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Axisymmetric slosh frequencies of a liquid mass in a circular cylinder
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Spectral eigenvalue methods along with some lower-dimensional techniques are used to determine
the natural frequencies of a liquid slug in a circular tube. The contact lines are either pinned or
governed by a slip coefficient assumed small. Corresponding physical experiments are conducted
for a borosilicate glass tube and a treated water slug. Gravitational and viscous effects are neglected
for the analyses. The spectral results agree well with a simple spherical end cap approximation~zero
dimensional! for large aspect ratio slugs and with a membrane approximation~one dimensional! for
small aspect ratios. The experimental observations for different aspect ratios agree well with the
predictions, although the gravity, viscosity and/or slip are neglected in the analyses. ©2003
American Institute of Physics.@DOI: 10.1063/1.1622668#
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I. INTRODUCTION

Surface wave natural frequencies with boundaries
edge constraints continue to be of much interest. Solution
the inviscid problem with pinned contact line have be
proposed.1–5 These solutions address surface capillary and
gravity wave applications for a layer of finite depth fluid. O
the other hand the two fluid–air interfaces of a slug all
many modes that are not possible for a single interface.
problem is motivated as a first step in understanding how
move these slugs by forced vibration, possibly in microgr
ity.

In the analyses,2–5 the undisturbed free surfaces are p
pendicular to the solid walls. However, this is usually not t
case for most applications where capillarity is important6,7

The fluid surfaces are highly curved in a capillary tub
Graham-Eagle1 allows small static surface deflections a
hence that analysis models the case where the apparent
contact angle is close but not equal to 90°. Motivated
nonlinear forcing of a tube and its possible fluid delive
under micro-gravity, slug motion responses are investiga
by oscillating a circular cylindrical tube horizontally alon
its axis with a programmed periodic motion. It is thus des
able to determine the natural frequency of the end caps u
pinned or partial slip contact line conditions.

Here we present a potential flow solution as a gene
ized eigenvalue problem by expanding the two free surfa
using Chebyshev and Fourier series with bases that sa
continuity and impermeable wall conditions.8 Due to surface
tension, an undisturbed free surface in a circular tube
spherical in the absence of gravity. To determine the nat
oscillation frequency, the dynamic and kinematic surfa
conditions are linearized under a small perturbation assu
tion and are satisfied at the undisturbed, but curved
surface.1 Solutions are presented for slug length to diame
aspect ratios of 0.01–10. Experimental results are prese
for comparison with the numerical analyses.
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II. ZERO- AND ONE-DIMENSIONAL APPROXIMATIONS

As proposed by Hilpertet al.,9 if the end cap remains
spherically shaped for small perturbations, and the slug
long relative to the tube diameter, the inviscid slug and e
cap can be modeled as a simple linear spring–mass sys
An equivalent spring constant can be derived from the s
face tension restoring force, inertia is determined from
center of mass motion, and then the lowest slosh freque
given accordingly. The slosh mode has primarily axial m
tion between two interfaces instead of the more usual part
motion for standing waves with one free surface as show
the time lapse figure on the bottom of page 111 of V
Dyke.10 We term this approach the end cap or the ze
dimensional~0-D! approximation~as no spatial dependen
variables are required!. It is apparent that for small slug
length-to-diameter ratio, this method is not appropriate
cause flow details near the two ends are neglected. Th
fore, for verification of the boundary value problem sol
tions, for small aspect ratios, a solution for a circu
membrane~with varying thickness! vibration is included.
This is valid when motion is strictly in the axial direction an
the membrane tension is derived from small surface ele
tion. The approximation is one-dimensional~1-D! since only
one spatial coordinate is required for axisymmetric solutio

To prescribe the problem, a definition sketch and a p
tograph from an experiment are included in Fig. 1. All va
ables and parameters are scaled by the tube radiusR, the
densityr, and the surface tension coefficients.

A. 0-D analysis: End cap approximation

The approximation is derived with the following as
sumptions:

~1! End caps remain spherically shaped during oscillatio
~2! A pinned condition is maintained.
~3! L@R.

The dimensionless volumeV of an end cap as a function o
contact angleu is
9 © 2003 American Institute of Physics
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V~u!5
p

3

cosu~21sinu!

~11sinu!2 .

The derivative of the volume with respect to the cont
angle is

]V

]u
52p

1

~11sinu!2 .

Considering the right side surface in Fig. 1, the small cen
of mass displacement with respect to equilibriumus is

Dz52
]V~us!

]u

Du

p
.

The pressure change by surface tension due to a small
cap perturbationDu5u2us is

Dp52~cosu2cosus!>22 sinusDu

522 sinus~11sinus!
2Dz.

The total restoring force and the equivalent spring cons
Keq from both menisci are determined from

DF52pDp524p sinus~11sinus!
2Dz52KeqDz.

Thus the natural angular frequency for the mass–spring
tem is

FIG. 1. Definition sketch: Elevation view of a fluid slug with length 2L
~well-defined for analysis with non-wetting films! and radius1 in a circular
cylindrical tube with pinned contact lines.z56z ~solid lines! are the un-
disturbed stationary surface positions andh1 andh2 ~dotted lines! are the
surface perturbation relative to6z, respectively. The wave analysis consi
ered here is normally axisymmetric. This symmetry is broken by the gr
tational effect on the static meniscus as shown in the photograph. Fur
the wave patterns can be separated into modes where the fluid velocit
free surface disturbancesh6 are either even or odd. The mode sketch
above is even since the deformation of both surfaces is in the samez direc-
tion. This is the lowest slosh mode and that seen predominantly in
experiments. This symmetry means that only one free surface~say h1)
needs to be considered, with the other free surface condition replaced b
or even symmetry, and hence the1 or 2 subscript is dropped.us is the
static contact angle. In the absence of gravity, the static free surfaces r
sented byz56z are spherically shaped.u is the apparent dynamic contac
angle that oscillates in time aboutus . The photo at the bottom is from a
Kodak high-speed imager where the slug is illuminated by a vertical la
sheet through the slug axis. To increase the image contrast, the water s
fluorescein treated, decreasing the static surface tension by approxim
3.5 dyn/cm~Ref. 12!.
t
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v25
Keq

m
5

4p sinus~11sinus!
2

m
,

wherem52pL is the mass of the slug when neglecting t
small volume in the end caps andL is the length-to-diamete
aspect ratio. Thus the natural frequency in nondimensio
form is

v25
2 sinus~11sinus!

2

L
. ~1!

B. 1-D approximation: Membrane approximation

For a sufficiently short slug with a flat~or a nearly flat!
free surface, flow can be reasonably assumed to be paral
the axial direction. The dynamic governing equation for a
symmetric surface motion is 1-D. The undisturbed free s
faces arez56z where

z5L1tan~us!2Asec2 us2r 2. ~2!

The surface perturbation ish. The pressure jump across th
interface is determined by the surface tension times sur
curvature~the independent variable subscripts refer to par
differentiation!:

Dp

s
5

§ rr 1h rr

@11~§ r1h r !
2#3/21

§ r1h r

rA11~§ r1h r !
2

'
§ rr

@11§ r
2#3/21

h rr

@11§ r
2#3/223

§ r§ rr h r

@11§ r
2#5/2

1
§ r

rA11§ r
2

1S 1

rA11§ r
2

2
§ r

2

r ~11§ r
2!3/2D h r ,

where the approximation derives from smallh, h r , andh rr .
Considering both surfaces, we linearize the dynamic eq
tion for the membrane about its spherical surface:

h rr

~11§ r
2!3/21F 1

rA11§ r
2

23
§ r§ rr

~11§ r
2!5/22

§ r
2

r ~11§ r
2!3/2Gh r

5zh tt . ~3!

This non-constant coefficient wave equation can be sol
numerically~i.e., constructingh as a summation of polyno
mials or trigonometric functions inr and harmonic in timet)
for frequencies and modes. When the surface is flat we h
the standard membrane equation

¹2h5Lh tt .

The axisymmetric normal modes of this boundary va
problem are

h5J0~vnALr !cosvnt, n51,2,3,...,

whereJ0 is the zeroth-order Bessel function of the first kin
The pinned boundary condition results in the eigenequa
J0(vnAL)50. The lowest slosh frequency is

v1'
2.405

AL
. ~4!

i-
er,
or

ur

dd

re-

er
g is
ely



u-
p

a

u

s
la
ev
c

on

h

o

ti
tri

o

-

sing
onic

d
ns
the

We

o-

ces.
ic
od-

be-

26,
he

3661Phys. Fluids, Vol. 15, No. 12, December 2003 Axisymmetric slosh frequencies of a liquid mass
III. THE COMPLETE INVISCID BOUNDARY VALUE
PROBLEM AND ITS LINEARIZATION

Assuming an inviscid flow, the problem may be form
lated under the following conditions and additional assum
tions:

~a! Irrotational flow.
~b! No-flow through the cylinder walls.
~c! Linearized free surface boundary conditions.
~d! Spherical undisturbed free surface in the assumed

sence of gravity.
~e! Pinned contact lines along each of the two free s

faces.

To determine the natural frequencies and mode shape
the ends of the slug, the associated equations are formu
as a generalized eigenvalue problem. The two surface el
tion perturbations relative to the unperturbed curved surfa
z56z(r ) are expanded as a summation of basis functi
~cosine series, Chebyshev polynomials, etc.!.

In cylindrical coordinates, the equations governing t
fluid are simply

¹2F50, ~5a!

v~r 51,t !5
]F

]r
50, ~5b!

whereF is the velocity potential andv is the radial velocity.
Only one of the surfacesz5z(r ) as shown in Fig. 1 needs t
be considered due to symmetry~or antisymmetry!. Eliminat-
ing the static equilibrium terms, the dynamic and kinema
surface boundary conditions for the linearized axisymme
free surface (h1) are

h rr

~11§ r
2!3/21F 1

rA11§ r
2

23
§ r§ rr

~11§ r
2!5/22

§ r
2

r ~11§ r
2!3/2Gh r

5F t ,

]~z1h!

]t
1

]F

]r

]~z1h!

]r
5

]F

]z
⇒h t'Fz2z rF r ,

h50 ~r 51!. ~6!

IV. NUMERICAL SOLUTION OF THE BOUNDARY
VALUE PROBLEM

A general solution to the boundary value problem~5a!
and ~5b! is

F5eivt (
n50

`

(
m50

` S Amn

coshknz

coshknL

1Bmn

sinhknz

sinhknL D cosmc
Jm~knr !

Jm~kn!
, ~7!

whereJm represents the Bessel function of the first kind
the mth order andkn are the zeros ofJm8 to satisfy the wall
condition ~5b!. Here,c is the polar angle andm is the azi-
muthal wavenumber. Theeivt term indicates a solution har
-

b-

r-

of
ted
a-

es
s

e

c
c

f

monic in time. For axisymmetric solutions,m50, we re-
move the first subscript ofAmn and Bmn for simplicity.
Separating to even and odd cases inz yields

F15eivt (
n50

`

An

coshknz

coshknL

J0~knr !

J0~kn!
, ~8!

and

F25eivt (
n50

`

Bn

sinhknz

sinhknL

J0~knr !

J0~kn!
. ~9!

F1 represents a solution with zero axial velocity atz50 as if
there were a solid wall there~see Fig. 2 modesc andd) and
F2 represents the slosh mode only realizable for a slug~two
free surfaces condition!. For a given static contact angleus ,
z is prescribed according to the spherical static shape. U
a Fourier series to describe the surface elevation in harm
motion yields

h5eivt (
n51

N

cn cosj nr , j n5~n21/2!p, n51,2,3,...

~10!

or with Chebyshev polynomials:

h5eivt (
n51

N

cnfn~r !, fn~r !5T2n~r !21, n51,2,3,... .

~11!

Both automatically satisfyh r(r 50)50 andh(r 51)50 for
the axisymmetric mode.

A generalized eigenvalue problem is posed by~6! and
~8! or ~9! upon using~10! or ~11!. Calculations are conducte
for aspect ratios of 0.01 to 10. Since the basis functio
satisfy the equations in the domain and on the side walls,
solution is obtained by collocation on the free surface.
use standard collocation points:11 evenly spaced inr for the
Fourier expansion~10! and zeroes of the Chebyshev polyn
mials for the Chebyshev expansion~11!. The collocation
points were placed on the curved, but unperturbed surfa
When we usedN collocation points to obtain the algebra
eigenvalue system, our eigenvalue was reasonable for m
est values ofN but diverged for largerN. Examination of the
boundary conditions showed large oscillatory residuals
tween the collocation points nearr 50 for the Chebyshev

FIG. 2. Lowest modes forL510 with static contact angleus540°. The
resulting frequenciesv are 0.598 41, 8.324 488, 8.324 486, and 18.172 2
respectively. We consider~a! to be the fundamental slosh mode and it is t
primary focus of the discussions. The 0-D approach applies to~a! only.
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TABLE I. Convergence test with Chebyshev and Fourier surface expansions for different static contact angle for lowest mode whenL510. ‘‘—’’ indicates
no real eigenvalue is calculated for the lowest mode. Convergence for smallerus becomes problematic, but then viscous effects enter to make the phy
model invalid.

N

us520° us530° us545° us565° us590°

Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier Chebyshev Fo

10 0.361 479 — 0.484 132 — 0.650 763 0.679 158 0.815 895 0.816 924 0.891 566 0.887
20 0.359 978 — 0.484 134 — 0.650 763 — 0.815 898 0.816 443 0.983 437 0.890
50 0.359 977 — 0.484 134 — 0.650 763 — 0.815 907 — — 0.890 63
100 0.359 977 — 0.484 134 — 0.650 763 — 0.815 902 — — 0.890 72
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expansion and near the contact line (r 51) for the Fourier
expansion. Numerical experiments showed that using 1N
collocation points to obtain an overdetermined system d
tically reduced these errors and allowed convergence
largeN when Chebyshev expansion was used, but no sim
improvement was found for the Fourier expansion. Singu
value decomposition was then used as the solver for
overdetermined system. The collocation procedure is n
standard in that the free surfaces are not coordinate surfa
but we recover the results of Henderson and Miles2 when
only one free surface is present and the undisturbed sur
is flat. Our attempts at using a Galerkin method did not c
verge.

The generalized spectral eigenproblem is singular. W
kinematic and dynamic surface conditions are combined
a single equation as a general eigenvalue problem, inve
differential operators are needed. Spurious eigenvalues
slow convergence are thus possible~Boyd,11 pp. 139–142!.

The Fourier series numerical solutions for static cont
angle us close to 90° converge rapidly, while scaling an
roundoff errors accumulate. However, forus near 90°, the
Chebyshev polynomials fail to converge before spurious
genvalues~with paired imaginary frequencies! dominate the
solutions. Interestingly for smallerus , the Chebyshev poly-
nomials converge while the Fourier expansions do not c
verge, as shown in Table I. Both expansions exhibit conv
gence difficulties for smallus ~approximately 20° and
below!. This may be caused by the physically sharpened
ner singularity and increased condition numbers of the
sulting linear algebraic system~considering the exponentia
expansion in the axial direction!. It is not clear why the two
s-
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expansions exhibit different convergence for differentus

regions. A global convergent solution for all static conta
angles may necessitate a different series or a comb
strategy.

V. RESULTS AND COMMENTS

In Table II, numerical results are presented along w
the 0-D and 1-D approximations for different aspect rati
As expected from the discussion in Sec. II, the potential
lution converges to the 1-D approximation for small asp
ratio ~seeL50.01,us590°), and appears to converge to th
0-D approximation for large aspect ratio (L510). The 15%
difference between the 0-D solution and the other appro
mations in theL50.01,us590° case is caused by the no
spherical shape of the slug in the membrane limit.

The four lowest 2-D modes are presented in Fig. 2
L510, now with static contact angleus540° Only the axi-
symmetric modes are considered. As expected, the fun
mental slosh mode@Fig. 2~a!# has the lowest frequency. On
@Fig. ~2b!# is also even inh. The other two modes have od
perturbations and the flow behaves as if there were a s
wall at z50 ~Faraday waves2!. It is also apparent that fo
L510 the second and third modes in Fig. 2 have very sim
frequencies. This is as expected for similar surface mode
slugs with large aspect ratio: The relation between the
surfaces is weakened by a large mass between them~with the
obvious exception of the fundamental slosh mode!. Thus the
two surfaces behave somewhat independently, leading
similar flow fields for the two modes.
i-

43

476

841

841

841

890
TABLE II. Pseudospectral results, nondimensional lowest frequenciesv, show convergence to 0-D approx
mation forL510 and convergence to 1-D approximation forL50.01.

us

L50.01 L50.1 L51 L510

90° 89° 90° 80° 90° 30° 90° 30°

0-D approximation:
~spherical end cap!

28.2843 28.280 00 8.9443 8.8086 2.828 43 1.5 0.8944 0.47

1-D approximation
~membrane!

24.0500 41.531 52 7.6053 12.9810 2.4050 1.8250 0.7605 0.4

Spectral
method for
varying
truncationN

100 24.0506 41.535 91 7.6680 13.0890 2.7138 1.9376 0.8907 0.4

50 24.0506 41.534 11 7.6680 13.0890 2.7140 1.9376 0.8906 0.4

20 24.0508 41.521 77 7.6685 13.0873 2.7155 1.9376 0.8880 0.4

5 24.0871 41.324 34 7.6839 13.0488 2.7522 1.9532 0.8803 0.4
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Figure 3 presents results of the potential and the 0
solutions for varyingus and for fixed large aspect ratioL
510. The 2-D results shown in Fig. 3 are given for Cheb
shev or Fourier expansions in favor of convergence. Acco
ing to ~1!, the frequency for the 0-D approximation is sym
metric with respect tous590°.

For comparison with numerical results, free oscillati
and forced oscillation tests were conducted. A precise bo
silicate glass tube was used with internal diameterD
53.556 mm and square outer cross section 12.7
312.7 mm for reduced optical distortion. The tube w
washed with alcohol and HPLC grade water, and then d
with dry compressed air. The liquid slug was made us
HPLC grade water. For the free oscillation test, the tube m
tion was stopped suddenly from a constant horizontal sp
and the end cap apex position as a function of time w
recorded by a Kodak high speed video imager; the results
presented in Fig. 4. The time origin in Fig. 4~a! was chosen
after a sufficient time to avoid initial transients, contact li
slip, and nonlinearity. To measure the contact angle, the
terface was assumed to be spherically shaped and the h
of the end cap was taken as the average horizontal dist
from the upper and lower contact line in a 2-D image to t
at the apex.~Similar measurements fitting a circle to the tw
contact line locations and the apex produced similar res
with more experimental error.! Presumably due to contac
line hysteresis, the initial contact angles were measure
approximately 30° – 70° when the slug was placed in a
tube by syringe.

We found less experimental scatter when an initial d
turbance was sufficiently large to cause slip motion—s
caused by other forces generally had a similar effect. T
static contact angle measured immediately following the f
oscillation decay generally had a scatter of65°. No depen-
dence on aspect ratio was observed for the range we m
sured (1.28<L<10.3). For the forced oscillation test, th
tube was driven horizontally by a harmonic displacemenx
5a cosvt, where the forcing amplitudeav2 was held con-
stant. Thus the amplitude of the end cap motion as a func

FIG. 3. Lowest slosh frequency vs static contact angle forL510.
D

-
-

o-

m

d
g
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ed
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n-
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-

e
e

a-
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of frequency was obtained and is plotted in Fig. 4~b!. In both
experiments, the pinning of the contact line was ensured
constantly monitoring contact line motion relative to th
tube.

We found that the free oscillation test is simpler to co
trol. Only one experiment is required for a given slug
estimate the natural slosh frequency, and the actual s
contact angle can be obtained immediately following the e
cap displacement measurement. On the other hand,
forced oscillation requires measurements for different f
quencies and the slug will often slip near the resonant
quency. Due to contact line hysteresis, it is difficult to ha
the same contact angle for replicated experiments. The m

FIG. 4. Free and forced oscillations experimentally determine the nat
frequency of a water slug in a cylindrical tube with pinned contact line a
a nearly spherical end cap.~a! The tube is suddenly stopped from consta
velocity while recording the surface elevationh(r 50). A natural frequency
of 0.571 fits the data in the figure.~b! The tube is driven horizontally by a
harmonic displacementx5a cosvt where av2 is held constant anda is
sufficiently small to be in the linear regime~we useda50.15 for v
51.104). The peak-to-peak amplitude of the surface elevation~normalized
by a) is plotted as a function ofv for two replicated experiments. The ope
square shows a maximum resonance at 0.575, while the open diam
shows a maximum resonance at 0.610. The difference is 6% betwee
two experiments. The tube diameter isD53.556 mm, and the aspect ratioL
is 10. HPLC grade water is used within a borosilicate glass precision gro
tube.
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sured natural frequencies for different aspect ratio are
sented in Fig. 5 together with the 0-D, 1-D, and 2-D a
proaches. The contact angle used for prediction,us , is 40°
according to the measurement in Sec. V.

Even for potential flow, a trijunction singularity exist
when the free surface is not perpendicular to the solid. T
analyses demonstrate that for a pinned contact line liq
slug with large length-to-diameter ratioL, the potential flow
solution and the end cap approximation are in agreem
The analyses also agree well with the experimental res
although the gravity effect and viscous dissipation are
glected. This indicates that for a long, pinned, inviscid s
the inner flow may be neglected when determining the re
nance of the end cap. The restoring force in the end
~0-D! model is contact angle variation—while curvature r
mains constant over the entire surface when gravity is n
ligible.
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APPENDIX: EFFECT OF SLIP

A stick-slip boundary condition for the contact line
implemented and its results are shown in Fig. 6. Althou
experimental slip conditions for this case are mo
complicated,12 we usea simple stick-slip contact line mod
that is similar to Hocking13 ~i.e., h1gh r50 on r 51). As
g→0, the frequencies converge to the pinned contact-

FIG. 5. Natural slosh frequencies by measurement, 2-D, 1-D, and 0-D
proach for different aspect ratio. The contact angle used for prediction is
determined according to the measurement procedure described in the
e-
-

e
id

t.
lts
-

g
o-
p

-
g-

h

e

solution ~about 0.6 in Fig. 3 forus540°). As g→`, the
contact line slips on the wall boundary, and the frequen
goes to zero as the restoring force of the meniscus vanis
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