growth ratef as a function of the
wave number (kh) for different values of the modulus mis
match parametera ~and for fixedu! is shown in Fig. 5. In the
absence of an elastic mismatch~a50!, f is negative~due to
the capillarity effect!, implying that the flat interface is
stable. However, foraÞ0, there is a range of wave numbe
kh,kch wheref is positive~for both positive and negative
a!. This implies that small wave number perturbations gr
and large wavelength perturbations shrink foraÞ0. Conse-
quently, as long as the elastic properties of the two pha
are different, a flat interface is inherently unstable due to
substrate misfit strain. Although the interface is unstable
all nonzeroa, the maximally unstable wave number,kmh,
however, depends on the value and sign ofa, in addition to
its dependence on the normalized interface energyu. Further

FIG. 4. Stability diagram for the interfaces in a multilayer film~in which the
A and B layers are misfitting with respect to each other! as a function of the
relative layer thicknesses (f 5h/H) and the elastic mismatch parameter~a!.
The shaded regions in the diagram indicate conditions under which the
interfaces are stable. The line demarcating the stable and the unstab
gions in the diagram is given by Eq.~10!.
Sridhar, Rickman, and Srolovitz
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analysis16 shows that the wave number of the maxima
unstable interface perturbation should increase asuau in-
creases and/oru decrease. The results shown here are in s
contrast with the case in which the only misfit is between
buried layer and rest of the film. In that case, the interfa
were only unstable ifa,0, while in the substrate misfi
strain case, the interfaces are unstable for allaÞ0.

2. Multilayer case

We now examine the effect of substrate misfit strain
the stability of interfaces in the case of a multilayer film. T
modified boundary conditions and the method for obtain
the elastic fields are described in Ref. 16. In the multila
film case, the perturbation growth ratef is an explicit func-
tion of the relative thickness of the A and B layersf
(5h/H), in addition to the other parameters mentioned
the previous section.

Our analysis shows that the interface stability condit
derived for the buried layer case is not qualitatively modifi
upon going to the multilayer case,f .0. The interface is
always unstable as long as the elastic properties of the
phases are different~aÞ0!, irrespective of the relative laye
thicknesses. However, the maximally unstable wavelengtis
affected by the value off , in addition toa andu. Figure 6
shows this variation, where the dimensionless maximally
stable wave number (kmH) is plotted as a function ofa, for
several different values off . In this plot, the normalized
interface energyu5g/EfH(es)2 is kept fixed, where the
overall film modulus isEf5 f EA1(12 f )EB . We observe
that at smalluau the instability wave numbers are not signi
cantly altered by changes in the relative thickness of
layers. However, for largeruau, the instability wave numbe
is dependent on these thicknesses. For instance, whena5
20.5, the instability wave number increases from 0.6 to
upon an increase inf from 0.25 to 0.5. This result can b

FIG. 5. The dimensionless perturbation amplitude growth ratef for the case
of substrate misfit and zero interlayer misfit strain as a function of
perturbation wave numberkh for different values of the elastic mismatc
parametera ~for fixed interface energyu!.
J. Appl. Phys., Vol. 82, No. 10, 15 November 1997
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understood as follows. For small A layer thicknesses,
different A layers interact weakly and, therefore, the dom
nant effect of changingf is to change the overall film modu
lus. Consequently, ifu is kept fixed, the instability wave
number should not depend on the relative layer thicknes
However, for large layer A thicknesses, where the interla
separationH is comparable to the A layer thicknessh, the
elastic interactions are strong. Therefore, the instability w
number is altered despite having taken the film complia
change into account. In addition, as expectedkmh is symmet-
ric abouta50, provided the thinner layer is defined as lay
A. For example, the instability wave number for (f ,a)
5(1/4,1/2) is exactly the same as that for (f ,a)5(3/4,
21/2).

C. Combined effects of interlayer and substrate misfit
strains

In the previous two sections, we examined the effects
interlayer and substrate misfit strains individually. In th
section we consider the combined effects of both. Based
the stability diagram in Fig. 3~b!, we expect the interlaye
misfit strains can be chosen so as to counteract the des
lizing influence of the substrate misfit. Clearly, this compe
sation depends on the sign of the mismatch parametera. The
flat interface is stable whenf<0 for all perturbation wave
numbers. For the buried layer case, this condition is satis
provided

aS e*

es2
1

~11n! D S e*

es2
a~324n!

~11n!@a~122n!12~12n!# D<0,

~12!

wheren is the Poisson ratio,e* is the dilatational misfit, and
es is the substrate misfit strain. The balance between the
strains is depicted graphically in the stability diagram in F
7~a! ~settingn51/3!. This diagram shows that, for any valu

e
FIG. 6. The maximally unstable wave numberkmH for a multilayer film
subjected to a substrate misfit strain~no interlayer misfit! as a function ofa,
for several different layer thicknesses (f 5h/H). The normalized interface
energyu@5g/EfH(es)2# is kept fixed, whereEf is the film modulus.
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FIG. 7. Stability diagram for the interfaces in a film as a function ofe* /es

anda for ~a! a buried layer (f 50), ~b! a multilayer film with f 50.25, and
~c! a multilayer film with f 50.50. The shaded regions indicate where t
flat interface is stable~denoted byS) and the unshaded regions indica
regions where the flat interface is unstable due to elastic effects~denoted by
U).
sfi
th
o

se
su
tiv

,
s

k
ic

ty

.
7
le.
the

e a
ial
e-
er
lly
li-

ese
de-
be-
b-

ility
pli-
of the elastic mismatch, there is a range ofe* /es for which
the flat interface is stable. Therefore, an interlayer mi
strain, of appropriate magnitude, is capable of stabilizing
interface morphology against substrate misfit induced m
phological instabilities.

The morphological stability diagram shown in Fig. 7~a!
is modified in going from the buried layer to multilayer ca
because of the elastic interactions between layers. The re
ant diagram is, not surprisingly, dependent upon the rela
thicknesses of the layers,f , as shown in Figs. 7~b! and 7~c!.
Figure 7~b! shows the stability diagram forf 51/4, while
Fig. 7~c! shows that for the equal layer thickness casef
51/2. These results show that increasing the thicknes
layer A from zero to one half~at fixedH) significantly alters
the shape~and topology! of the stability diagram. This is
especially true near thea51 ~rigid A! anda521 ~rigid B!
limits. For the special case of equal A and B layer thic
nesses (f 51/2), the stability diagram is antisymmetr
about the (e* /es,a) origin. Furthermore, forf .1/2, the sta-
bility diagrams will be physically equivalent to the stabili
4858 J. Appl. Phys., Vol. 82, No. 10, 15 November 1997
t
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diagrams off ,1/2, provided we label the thinner layer as A
To summarize, the stability diagrams shown in Fig.

predict the conditions under which the flat interface is stab
Such diagrams can be used to provide guidelines for
design of stable, multilayer films.

IV. CONCLUSIONS

This article shows that misfit stresses can destabiliz
multilayer film structure under conditions where interfac
diffusion is significant. These results show that misfit b
tween the layers in the film can destabilize the multilay
structure in cases in which the thinner layer is elastica
stiffer than the thicker layer. On the other hand, thin comp
ant layers stabilize the structure. The rate at which th
instabilities develop increase with increasing misfit and
creasing interfacial energy. Even when there is no misfit
tween the layers, misfit between the multilayer film and su
strate can destabilize the interfaces. This type of instab
occurs whether the thinner layers are stiffer or more com
Sridhar, Rickman, and Srolovitz
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ant than the thicker ones. By appropriate choice of the ela
moduli mismatch between layers and relative layer thi
nesses, the presence of an interlayer misfit can suppres
instability caused by the substrate misfit. We presented
crostructural stability diagrams that can be used to des
stable, multilayer films using all of the degrees of freedo
commonly available in multilayer film deposition.

We expect these results to be valid for multilayer s
tems in which the two phases have limited solubility.
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