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The electromagnetic field is minimally coupled to gravity in a Riemann-Cartan space-time 
containing a charged magnetized spinning fluid. It is required that the overall 
Lagrangian of the gravitational field, spinning matter, and the electromagnetic field be 
invariant under a gauge transformation of the vector potential. The theory preserves both 
charge conservation and particle number conservation. The electromagnetic field, via 
the vector potential, now interacts directly with the spin energy momentum. The spin transport 
equation, in addition to the usual Fermi-Walker transport term, contains a contribution 
due to the torque of the electromagnetic field acting on a magnetic dipole. In the absence of 
electromagnetism, the field equations reduce to those of the usual self-consistent 
Lagrangian formalism for a perfect fluid with spin density. 

I. INTRODUCTION 

We consider the problem of “minimally” coupling 
the electromagnetic (EM) field to a Riemann-Cartan 
(RC) space-time for charged fluids with spin density. 
One of the major historical problems with coupling the 
EM field to any space-time geometry has been the main- 
tenance of gauge invariance or charge conservation in the 
theory.’ The most common prescription for lifting special 
relativity to general relativity (GR) is to replace ordinary 
derivatives with covariant derivatives. This is the princi- 
ple of minimal coupling. When this principle is applied to 
electromagnetism, the special relativistic Maxwell field 
tensor, 

Fv=Aj,i - Aij (1) 

becomes 

In GR, the symmetric Christoffel connection renders 
these definitions equivalent. 

The generalization of a geometrical object to a more 
complex space can be done in many ways; there is no a 
priori requirement that the EM field be a two-form.* One 
is free to impose prior constraints on the fields or overall 
constraints on the form of the field equations after gen- 
eralization, for example, one may require that the La- 
grangian satisfy certain conditions such as overall gauge 
invariance. 

As an example of the above discussion, one extension 
of GR is the Einstein-Car-tan (EC) theory in RC 
space-times.3 In this theory, space-time has a spin acti- 

vated torsional property so that the connection now con- 
tains torsion terms in addition to the GR Christoffel part 

ri,= 
IJ’I *k + Sji - Sij + Si, 9 

where Sijk = rill. Because of the antisymmetry of the 
connection, there are ambiguities and difficulties in gen- 
eralizing the principle of minimum coupling to the treat- 
ment of electromagnetism in the EC theory.‘14 The largest 
problem involves maintaining gauge invariance and 
therefore charge conservation. Two major approaches 
have been used to describe electromagnetism in RC 
space-times. One either defines the field tensor by Eq. 
( 1 ), giving up minimal coupling in return for gauge in- 
variance, or one enforces minimal coupling by using Eq. 
(2) and develops models to deal with the gauge invari- 
ance difficulties. Hehl’ has proposed using Eq. ( 1) for 
Maxwell fields, reserving minimal coupling for massive 
fields, like a Proca field. This suggestion will decouple 
photons from the spin-activated torsion. de Ritis et aL6 
and Amorim7 have developed a charged spin fluid for- 
malism in RC space-time assuming that the field tensor is 
a two-form given by Eq. ( 1). The simple use of Eq. ( 1) 
can also require the introduction of interaction terms into 
the Lagrangian, as in the work of De Sabbata and 
Gasperini.8 

Hojman et al9 and Hammond,” among others, have 
developed formalisms that enforce minimum coupling. In 
the work of Hojman, a propagating scalar field was in- 
troduced to help solve the gauge invariance problems. 
This field served to restrict the allowed form of the tor- 
sion and has as its source the EM field. The theory pre- 
dicts the existence of both electric and magnetic currents. 
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Mukki and Sajed” extended this approach to Yang-Mills 
fields. In Hammond’s approach to minimal coupling,” 
the ordinary Einstein-Maxwell theory is interpreted as a 
RC gravitational field with propagating torsion. The tor- 
sion vector was assumed proportional to the electromag- 
netic vector potential Ab In this model, the photon de- 
velops a nonzero mass. 

II. LAGRANGIAN FOR PERFECT FLUID WITH SPIN 
DENSITY 

The purpose of this paper is to develop a minimally 
coupled Lagrangian theory that will treat magnetized and 
charged spin fluids in RC space-times without introduc- 
ing massive photons, restricted torsion, or other un- 
wanted features. This work is an extension of the self- 
consistent Lagrangian for a perfect fluid with the spin 
density developed by Ray and Smalley.” 

The self-consistent Lagrangian formulation for per- 
fect fluids with spin density has been described for both 
general relativity and RC space-times.i2*i4 In these space- 
times, a physical property of matter-the spin density-is 
coupled to a natural geometric object-the proper 
torsion---of space-time” via the torsion field equation. 
The Lagrangian density is given by 

L=LG + LS, (4) 

where the Lagrangian densities for the gravitational field, 
spinning fluid, and EM field are given, respectively, by 

In our approach, the self-consistent Lagrangian for- 
malism for spinning fluids in RC space-times12 forms the 
basic Lagrangian to which we add a Lagrangian for the 
EM field. We point out that earlier work by Amorim’ and 
by de Ritis et aL6 using the self-consistent formalism as- 
sumes that the EM field is a two-form. Instead here, we 
assume that the EM field is minimally coupled to the 
geometry of RC space-time via the asymmetric connec- 
tion of RC space-time. The EM Lagrangian contains the 
usual field Lagrangian plus an interaction term between 
the EM field and magnetic dipoles and a current term.13 
It will be necessary to show how one is able to conserve 
gauge invariance, not only for the EM field tensor, but 
also for the Lagrangian as a whole. 

(5) 

and 

Ls=e( - p[ 1 + E(P,S,Sjj)] - A2+i(pUi) + A3Uk afi 

+A4ukap+&(gi#d+ 1) - kpa%~ 

+A,,(gifZ’iU1’- 1) +&2(gip2’U2j- 1) 

+ U*~~jU’iU2i + 2jl14giplilcj + 2A2&ijU2id) 3 (6) 

Our treatment of a spinning fluid interacting with an 
EM field is closely related to that of the Einstein- 
Maxwell theory in Riemannian geometry in which the 
flat space derivatives of Minkowski space are generalized 
via the Riemannian connection to the covariant deriva- 
tives of Riemannian geometry. As we noted earlier, it is 
purely an accident, due to the symmetry of the Christoffel 
connection, that this approach in GR coincides with the 
two-form approach for the electromagnetic field. In our 
self-consistent approach, all fields, including the electro- 
magnetic field, will be coupled to the geometry via the 
RC connection. The EM fields are thus considered part of 
the system and therefore mutually interact with all fields. 
By contrast, the two-form approach seems to treat the 
EM field as an external field. 

In Sec. II, we briefly review the self-consistent La- 
grangian for a perfect fluid with spin density, and in Sec. 
III, we introduce the EM Lagrangian. We discuss gauge 
invariance in Sec. IV. The complete Lagrangian and its 
variation is given in Sec. V, and we derive the various 
field equations in Sec. VI. In Sec. VII, we demonstrate 
several of the technical details involving the field equa- 
tions such as charge conservation, spin transport, and the 
interaction between the EM field and the spin energy- 
momentum density. We give our conclusions in Sec. VIII. 

where 8 is the scalar curvature, K = 87rG, G is the grav- 
itational constant, gii is the metric tensor with holonomic 
indices given by latin characters such that i = 0,1,2,3, and 
e = Fg, where g = det(g$. The matter density is p, s 
is the entropy density, X is the fluid parameter associated 
with the Lin constraint,t6 and d’ are tetrads with anholo- 
nomic indices p = 1,2,3,4 such that a4i = ui is the four- 
velocity of the fluid particles. The function E then repre- 
sents the internal energy of the fluid that is a function of 
the density, entropy, and the spin of the fluid in the self- 
consistent formalism. The various A’s are the Lagrange 
multipliers that ensure particle number conservation, Lin 
constraint, conservation of entropy, and the orthonormal- 
ity of the tetrads. An overdot represents the action of 
derivatives along fluid flow lines, uk Vgzzi =b2i, where Vk 
is the covariant derivative in RC space-time. The “star” 
derivative, ?i = Vi + ~, where Si=Shx is the torsion 
vector. A discussion of the star derivative is given by 
Hehl. I7 

The first five terms in the spin Lagrangian are the 
generalization to RC space-time of the general relativistic 
perfect fluid Lagrangian density of Ray. ‘* The remaining 
terms give the generalization of Halbwachs’ special rela- 
tivistic treatment of spinning fluids” to RC space-times.20 
The spin tensor is 

#=~(a~a2i _ alja2i) (7) 
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In the self-consistent formulation, the thermodynam- 
ics of a spinning fluid is described by 

de=Tds-pd(Vp) +fwiids’i, (8) 

where T is the temperature, p is the pressure, and 
wq=hya,i is the tetrad angular velocity. After introduc- 
ing the EM Lagrangian in the next section, we will gen- 
eralize the thermodynamics to include EM contributions 
to the internal energy. 

Ill. LAGRANGIAN FOR CHARGED, SPINNING FLUID 
WITH MAGNETIC DIPOLES 

We wish to extend the general form of the EM La- 
grangian given earlier by Amorim,13 

LEM = e{ - $‘jFv + -#!Fc + pAk), (9) 

where Fy is the EM field tensor, M’i=p# is the magne- 
tization tensor, x is the magnetic susceptibility, Jk=qpuk 
is the current four-vector, q is the electronic charge, and 
Ak is the four-vector potential of the EM field. However, 
we do not assume that the EM field tensor is a two-form. 
Instead we minimally couple the EM field to the geome- 
try, in the sense that 

Fii=2Vp4,p (10) 

where Vi is the covariant derivative in RC space-time. 
If the EM field is coupled to the geometry of space- 

time, then it, as well, should be treated as a thermody- 
namic variable in the self-consistent formulation, The 
thermodynamics of magnetic systems has been discussed 
extensively by Guggenheim.2’ The Hamiltonian dynam- 
ics of neutral EM fluids with induction is described by 
Helm.” Accordingly, for charged perfect fluids with spin 
density, we extend the thermodynamics from Eq. (8) to 

(11) 

where mg=xs’? The particular form of the magnetization 
term is similar to the form given by Sychev.23 The inter- 
action term for a dipole, mu, was earlier included in 
charged spin fluids by Amorim7 and de Ritis et a1.6 How- 
ever, the field energy involving only F7 was not included. 
Without this latter term, the dipole energy arises only 
from interactions with external fields, neglecting the 
dipole-dipole interaction energy. By including the last 
term in Eq. ( 11)) we include the energy density of all EM 
fields, including the dipole fields, as part of the total sys- 
tem. 

In the next section, we show how we must augment 
the EM Lagrangian in order to maintain gauge invari- 
ance. 
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IV. GAUGE INVARIANCE 

The idea behind gauge invariance in any Lagrangian 
based theory follows the general approach for the Dirac 
Lagrangian. For Dirac fields, gauge invariance requires 
extending the usual gauge transformation of the vector 
potential to include a “gauge transformation of the sec- 
ond kind”24 for the quantum Dirac field. The equivalent 
field in RC space-time is the torsion field. Thus we re- 
quire that F’i (as well as the total Lagrangian, which we 
will discuss in Sec. V) be invariant under the extended 
gauge transformation25 

Aj = Aj - ilp, (12) 

s~k=siik + $bSfi a,l(p, (13) 

where p,(x) is the gauge field and b is a constant of pro- 
portionality. The equivalent effect on the connection is 

r+rijk+$bs; ap-$ bgv akp. (14) 

Previous attempts to generalize the Dirac field to RC 
space-time only seems to have been successful providing 
the torsion field is restricted to the torsion vector part’?” 
without proper torsion. Such a restriction, in our case, 
would mean that our matter Lagrangian could only be a 
perfect fluid without spin density since the proper torsion 
is directly related to the spin density.15 However, we do 
note that the torsion vector seems to play an important 
role in these theories, and in some cases is proportional to 
the vector potential itself.” In order to understand this 
aspect of our Lagrangian, we write the torsion tensor in 
terms of its proper (trace-free) and torsion vector (trace) 
parts 

siik=gjk - $ s:s,3, (15) 

where the overcaret indicates the proper torsion part and 
Sj3Sjkk defines the torsion vector. Combining &s. ( 13) 
and ( 15), we see immediately that the extended gauge 
transformation of the torsion tensor is equivalent to the 
transformation 

Sj=Sj- b afl, (16) 

q+. (17) 

By comparison with Eq. ( 12)) one may conclude that the 
torsion vector and the vector potential are proportional, 
i.e., 

SjE bAj (18) 

We will therefore assume this restriction in the EM La- 
grangian. 
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The combined action of the extended gauge transfor- 
mation on the EM field gives 

Fb= Fii - 2QbALi a,p + f S’[ j &p - svk iI@}. (19) 

If the torsion vector is identified with the vector potential 
[Es. (18)] and using the proper torsion field equation” 

$jk= (K/2)pSijUk, (20) 

one finds that the transformed EM field is now invariant 
providing we further require that the gauge in the tetrad 
(comoving) frame of the spinning fluid is not an explicit 
function of time, i.e., 

u” a@=o. (21) 

This is equivalent to the covariant constancy of rp along 
fluid flow lines; however, by choice of the tetrads associ- 
ated with the spin density given in Eq. (7), i.e., the co- 
moving frame of the fluid, this reduces to the above con- 
dition on the gauge. Equation (20) is not assumed but 
comes from the Lagrangian variation. We show this in 
Sec. VI. The condition on the gauge, Eq. (21), is very 
similar to the harmonic condition imposed in classical 
electromagnetism when, for example, one imposed a par- 
ticular gauge such as the Lorentz gauge. The same effect 
occurs for general relativity.26 Thus we are led naturally 
to the addition of a gauge fixing term to our EM 
Lagrangian.‘&** 

Because of the above considerations, we could add a 
term to the EM part of the Lagrangian that fixes the 
Lorentz gauge in RC space-times, but first we must de- 
termine whether we can also make the total Lagrangian 
invariant under gauge transformations as well. It is not 
difficult to determine that the perfect fluid with the spin 
part of the Lagrangian is invariant, but the gravitational 

I 

field part is not. It is instructive to write the scalar cur- 
vature in terms of its Riemannian plus torsion parts, 

~=K+~V~}S~--S~~+~~~~~I+~~~~, (22) 

where the scalar curvature K and the covariant derivative 
VP are those of Riemannian space-time. Considering only 
the torsion vector terms, we note that the variation of the 
divergence term with respect to torsion vanishes, but 
there is the contribution from the torsion vector squared 
term 

6{-tS$‘)= -~&6sk, (23) 

in order to maintain gauge invariance of the total La- 
grangian, the correct form of the gauge fixing term should 
then be 

LGF= - e{(2b/k)Vpfk}. (24) 

Our form of the EM Lagrangian is found by combining 
Eqs. (9) and (24) plus a (torsion vector)-( vector poten- 
tial) constraint term following Eq. ( 18)) 

-$Ak . I (25) 

In the next section we find the variation of the total 
Lagrangian. 

V. VARIATION OF LAGRANGIAN FOR CHARGED, 
SPINNING FLUID IN RC SPACE-TIME 

The total Lagrangian for a charged perfect fluid with 
spin density is the combination of Lagrangians given by 
Eq. (51, (61, and (251, 

L=LG + LF + LE=e g - p[ 1 + ~(p,s,s~FJ ] - /22$i(pU’) + &uk a& + &uk$$ - kpU’h*i + A1 (g&u’ + 1) 
I 

+ A,,(gip”a”- 1) + A**(gip*‘U*‘- 1) + W,gip’iu2j + U,~i~“uj + 2A2dip2’d - t F’Fu 

+$f”F~+JkA~-$&ik+&(sk-bAk) , 
I 

(26) 

where the variables of variation are g@ gYk, Sk, p, s, x, ali, Use, ui, Ak the various Lagrange multipliers, A, and @G. In 
order to complete the variation of L, we must add to this system the thermodynamic relationship for a charged spinning 
fluid given by Eq. ( 11) . 

The total Lagrangian [Eq. (26)] yields the following variational field equations, SL: 
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metric equation Sg, 

?-[ - &i) + fik( y-kg+ Tki’)] _ -ip( 1 + e)gij _ ~~u~~&# + ~,[pku$$~~]u*i) _ l $k[psMi& _ f $l[pu[ka(liu*j)] 

+ !.$.fk~Fkxrg”- f SUAj) _ ig”A# =o, 1 
where TUk=SUk,+ 26$,, is the modified torsion tensor.29 
Proper torsion GSijk, 

_ ( l/K) [$ii - $jk + $ki] + 
i 
pu[is/1k _ ! pu,$j =o- 

2 1 
;W 

torsion vecto?” SSI, 

- (8/3~)S~ + ck + (4b/3K)Ak=0; (29) 

vector potential SA, 

M”s,k - I;‘is,k + $p’k _ $Nik _ b& + (4b/jK) Sk 

+ qpuk= 0; (30) 

muss density 6p, 

- (1 +E+$) -;Ts+i,+;i@FU+qukAk=O, 

(31) 

where T, is the spin kinetic energy. 

Four-velocity Suk, 

- pka” Vka*i + p Vd2 + A3 a& + A4 ati + 2&uk 

+ &a+& + &&*k + q/&=0; (32) 

tetruds, 

6a”: - pkwip*’ - pkh*i + 2ill la’i + U12a2i + 2~14ui 

+ pxkFja*j= 0 1 , (33) 

su*‘: - pkwjp” + pka’i + pkti’i + 2~,2u2i + Wl2~'i 

+ 2d24ui + pxkF,p’j=O. J 2 (34) 

Lin SX, 

* 
vk(&Uk) =o; (35) 

(27) 

I 

entropy Ss, 

+k(&Uk) + pT=O. (36) 

The Lagrange multipliers give the following constraint 
equations: 

Conservation of particle number &I,, 

+i(pU’) =O; 

Lin constraint &I,, 

X=0; 

conservation of entropy ail,, 

s=o; 

and 

(37) 

(38) 

(39) 

orthonormulity of tetruds &I,+,, 

gipPuvj = y, (40) 

where #“’ is the Minkowski metric, with signature 
(l,l,l, - I), and A&+ so that the four-velocity con- 
straint is contained in Eq. (40) as well: 

torsion constraint SCS;, 

Sk= bAk. (41) 

Equations (27-41) represent the raw variational field 
equations obtained from L. In the next section, we arrive 
at the useful form of the metric, torsion, and EM field 
equations. 

VI. FIELD EQUATIONS FOR A CHARGED SPIN 
FLUID 

A. Field equations for spin 

The proper torsion field equation is obtained from 
Eq. (28) by taking the cyclic permutation of the indices 
(kij) + (ijk) and then adding to the original. We find 
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?ikk= (K/2)pSijUk, (42) 

which is identical with Eq. (20), which we had assumed 
earlier in our discussions in Sec. IV on gauge invariance. 
It is also in agreement with earlier work on the status of 
the proper torsion for spinning fluids in RC space-time,” 
which establishes the relationship between the spin den- 
sity of a fluid and torsion. 

In order to reduce the metric equation (27) to a more 
recognizable form, we must first replace the tetrads by 
tensors and substitute for the Lagrange multipliers. 

Multiplying the Su” equation (33) by a”‘, we find 
that 

sulting equations, noting that ill2 and i=O, and finally 
substituting for At4 and 13*,, using the combination given 
by Eq. (50). After identifying the spin tensor, Eq. (7), 
we obtain the intermediate step 

pWf#k+pk[h(lia2j) -u(lj~2i)~ + 2;ll,[a(liulj) 

+ uWu*j)] + ~14u(ia*~) + 2~24u(iu*j) 

+ pmk(jFt) =O. (51) 

For convenience, we will introduce the Amorim 
tensor’ 

&=O. (43) 

Then multiplying the Su*’ equation (34) by uli and using 
the above relationship, we obtain 

LO, (4) 

which says that the spin module function is covariantly 
constant along fluid flow lines. This just says that the spin 
in the tetrad (anholonomic) frame is a constant.*’ 

B$= C&j + du,)F$. (52) 

We then divide Rq. (51) by two, add back Eq. (50), and 
substitute for the Amorim tensor to obtain the useful 
relationship 

B. Stress energy content 

Multiplying the 6~” equation (33) by uii and the Su*’ 
equation (34) by a2i, antisymmetrizing ij, using Eqs. 
(43) and (44), we find that 

;1 11 =a2,=T -+I&.. S P (45) 

where Ts=-$wi/ is the spin kinetic energy. Also, mul- 
tiplying the Sp equation (3 1) by p, we find 

/d2=p( 1 + E + p/p) + Ts - ; M’iF,j - f@Uk&. (46) 

Then multiplying the Suk equation (32) by uk and sub- 
stituting for A2, we get 

~ll[u(*iu*i) + u(*ia*j)] + 2[~l,u(iu*~) + ~24u(iu*i)] 

--pU$ilk,ik _ -.Lwk(i#k _ 4 pmk(i@lk 

_ -gk[h(*i&) _ a(*i$i). (53) 

Finally, upon substituting Eqs. (37), (43), (46), (47), 
and (53) into Eq. (27), we finally obtain our form of the 
metric field equation 

G”i, _ $,( Tk’i + Tki’) ,KTij , (54) 

where the symmetric energy-momentum tensor has the 
components 

r’i= p& + @ + TiM + T&, (55) 

with perfect fluid energy-momentum tensor 

?-$=/I[ ( 1 + E +p/p) - f mk’Fkl] Uid + psi’ (56) 
A,=ip(l +~+p/p) -tM”l;;i; (47) 

If we multiply the Su” equation (33) by ui, we find 

A ,‘, = pk+*j + ; pxkFiiuiu2j, (48) 

and similarly, ui times the Su*’ equation (34) gives 

A*,= - pk+z” - +pxkFiiuiulj. (49) 

Multiplying the first of these two equations by u%‘j), the 
second by ~(‘a*~~ , and then adding gives the identity 

a’4u%‘~) + j124u a (i *A --pU(i$kik + fPU~FlkU(i,&k. (50) 

A necessary relation is obtained from the Sa” and 
6u 2i variations by multiplying the first by u’j and the 
second by u*j, symmetrizing on (ij), adding the two re- 

where we have included a magnetic energy term to the 
internal energy, with spin energy-momentum tensor 

y--p2pu(~i)k~k + $k[pu($ilk] _ pW&,ilk (57) 

an electromagnetic energy-momentum tensor 

p&c - [Fk$fk + ; si’Fk’Fkl + Mk(i@k], (58) 

plus a gauge fixing, energy-momentum correction tensor 

T&= - ( 8/3~) (S’si - 1 gQkS 2 k * ) (59) 

Although this gauge fixing term seems surprising at first, 
its origin derives from the requirement of overall gauge 
invariance of the total Lagrangian. Writing out the left- 
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hand side of Eq. (54) in terms of its Riemannian plus 
proper torsion and torsion vector parts, 

G(‘l) _ 2 $kTk(‘i)&ij({}) + ~$$>k + $i$X~ 

-s s,/ -;gqs s*, “x1(? ‘) ‘. ^lmx^ 

+ zs^“s^,, ) - ; (SSJ - ; g?@) , 

(60) 

we see that the gauge fixing terms exactly cancel the tor- 
sion vector part, leaving only the Einstein tensor plus 
spin-squared terms after using the proper torsion field Eq. 
(42). 

C. Electromagnetic field equations 

Upon multiplying the ask Eq. (29) by b, adding to 
the 6Ak Eq. (30)) and simplifying the covariant deriva- 
tives, we find the EM field equation 

vprC’,vpMk. + p , (61) 

where Vjl is the Riemannian covariant derivative. 
The remarkable simplicity of the EM field Eq. (61) 

will be exploited in the next section in the discussion of 
charge conservation. We will also consider the effect of 
the EM field on spin transport and its interaction with 
spin energy momentum. 

VII. PROPERTIES OF EM FIELD IN RC SPACE-TIME 

A. Charge conservation 

From the form of Jk = qpuk, we know a priori that 
$2 = 0 because of the particle number conservation 
constraint Eq. (37). However, for any vector vk in RC 
space-time, it may be shown that 

t,yk=vpyk. (62) 

Then the divergence terms in Eq. (61) satisfy the condi- 
tion (for example) 

$,vi}P= v#vffr;J*= f Kki,kp’ + ;Kki;+= 0, (63) 

where KUkf is the Riemann tensor in Riemannian space- 
time. Thus Rq. (61) under the action of the “star” de- 
rivative irk in RC space-time, satisfies the condition for 
charge conservative, even though the EM field, Fin con- 
tains explicit torsion terms. These same torsion terms in 
the EM field, however, lead to direct interaction of the 
EM field with spin transport and energy momentum. 

B. Spin transport 

In order to derive the spin transport equation, we can 
derive (in a similar manner) the antisymmetric equiva- 
lent to Eq. (51), 

pwk[i& + pk{&ia*A + a[*i~*A) 

+ {2;1@[iU1A + 2&&bZ2J~) - pF&ZJ~k=o, (64) 

and the antisymmetric equivalent to Eq. (50), 

A,4U[ia’Jl + A24U[ia2Jl =pU[‘$lk;, + fUl$‘lkU[i&lk. (65) 

From the definition of the parallel covariant derivative 
(dot derivative) on the spin tensor, we get 

.$= uk v,$?=2k{#iu*J~ + &i&~) , (66) 

because i=O. Combining Eqs. (64)-(66) and using the 
Amorim tensor, Eq. (52), we find the spin transport 
equation 

$ + 21jkuti$lk + mMiB/lk=o (67) 

The last term gives the torque term expected on a mag- 
netic dipole in the presence of an EM field. If Bjk van- 
ishes, Eq. (67) reduces to the usual Fermi-Walker trans- 
port of the spin tensor.‘* 

C. Spin energy momentum 

We rewrite the spin energy-momentum tensor in 
terms of RC coovariant derivatives that only contain 
proper torsion Vk plus a remainder term. This gives 

y+j= ?tj _ $ Ku(i.$)ksk= ?i _ 3 bKu(i#kAk, (68) 

where we have used the torsion constraint in the last step, 
and the overcaret represents terms independent of the 
torsion vector. In the absence of the EM field, i.e., A, = 0, 
then Sk = 0 &cause of the torsion vector constraint Eq. 
(41). Thus TX is the usual spin energy momentum of a 
perfect fluid with spin density when there is no EM field 
present.‘* Thus the term in Eq. (68) containing the vec- 
tor potential represents a direct interaction of the EM 
field with the spin. This alteration of the spin energy 
momentum is in addition to the usual energy shift due to 
a dipole term [the term containing Bik in Eq. (58) for 
T&J. The extra interaction term in Eq. (68) does not 
occur if one assumes the two-form definition of the EM 
field tensor such as in the work of Amorim’ or de Ritis et 
uZ.,~ since the torsion vector vanishes. The direct source 
of this term is the thermodynamics for a spinning fluid in 
the presence of a torsion field. When there is no EM field, 
then particle number conservation is sufficient to remove 
the torsion vector.‘* 
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D. Free field equations VIII. CONCLUSIONS 

In part A of this section, we showed that the EM field 
satisfies the usual condition for charge conservation. To 
complete the discussion of the EM field, we need to con- 
sider the constraints on the potentials obtained from the 
dual field equations for Div B and Curl E, i.e., the free 
field equations. In an inertial frame these equations take 
the usual simple form, Div B = 0 and Curl E = - dB/df. 
Ellis3’ has shown that in systems with vorticity, the 
“...motion of a family of observers affects the form of 
Maxwell’s equations [that] they would observe;...,” in- 
cluding the free field equations. In a spin fluid, the torsion 
of the spin fluid contributes directly to the vorticity.32 
Thus there will be contributions to the free field equations 
due to the intrinsic spin density of the fluid. In order to 
see this, we write the dual field 

We have shown that it is possible to find a variational 
theory in RC space-times for a magnetized charged per- 
fect fluid with spin density in which the EM field is min- 
imally coupled to the geometry through the RC connec- 
tion [see Eq. (IO)]. We require that the total Lagrangian 
for the theory be gauge invariant under the extended 
gauge transformation given by Eqs. ( 12) and ( 13). This 
necessarily implies that the torsion vector be proportional 
to the EM vector potential plus the addition of a gauge 
fixing term to the total Lagrangian. The gauge must be 
time independent in the comoving frame of the spin fluid. 

. *FJ = f &‘Fk, (69) 

where eiik’ is the totally antisymmetric Levi-Civita 
tensor.4 For consistency with Eq. (63), we take the 
“star” divergence of Eq. (69), 

fij*F’i, V,(“l;ii + *Fkj$jkx = f;Fu, (70) 

where the overcaret on ?j refers to the covariant deriva- 
tive constructed from the RC connection, F$ which con- 
tains only proper torsion (i.e., no torsion vector). Also, 
because of the torsion vector-vector potential constraint 
term in the EM Lagrangian Eq. (25)) then 

With the above restrictions, we find that the field 
equation for the Maxwell field takes the same form as in 
the Einstein-Maxwell theory in Riemannian space-time 
in theories that do not assume a minimal coupling ap;, 
preach. In our development, however, the field tensor P 
in Eq. (61) contains specific torsion terms, while both 
charge and particle number are conserved. Because the 
EM field specifically couples to the RC geometry, we find 
that the EM field directly influences the spin energy mo- 
mentum in addition to the usual dipole-EM field energy 
contribution. The theory does not neglect the interaction 
of the EM field with the spin density distribution and the 
consequent change in spin energy momentum. The origin 
of this is in the extended thermodynamics given by Eq. 
( 11) . We have also shown that the spin density affects the 
free field equations due to the torsion contributions to the 
vorticity in RC space-time. The same effect has been de- 
scribed by Ellis3’ for systems with vorticity in GR. 

Fii= 2 V@,I = 2 @,l=&, 

so that 

(71) 

*F’i, *$g (72) 

as well. Substituting Eq. (69) into Eq. (70) and using 
Eqs. (71) and (72), we obtain 

The spin tensor obeys a spin transport equation that 
includes a term describing the torque of a magnetic dipole 
in the presence of an EM field. When the EM field van- 
ishes, the spin transport equation becomes the usual 
Fermi-Walker transport. 

=eiikr[ - $[jk/jxAx - ~~,,~jk~] 

The metric field equation gives a symmetric energy 
momentum tensor that now includes an internal energy 
term due to the energy of a magnetic dipole in the pres- 
ence of an EM field; a symmetric spin energy-momentum 
tensor (discussed above); a symmetric EM energy-mo- 
mentum term that includes a dipole term involving the 
Amorim tensor’ given in Eq. (52); and a (symmetric) 
gauge fixing term. 

=eiikr[ - ?[$k4x A, - ?pi[[,!?j$], 
(73) 

where, in the last step, we have used the circulating iden- 
tity for the curvature tensor.33 The form of Eq. (73) 
explicitly shows how the torsion mimics the effect of 
frame dependence described by Ellis. Both the vorticity 
effect described by Ellis and the spin density effect de- 
scribed here are due to matter distributions. Note that if 
the spin density vanishes, one obtains the usual free field 
equations. 

We have demonstrated a new way in which one can 
couple the EM field to RC space-times while retaining 
many of the expected properties of the EM field in the 
presence of a gravitational field. Our particular method 
treats the EM field as part of the overall system instead of 
as an external field, as in developments where the EM 
field is a two-form. We have a well defined theory of the 
interaction of the EM field with a perfect fluid with spin 
density in RC space-time that has as its limit the La- 
grangian based theory of a spinning fluid in RC space- 
time when the EM field vanishes. 

There are many problems that can be studied with 
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the extended stress energy tensor. The most natural area 
of application is to systems in which the EM field is em- 
bedded in the matter distribution itself. Examples of such 
systems are galactic and star forming matter clouds with 
differential rotation or the gravitational-EM description 
of condensed objects with strong gravitational and EM 
fields. Another interesting possibility is an application to 
ferromagnetofluids or low temperature superfluids with 
spin density.34 
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