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Axisymmetric slosh frequencies of a liquid mass in a circular cylinder
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Spectral eigenvalue methods along with some lower-dimensional techniques are used to determine
the natural frequencies of a liquid slug in a circular tube. The contact lines are either pinned or
governed by a slip coefficient assumed small. Corresponding physical experiments are conducted
for a borosilicate glass tube and a treated water slug. Gravitational and viscous effects are neglected
for the analyses. The spectral results agree well with a simple spherical end cap approXipeation
dimensional for large aspect ratio slugs and with a membrane approximétioa dimensionalfor

small aspect ratios. The experimental observations for different aspect ratios agree well with the
predictions, although the gravity, viscosity and/or slip are neglected in the analys280®
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I. INTRODUCTION II. ZERO- AND ONE-DIMENSIONAL APPROXIMATIONS

. . . : 9 ;
Surface wave natural frequencies with boundaries and AS proposed by Hilperet al.” if the end cap remains
edge constraints continue to be of much interest. Solutions tgPNerically shaped for small perturbations, and the slug is
the inviscid problem with pinned contact line have beenIong relative to the tube d|ameter, _the mwspld slug and end
proposed:~ These solutions address surface capillary and/or@P can be modeled as a simple linear spring—mass system.

. o . : An equivalent spring constant can be derived from the sur-
gravity wave applications for a layer of finite depth fluid. On face tension restoring force, inertia is determined from the
the other hand the two fluid—air interfaces of a slug allow '

: - | center of mass motion, and then the lowest slosh frequency
many modes that are not possible for a single interface. Th@iven accordingly. The slosh mode has primarily axial mo-

problem is motivated as a first step in understanding how tgion hetween two interfaces instead of the more usual particle
move these slugs by forced vibration, possibly in microgravmotion for standing waves with one free surface as shown in
ity. the time lapse figure on the bottom of page 111 of Van
In the analyse$;® the undisturbed free surfaces are per-Dykel® We term this approach the end cap or the zero-
pendicular to the solid walls. However, this is usually not thedimensional(0-D) approximation(as no spatial dependent
case for most applications where capillarity is importaht: Vvariables are required It is apparent that for small slug
The fluid surfaces are highly curved in a capillary tube.length-to-diameter ratio, this method is not appropriate be-

Graham-Eagfe allows small static surface deflections and cause flow details near the two ends are neglected. There-

hence that analysis models the case where the apparent std@£e: for verification of the boundary value problem solu-

contact angle is close but not equal to 90°. Motivated b lons, for S“_“a” aspect rqnos, a _solut_|on _for_ a circular
. . ; . . . membrane(with varying thicknesp vibration is included.
nonlinear forcing of a tube and its possible fluid delivery

This is valid when motion is strictly in the axial direction and

under micro-gravity, slug motion responses are investigateﬂqe membrane tension is derived from small surface eleva-

by oscillating a circular cylindrical tube horizontally along 54 The approximation is one-dimensioratD) since only

its axis with a programmed periodic motion. It is thus desir-gne spatial coordinate is required for axisymmetric solutions.

able to determine the natural frequency of the end caps under To prescribe the problem, a definition sketch and a pho-

pinned or partial slip contact line conditions. tograph from an experiment are included in Fig. 1. All vari-
Here we present a potential flow solution as a generalables and parameters are scaled by the tube rdgliuhe

ized eigenvalue problem by expanding the two free surfacedensityp, and the surface tension coefficient

using Chebyshev and Fourier series with bases that satisfy

continuity and impermeable wall conditioA®ue to surface A. 0-D analysis: End cap approximation

tension, an undisturbed free surface in a circular tube is  The approximation is derived with the following as-

spherical in the absence of gravity. To determine the naturadumptions:

OSCI||.a.tI0n freql_Jency, the dynamic and klnemqtlc Surface(1) End caps remain spherically shaped during oscillation.

gond|t|0ns are Ilnga.rlzed under a small perturbation assumrt-z) A pinned condition is maintained.

tion and are satisfied at the undisturbed, but curved fre%) L>R.

surface! Solutions are presented for slug length to diameter

aspect ratios of 0.01-10. Experimental results are presentéthe dimensionless volumé of an end cap as a function of

for comparison with the numerical analyses. contact angled is
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Keq 4 Sinfy(1+sinf,)?

2_ " teq_
wcf=——=

wherem=27L is the mass of the slug when neglecting the
small volume in the end caps ahds the length-to-diameter
aspect ratio. Thus the natural frequency in nondimensional
form is

_ 2sinf(1+sinfg)?

2 3 . (1)

B. 1-D approximation: Membrane approximation

For a sufficiently short slug with a fldgbr a nearly flak
free surface, flow can be reasonably assumed to be parallel to
FIG. 1. Definition sketch: Elevation view of a fluid slug with length 2 the axial direction. The dynamic governing equation for axi-

(well-defined for analysis with non-wetting fillhand radiusl in a circular symmetric surface motion is 1-D. The undisturbed free sur-
cylindrical tube with pinned contact lineg= * ¢ (solid lineg are the un- —

disturbed stationary surface positions apd and »_ (dotted line$ are the faces are=+{ where
surface perturbation relative to £, respectively. The wave analysis consid- _ _ \/7—_2

ered here is normally axisymmetric. This symmetry is broken by the gravi- {=L+tan 05) Sec fs—re. @
tational effect on the static meniscus as shown in the photograph. Furthe,rl,_

the wave patterns can be separated into modes where the fluid velocities _orhe surface perturbatlon 5. The pressure jump across the

free surface disturbances. are either even or odd. The mode sketched INterface is determined by the surface tension times surface
above is even since the deformation of both surfaces is in the satinec-  curvature(the independent variable subscripts refer to partial
tion. This is the lowest slosh mode and that seen predominantly in ougjfferentiation:

experiments. This symmetry means that only one free surfsag 7. )

needs to be considered, with the other free surface condition replaced by odd A p St 7 s+ 7
or even symmetry, and hence the or — subscript is droppedds is the - = m m + ! !
static contact angle. In the absence of gravity, the static free surfaces repre- O [1+(s,t+ 7],)2]3/2 rv1+ (gr + 7Ir)2
sented byz= * ¢ are spherically shaped.is the apparent dynamic contact

angle that oscillates in time abodt. The photo at the bottom is from a Srr Nrr SrSrr M
Kodak high-speed imager where the slug is illuminated by a vertical laser ~ 2 2 - 2
sheet through the slug axis. To increase the image contrast, the water slug is [1+ Sr ]3/2 [1+ Sr ]3/2 [1+ Sr ]5/2
fluorescein treated, decreasing the static surface tension by approximately 2

3.5 dyn/cm(Ref. 12. Sr 1 Sy

+ —
r\/1+g,2 r\/1+g,2 I‘(l-i-grz)?‘/2

r s

where the approximation derives from smalz, , andz,, .

V(9)= K cosf(2+sin6) Considering both surfaces, we linearize the dynamic equa-
3 (1+sin6)® - tion for the membrane about its spherical surface:
The derivative of the volume with respect to the contact 1 . 52
i + -3 -
angle IS (1+§r2)3/2 r\/l+—§r2 (1+§r2)5/2 r(1+gr2)3/2 7
N 1
96~ T{L¥sing)’ = 3

;J'his non-constant coefficient wave equation can be solved
numerically(i.e., constructingy as a summation of polyno-
mials or trigonometric functions in and harmonic in time)

aV(6s) A6 for frequencies and modes. When the surface is flat we have
Y R the standard membrane equation

Considering the right side surface in Fig. 1, the small cente
of mass displacement with respect to equilibridgis

The pressure change by surface tension due to a small end VZn=Lny.

cap perturbation 6= 6— s is The axisymmetric normal modes of this boundary value

Ap=2(cosf—coshs)=—2 sinfA 0 problem are
=—2sinf(1+sin6y)3Az. n=Jo(wpLr)coswt, n=1,23,...,
The total restoring force and the equivalent spring constarivhereJy is the zeroth-order Bessel function of the first kind.
Keq from both menisci are determined from The pinned boundary condition results in the eigenequation

J L)=0. The lowest slosh frequency is
AF=2mAp=— 4 Sin6y(1+sin 65)?Az= — KA. o(wnL) quency

Thus the natural angular frequency for the mass—spring sys- Wy~ ﬂ:;

tem is JL @
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Ill. THE COMPLETE INVISCID BOUNDARY VALUE
PROBLEM AND ITS LINEARIZATION

Assuming an inviscid flow, the problem may be formu-
lated under the following conditions and additional assump-
tions: o

(@ Irrotational flow.

(b) No-flow through the cylinder walls.

(c) Linearized free surface boundary conditions.

(d) Spherical undisturbed free surface in the assumed ab () (b) © (@
sence of gravity.

(e) Pinned contact lines along each of the two free sur
faces.

FIG. 2. Lowest modes fok =10 with static contact anglés;=40°. The
resulting frequencies are 0.598 41, 8.324 488, 8.324 486, and 18.172 226,
respectively. We considé€g) to be the fundamental slosh mode and it is the
primary focus of the discussions. The 0-D approach appliég)tonly.

To determine the natural frequencies and mode shapes of

the ends of the slug, the associated equations are formulated
as a generalized eigenvalue problem. The two surface elevanonic in time. For axisymmetric solutionsp=0, we re-
tion perturbations relative to the unperturbed curved surfacesove the first subscript oA, and B, for simplicity.
z=+{(r) are expanded as a summation of basis functionSeparating to even and odd caseg iyields

(cosine series, Chebyshev polynomials, )etc.

In cylindrical coordinates, the equations governing the ¢, —giotS A coshknz ‘]O(knr)’ ®
fluid are simply n=o  coshk,L Jo(Kp)

V2d =0, (59 and

p(r=1)=—=0, (5b) Pr=€ 2 Boghi [ ok ©)

ar
. . . . . . ®, represents a solution with zero axial velocityzatO as if
where® is the velocity potential and is the radial velocity. there were a solid wall ther@ee Fig. 2 modes andd) and

Only one of the surfaces= ¢(r) as shown in Fig. 1 needs to .
) : o ®, represents the slosh mode only realizable for a &g

be considered due to symmetigr antisymmetry. Eliminat- - . .
free surfaces conditionFor a given static contact angtg,

ing the static equilibrium terms, the dynamic and kinematic

. . . . L is prescribed according to the spherical static shape. Using
surface boundary conditions for the linearized axisymmetri ; : ; S ;
a Fourier series to describe the surface elevation in harmonic
free surface ) are

motion yields

Trr 1 _3 SrSrr gr2 ) N ] )
1+ | [ Trs2 (1+s) 114D i n:e'wtn}::l ChCOSjf, jn=(n—1/27, n=123,.
— @, (10
or with Chebyshev polynomials:
A+ o 9L+ b
(Gtm) 90 I(itm) 9P DD, N
at aor gz T Tz ert ot
n=e ngl Cabn(r),  &n(1)=Ton(r)—1, Nn=1,23,...
n=0 (r=1). (6) (12

Both automatically satisfy,(r=0)=0 and»(r=1)=0 for
the axisymmetric mode.
A generalized eigenvalue problem is posed (By and
(8) or (9) upon using10) or (11). Calculations are conducted
for aspect ratios of 0.01 to 10. Since the basis functions

IV. NUMERICAL SOLUTION OF THE BOUNDARY
VALUE PROBLEM

A general solution to the boundary value problé€ba)

and (Sb) is satisfy the equations in the domain and on the side walls, the
oz coshk.z solution is obtained by collocation on the free surface. We
D=6 > (AmnTnL use standard collocation poiritsevenly spaced im for the
n=0m=0 coshkn Fourier expansioifl0) and zeroes of the Chebyshev polyno-
sinhk,z Jm(Kar) mials for the Chebyshev expansigfl). The collocation
anm>0 mtl/m, (7)  points were placed on the curved, but unperturbed surfaces.

When we usedN collocation points to obtain the algebraic

whereJ,, represents the Bessel function of the first kind ofeigenvalue system, our eigenvalue was reasonable for mod-

the mth order andk,, are the zeros od;, to satisfy the wall
condition (5b). Here, ¢ is the polar angle and is the azi-

est values oN but diverged for largeN. Examination of the
boundary conditions showed large oscillatory residuals be-

muthal wavenumber. The/“! term indicates a solution har- tween the collocation points near0 for the Chebyshev



3662 Phys. Fluids, Vol. 15, No. 12, December 2003 Bian et al.

TABLE I. Convergence test with Chebyshev and Fourier surface expansions for different static contact angle for lowest made Mhén-" indicates
no real eigenvalue is calculated for the lowest mode. Convergence for smalbecomes problematic, but then viscous effects enter to make the physical
model invalid.

0s=20° 0,=30° 0,=45° 0= 65° 0s=90°

N Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier Chebyshev Fourier

10 0.361 479 — 0.484 132 — 0.650 763 0.679 158 0.815 895 0.816 924 0.891 566 0.887974
20 0.359 978 — 0.484 134 — 0.650 763 — 0.815898 0.816 443 0.983 437 0.890 041
50 0.359 977 — 0.484 134 — 0.650 763 — 0.815907 — — 0.890 630
100 0.359 977 — 0.484 134 — 0.650 763 — 0.815 902 — — 0.890 721

expansion and near the contact lime=(1) for the Fourier expansions exhibit different convergence for differemt
expansion. Numerical experiments showed that usingyl 1.5 regions. A global convergent solution for all static contact
collocation points to obtain an overdetermined system drasangles may necessitate a different series or a combined
tically reduced these errors and allowed convergence fostrategy.
largeN when Chebyshev expansion was used, but no similar
improvement was found for the Fourier expansion. Singular
value decomposition was then used as the solver for thg resuLTS AND COMMENTS
overdetermined system. The collocation procedure is non-
standard in that the free surfaces are not coordinate surfaces, In Table Il, numerical results are presented along with
but we recover the results of Henderson and Milesien the 0-D and 1-D approximations for different aspect ratios.
only one free surface is present and the undisturbed surfades expected from the discussion in Sec. Il, the potential so-
is flat. Our attempts at using a Galerkin method did not condution converges to the 1-D approximation for small aspect
verge. ratio (seeL =0.01, 6;=90°), and appears to converge to the
The generalized spectral eigenproblem is singular. Whe@-D approximation for large aspect ratib € 10). The 15%
kinematic and dynamic surface conditions are combined intalifference between the 0-D solution and the other approxi-
a single equation as a general eigenvalue problem, invertedations in theL=0.01, §;=90° case is caused by the non-
differential operators are needed. Spurious eigenvalues argpherical shape of the slug in the membrane limit.
slow convergence are thus possitBoyd!! pp. 139-142 The four lowest 2-D modes are presented in Fig. 2 for
The Fourier series numerical solutions for static contact. =10, now with static contact anglé,=40° Only the axi-
angle 4, close to 90° converge rapidly, while scaling and symmetric modes are considered. As expected, the funda-
roundoff errors accumulate. However, fég near 90°, the mental slosh modg-ig. 2(a)] has the lowest frequency. One
Chebyshev polynomials fail to converge before spurious eifFig. (2b)] is also even iny. The other two modes have odd
genvaluegwith paired imaginary frequencieslominate the perturbations and the flow behaves as if there were a solid
solutions. Interestingly for smallef,, the Chebyshev poly- wall at z=0 (Faraday waves. It is also apparent that for
nomials converge while the Fourier expansions do not conk =10 the second and third modes in Fig. 2 have very similar
verge, as shown in Table I. Both expansions exhibit converfrequencies. This is as expected for similar surface modes of
gence difficulties for smallds (approximately 20° and slugs with large aspect ratio: The relation between the two
below). This may be caused by the physically sharpened corsurfaces is weakened by a large mass between thitimthe
ner singularity and increased condition numbers of the reebvious exception of the fundamental slosh modéus the
sulting linear algebraic systeficonsidering the exponential two surfaces behave somewhat independently, leading to
expansion in the axial directignlt is not clear why the two similar flow fields for the two modes.

TABLE Il. Pseudospectral results, nondimensional lowest frequengieshhow convergence to 0-D approxi-
mation forL =10 and convergence to 1-D approximation ko 0.01.

L=0.01 L=0.1 L=1 L=10

O 90° 89° 90° 80° 90° 30° 90° 30°

0-D approximation: 28.2843 28.28000 8.9443 8.8086 2.828 43 1.5 0.8944 0.4743
(spherical end cap

1-D approximation 24.0500 41.53152 7.6053 12.9810 2.4050 1.8250 0.7605 0.4476

(membrang

Spectral 100  24.0506 4153591 7.6680 13.0890 27138 19376 0.8907 0.4841
method for 509 740506 4153411 7.6680 13.0890 2.7140 19376 0.8906 0.4841
varying

tuncationy 20 240508 4152177 7.6685 13.0873 27155 19376 0.8880 0.4841

5 24.0871 4132434 7.6839 13.0488 2.7522 1.9532 0.8803 0.4890
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Figure 3 presents results of the potential and the 0-Ds 25 o
solutions for varyingfs and for fixed large aspect ratibo T °
=10. The 2-D results shown in Fig. 3 are given for Cheby- & » A
shev or Fourier expansions in favor of convergence. Accord-g
ing to (1), the frequency for the 0-D approximation is sym- % 15 g
metric with respect t@;=90°. _2
For comparison with numerical results, free oscillation & 1 4
and forced oscillation tests were conducted. A precise boro-% o
silicate glass tube was used with internal diameler § 05 a g
=3.556 mm and square outer cross section 12.7 mir
X 12.7 mm for reduced optical distortion. The tube was 0 ‘
. . 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
washed with alcohol and HPLC grade water, and then dried I a——

with dry compressed air. The liquid slug was made using

HPLC grade water. Eor the free oscillation test. the tube moF!G- 4. Free and forced oscillations experimentally determine the natural
’ g‘equency of a water slug in a cylindrical tube with pinned contact line and

tion was stopped suddenly from a constant horizontal spee, nearly spherical end cafa) The tube is suddenly stopped from constant
and the end cap apex position as a function of time waselocity while recording the surface elevatiafir =0). A natural frequency
recorded by a Kodak high speed video imager; the results ar 0.571 fits the data in the figuréb) The tube is driven horizontally by a
presented in Fig. 4. The time origin in Fig(a% was chosen harmpnic displacement='a COSwt.Whereaa.)2 is held constant and is
af_ter a suﬁicie_nt time to avoid initial transients, contact Iin_eszug IJ(.:IOE z{])t.lyTr??;gaEtob;e:k t;ﬁpll'i?lf;é éfe?r']z%if;::ig;ﬁiiﬂzirzg d
slip, and nonlinearity. To measure the contact angle, the inpy ) is plotted as a function ob for two replicated experiments. The open
terface was assumed to be spherically shaped and the heigltiare shows a maximum resonance at 0.575, while the open diamond
of the end cap was taken as the average horizontal distanekows a maximum resonance at 0.510. The difference is 6% betWt_:-zen the
from the upper and lower contact line in a 2-D image to that"’? &Periments. The tube diameteis=3.556 mm, and the aspect ratio

_ . . is 10. HPLC grade water is used within a borosilicate glass precision ground
at the apex(Similar measurements fitting a circle to the two ¢ pe.
contact line locations and the apex produced similar results
with more experimental errgrPresumably due to contact
line hysteresis, the initial contact angles were measured axf frequency was obtained and is plotted in Figh)41n both
approximately 30°—70° when the slug was placed in a dryexperiments, the pinning of the contact line was ensured by
tube by syringe. constantly monitoring contact line motion relative to the

We found less experimental scatter when an initial distube.

turbance was sufficiently large to cause slip motion—slip  We found that the free oscillation test is simpler to con-
caused by other forces generally had a similar effect. Thérol. Only one experiment is required for a given slug to
static contact angle measured immediately following the freestimate the natural slosh frequency, and the actual static
oscillation decay generally had a scattert05°. No depen- contact angle can be obtained immediately following the end
dence on aspect ratio was observed for the range we meeaap displacement measurement. On the other hand, the
sured (1.28&L=10.3). For the forced oscillation test, the forced oscillation requires measurements for different fre-
tube was driven horizontally by a harmonic displacement quencies and the slug will often slip near the resonant fre-
=a coswt, where the forcing amplitudew? was held con-  quency. Due to contact line hysteresis, it is difficult to have
stant. Thus the amplitude of the end cap motion as a functiothe same contact angle for replicated experiments. The mea-
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FIG. 5. Natural slosh frequencies by measurement, 2-D, 1-D, and 0-D ap- Slip parameter, y

proach for different aspect ratio. The contact angle used for prediction is 402

determined according to the measurement procedure described in the text C: 8 Lowest slosh frequency vs the slip par_a_m@'te“’ef'_”ed as thg slip
coefficient in the contact line stick-slip condition at=1: n+y7,=0,

where 7 is the surface perturbation from the curved static free surface.

. . . =10 and§s=40°.
sured natural frequencies for different aspect ratio are pre- s

sented in Fig. 5 together with the 0-D, 1-D, and 2-D ap-
proaches. The contact angle used for predictiy),is 40° ¢ jution (about 0.6 in Fig. 3 forg,=40°). As y—, the

according to the measurement in Sec. V. contact line slips on the wall boundary, and the frequency

Even for potential flow, a trijunction singularity exists g,es tg zero as the restoring force of the meniscus vanishes.
when the free surface is not perpendicular to the solid. The
analyses demonstrate that for a pinned contact line quuid1 o _ _
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