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Limiting current in a relativistic diode under the condition
of magnetic insulation

Mike Lopez, Y. Y. Lau, John W. Luginsland,a) David W. Jordan,
and Ronald M. Gilgenbach
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor,
Michigan 48109-2104

~Received 20 February 2003; accepted 1 August 2003!

The maximum emission current density is calculated for a time-independent, relativistic, cycloidal
electron flow in a diode that is under the condition of magnetic insulation. Contrary to conventional
thinking, this maximum current isnot determined by the space charge limited condition on the
cathode, even when the emission velocity of the electrons is assumed to be zero. The self electric
and magnetic fields associated with the cycloidal flow are completely accounted for. This maximum
current density is confirmed by a two-dimensional, fully electromagnetic and fully relativistic
particle-in-cell code. ©2003 American Institute of Physics.@DOI: 10.1063/1.1613654#
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I. INTRODUCTION

Magnetic insulation remains an important problem
pulse power systems and high power microwave sour
While there have been numerous publications on the sub
in the last three decades,1–19 strictly speaking, the maximum
injected current for a time-independent cycloidal flow in
relativistic diode under the condition of magnetic insulati
has never been solved, even for the one-dimensional, pl
geometry. The present paper provides the solution to
fundamental problem.

When a diode is magnetically insulated, an electron
leased from the cathode begins its cycloidal trajectory un
the crossed electric and magnetic field, reaching a maxim
excursion within this crossed-field gap before returning
the cathode surface~Fig. 1!. A collection of such electrons
then constitutes a cycloidal electron flow in the gap. In t
paper we calculate the maximum emission current den
that is allowed under the time-independent condition, fo
given gap voltage, gap spacing, and insulating magn
field.

It has often been taken for granted that the maxim
current that can be admitted into a gap is attained when t
is sufficient space charge in the gap to force the electric fi
on the emitting surface equal to zero. Under this conditi
additional electrons with zero emission velocity will be r
turned to the cathode and a virtual cathode is formed.20–22

This condition of zero surface electric field is known as t
space charge limited~SCL! condition. In a nonmagnetize
diode, the maximum emission current density is indeed gi
by the SCL condition for electrons with zero emission velo
ity. Adopting such an assumption for a magnetically ins
lated gap is natural. Thus, Lovelace and Ott2 calculated the
equilibrium relativistic cycloidal flows in a magnetically in
sulated gap under the SCL assumption. They included
self-electric and magnetic fields of the cycloidal flow. Fro
the discussions given at the beginning of this paragraph,

a!Science Applications International Corporation, Albuquerque, NM.
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may be tempted to take this SCL solution of Lovelace a
Ott2 as the maximum emission current density for tim
independent cycloidal flows in a relativistic crossed-fie
gap.

Surprisingly, Christenson3 discovered that the maximum
emission current density wasnot given by the SCL condition
for a deeply nonrelativistic cycloidal crossed-field flow, ev
if the electrons are emitted with essentially zero velocity. S
discovered this unexpected result in her simulation study
noise in crossed-field flows. She found that the maxim
allowable current was slightly higher than that predict
from the SCL condition. This result is unmistaken, ev
though the code she used, PDP1,23 is a one-dimensiona
~1D!, electrostatic code that ignores relativistic and diam
netic effects. When the SCL condition is relaxed, the ma
mum current is derived semianalytically in the nonrelativis
regime and there is excellent agreement between the ana
theory and the simulation results.3

In this paper, we present the maximum emission curr
density in a relativistic, magnetically insulated diode. Mo
vated by the findings reported in Christenson,3 we do not use
the SCL condition. Instead, we determine the surface elec
field that allows maximum emission current density. T
analysis is otherwise similar to Ott and Lovelace,2 including
the relativistic effects and the effects of the self electric a
magnetic field of the cycloidal electron flow. While Ro
Mondelli, and Rostoker1 also considered a relativistic diod
under the condition of magnetic insulation, they left the ele
tric field and magnetic field on the cathode surface as f
parameters. Mendel9 considered the general case of arbitra
canonical angular momentum, but much of his analysis a
left the surface electric field as a free parameter. Here
determine the surface electric field~and surface magnetic
field! that yields the maximum injection current density, u
ing the model and notations of Lovelace and Ott.2 Our results
are in the form of a set of universal curves that give t
9 © 2003 American Institute of Physics
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maximum current density at various gap voltages, while
gap spacing and the external magnetic field may have g
eral values as long as the condition of magnetic insulatio
satisfied. These curves reduce to the established results i
deeply nonrelativistic regime. They have been confirmed
a two-dimensional particle-in-cell code, which is fully rel
tivistic and fully electromagnetic. It is interesting to note th
the maximum current density in a magnetically insulated
ode is, in general, about 10% higher than that predicted f
the SCL condition, though the physical reason remains
clear.

II. THEORY AND SIMULATION

Consider a planar gap with the cathode located atx50
and the anode atx5d. An external magnetic field,B, is
imposed in they-direction ~Fig. 1!. The cathode is held a
zero potential and the anode is held at a positive voltage
Electrons are injected from the cathode with zero emiss
velocity. They reach a maximum height,x* , into the gap
before returning to the cathode (x* ,d). We shall determine
the maximum injection current density,J1 , for this time-
independent cycloidal flow. Following Lovelace and Ott,2 we
assume that the total magnetic flux within the gap is
changed regardless of the injected current density. This
responds to perfectly conducting cathode and anode pla
Mathematically, this assumption removes the arbitrary c
stant when we solve for the magnetic fieldH from the Am-
père’s law, curlH5J. Thus, the total magnetic flux is equ
to that of the vacuum gap. We shall also follow Lovelace a
Ott to use the dimensionless quantities,

V̄511
eV

mc2 , ~1!

h5vcd/c, ~2!

to represent the gap voltage and the external magnetic fi
In Eqs. ~1! and ~2!, e (e.0) and m are, respectively, the
electron charge and rest mass,c is the light speed, andvc

5eB/m is the nonrelativistic electron cyclotron frequen
associated with the external magnetic field. SI units are u
throughout.

Magnetic insulation requires that

B

BHR

[
h

AV̄221
.1, ~3!

FIG. 1. Cycloidal electron orbits in a magnetically insulated crossed-fi
gap.
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i.e., the external magnetic field,B, exceeds the relativistic
Hull cutoff magnetic field,BHR. The latter is determined
from Eq. ~3! by replacing the (.) sign with the (5) sign.
The magnitude of the emission current density,J1 , in units
of the 1D nonrelativistic Child–Langmuir valueJCL , may be
written as

J1

JCL

5~kd!2S 9

8&
D 1

~V̄21!3/2
, ~4!

where JCL5(4/9)«0(2e/m)1/2V3/2/d2 and k is defined by
J15(mc3/e)(«0/2)k2, as in Ref. 2. Note thatk has the unit
of m21. In this paper, we seek to maximize the value of E
~4! as a function ofB/BHR at various values of gap voltage
V.

The analysis is substantially more complicated when
SCL condition is relaxed for the present problem. In th
paper, we shall only record the few equations that are nee
to determine the maximum current density. They are cho
so that the relevant physical quantities~e.g., the thickness o
the electron sheath, the degree of diamagnetism, etc.! may be
obtained. They are written in such a way that they m
readily be compared with the corresponding ones of Lo
lace and Ott2 when the SCL condition is taken. The notatio
are also similar.

Following Lovelace and Ott, we first introduce two d
mensionless parameters,a andb, defined as the ratio of the
total magnetic field to the external magnetic field, atx50
and atx5x* respectively. Here,x* is the maximum excur-
sion of an electron into the gap before it starts to return to
cathode and the total magnetic field includes the diamagn
field. Another dimensionless parameter,k, is defined:

k5S 2kd

ha D 4

. ~5!

We now introduce the dimensionless surface electric fieldd,
defined as

d25S Esd

mc2/eD 2S 1

ha D 2

, ~6!

whereEs is the magnitude of surface electric field. We taked
to be non-negative. The value ofd needs to be determined t
maximizeJ1 /JCL .

The next seven equations, Eqs.~7!–~13!, are obtained
from the time-independent force law, continuity equatio
Ampère’s law, and Poisson equation. Theird50 limits are
identical to the corresponding ones of Lovelace and O2

which we shall individually identify. Let us first introduce
function,

f ~r!5
k1/2

2
Ar2212S 12

1

r2D1d2, ~7!

whose rootrm5rm(k,d) is to be determined numerically in
terms ofk andd by solving f (rm)50. Among the multiple
roots of Eq.~7!, we choose only the one that gives the sa
rm as in Lovelace and Ott in the limitd approaching zero.

d
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@In the limit d50, Eq.~7! appears in the integrand of Eq.~9!
of Lovelace and Ott.2# From this root ofrm , we may define
the function,

u* ~k!52E
1

rm dr

r2Af ~r!
. ~8!

The physical meanings follow: r5g/gz5(1
1g2bx

2)1/2, wherebx andbz are the velocity components~in
units of the light speedc) in the x and z direction respec-
tively, g5(12bx

22bz
2)21/2 is the relativistic mass factor

gz5(12bz
2)21/2 is the relativistic mass factor associat

with the z-component of the velocity~Fig. 1!, and f (r)
5@(d/ha)dr/dx#2. As in Lovelace and Ott,g5r coshu,
and the vector potential~normalized tomc2/e) associated
with the self-consistent magnetic field isĀ5r sinhu. At x
5x* , u5u* , and r51. Thus, the electron’s relativisti
mass factor atx* is equal to coshu* and the electrostatic
potential atx* is equal to (mc2/e)(coshu*21), by energy
conservation. Moreover, atx5x* /2, r5rm .2

The value ofx* is given by

x*
d

5
g~k!

ha
, ~9!

g~k!52E
1

rm dr

Af ~r!
. ~10!

It may be shown that the following equations are satisfie

V̄ coshu* 2h sinhu* 215d~V̄ sinhu* 2h coshu* !,
~11!

b/a5coshu* 2d sinhu* , ~12!

h2sinhu* 5hb2~coshu* 2d sinhu* !g~k!. ~13!

Equations~8!, ~10!, and~12! may readily be compared with
respectively, Eqs.~11a!, ~9!, and ~21! of Ref. 2. Equations
~13! and~11! may also be compared, respectively, with Eq
~12b! and ~12a! of Ref. 2 if one recalls that the relativisti
factor (V̄* ) at x5x* is coshu* and that the normalized vec
tor potential (Ā* ) there is sinhu* .

The following algorithm has been used to determine
limiting current for a pair of assigned values, (h,V̄), that
satisfies Eq.~3!. The value ofB/BHR is immediately known
from Eq. ~3! for this pair of normalized gap voltage an
external magnetic field. The following steps are then tak

~a! Assign a value ofd ~d.0!.
~b! Obtain numerically the solution tou* from Eq. ~11!.

The meaningful solution is the one that is the same
in Ref. 2 in the limitd50 ~SCL!.

~c! Find the value ofk so that Eq.~8! yields the same
value ofu* .

~d! For these values ofd andk, obtaing(k) from Eq.~10!.
~e! Obtainb from Eq. ~13! and thena from Eq. ~12!.
~f! Obtain kd from Eq. ~5! and henceJ1 /JCL from

Eq. ~4!.
~g! Repeat Step~a! until J1 /JCL is maximized with re-

spect tod.
.

e

:

s

Figure 2 shows the normalized limiting current dens
at three diode voltages,V50.5 kV, 500 kV, and 1 MV, de-
termined from the algorithm given in the preceding pa
graph. Also shown are the values when the SCL conditio
imposed. The results of Lovelace and Ott2 are indistinguish-
able from the curves in Fig. 2 under the SCL condition. It
seen that the true maximum injection current density
higher than that obtained from the SCL condition by abo
10%. From Fig. 2, higher gap voltage seems to allow alower
current into the gap, in particular at lower values of the ma
netic field, B. This seemingly counterintuitive result arise
from our normalization ofJ1 by thenon-relativistic Child–
Langmuir value,JCL , as was done in Lovelace and Ott.2 At
relativistic energies, Jory and Trivelpiece24 show from an
electrostatic, 1D analysis that their 1D current density sca
asV instead ofV3/2. We should emphasize that the 1D ana
sis of Jory and Trivelpiece24 completely ignores the sel
magnetic field, which for a high current relativistic diod
may exert a force that is comparable to the space cha
force. The limiting current density including the sel
magnetic field is very difficult to calculate wheneverB
,BHR, and we shall return to thisunsolvedproblem toward
the end of this paper.

The calculations given above have been confirmed
three tests:~a! We have shown that our numerical algorith
yields identical results to Lovelace and Ott2 if we set the
surface electric field equal to zero, as stated in the prece
paragraph.~b! The V50.5 kV curve in Fig. 2~the one with-
out the SCL assumption! is indistinguishable from Christen
son’s nonrelativistic results,3 the latter were obtained by a
entirely different algorithm.~c! Most importantly, we use the
simulation code,MAGIC,25 which is a 2D, fully relativistic
and fully electromagnetic code to show that steady state
cloidal flow can occur beyond the injection current predict
from the SCL condition, and that the maximum injectio
current is consistent with the formulation given above. T
data of sampleMAGIC runs are shown in Fig. 3, where w
increase the injection current in a 500 kV diode. Time ind
pendent flow ceases to exist when the injection curr
reaches the level predicted in our theory.

In the above-mentionedMAGIC simulations, the gap

FIG. 2. The normalized limiting current density in a crossed-field gap un
the condition of magnetic insulation, at various gap voltage, V. Also sho
are the corresponding values when the space charge limited~SCL! condition
is imposed on the cathode.
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separation is 0.0025 m. The width of the parallel plates
0.025 m. The left and right sides of the simulations a
closed with a periodic boundary condition. The voltage
applied between the two plates with an external magn
field in the ignorable direction. Since these are 2D Cartes
simulations, the current density is in units of A/m as t
ignorable direction is unit meter length by default. The
jected current density is imposed at the surface in units
A/m per unit length in the ignorable direction. This is tran
lated into charge on a given number of macroparticles
cell. Typical emission numbers are 2 to 8 macro-particle
cell per time step. The particles are injected into the simu
tion with an energy of 1 eV. The injected current is ramp
over 4 ns to avoid shock excitation of the system. It sho
be noted that it is critical to avoid shock excitation. Raisi
the current too rapidly, or using an insufficient number
particles~i.e., discrete particle noise! can cause collapse o
the flow into turbulence in just a few cyclotron periods.

It is not obvious why the limiting current, as represent
by the solid curves in Figs. 2 and 3, should be about 1
higher than that associated with the SCL condition, rep
sented by the dotted curves in Figs. 2 and 3. Since this is
true for the nonrelativistic diode, as shown in the 0.5
curves in Fig. 2, the self-magnetic field is not the main r
son why the limiting current should be higher than that p
dicted from the SCL condition. In fact, the evolution of th
phase space plots in our particle simulations behaves q
tatively the same for both a relativistic diode and a nonre
tivistic diode, as we increase the injected current from z
to a value beyond the~theoretically predicted! limiting cur-
rent. To avoid the complications associated with the s
magnetic field, we describe in the next paragraph this ev
tion for just a deeply nonrelativistic crossed-field diod
which has been documented in great detail in Ref. 3.

In a nonrelativistic diode under magnetic insulation,
the injection current increases, the phase space plot (x vs vx ,
see Fig. 1! remains qualitatively the same as that of a sin
particle in the vacuum gap, up to the predicted limiting c
rent. The electric field on the cathode surface is always
celerating for all values of injection current below the pr
dicted limiting current. That is, in the simulation, when th

FIG. 3. MAGIC simulation data for a 500 kV diode. The two curves a
reproduced from Fig. 2, with the upper curve representing the maxim
injection current, and the lower curve assuming space charge limited co
tion on the cathode. Virtual cathode is observed in theMAGIC simulation
only when the injected current reaches the upper curve.
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injection current equals the value given by the SCL condit
~the dotted curves in Fig. 2!, the surface electric field on th
cathode isnot equal to zero. In fact, that surface electric fie
never equals zero as long as the injected current is below
predicted limiting current~which is typically 10% higher
than the corresponding dotted curve in Fig. 2!. While the
limiting current density is about 10% higher than that cor
sponding to the SCL condition, the total charge in the gap
this limiting current density islessthan that corresponding to
the SCL condition; the latter is also equal to the total sp
charge in the Brillouin flow of the same external electric a
magnetic fields.@For this deeply nonrelativistic regime,
can readily be shown that, when the SCL condition is
sumed, the maximum excursion of the cycloidal orbit (x* ,
Fig. 1! is identical to the Brillouin hub height for the sam
magnetic field and gap voltage, and that the total sp
charge in that cycloidal flow is also identical to that of th
Brillouin flow.# Once the injection current exceeds the p
dicted limiting value, the laminar cycloidal flow quickly col
lapses into a mildly turbulent Brillouin flow~1! which has
little x-directed motion,~2! whose electric field on the sur
face is close to zero, and~3! whose space charge at the gap
roughly given by that given in the laminar Brillouin flow.

Thus, for a fixed value ofB/BH (.1), at the value of
J/JCL on a dotted curve of Figs. 2 and 3, there are t
solutions, one with the surface electric fieldEs equal to zero
~SCL condition! and the other withEs nonzero.All simula-
tions so far suggest that the former is inaccessible. We shall
postpone to a separate publication for an in depth exam
tion of the multiplicity of the solutions, the seemingly ina
cessibility of the SCL solution, and the implications on t
numerical algorithms that imposed such a condition on
emitting surface.

III. REMARKS

We should point out that the cycloidal flow solution
studied in this paper are likely to be unstable. In previous
simulations of nonrelativistic, cycloidal crossed-field flow
using the electrostatic code PDP1,23 it is found that a small
ac gap voltage,3,26 or a small external resistance,27 or a small
misalignment in the external magnetic field,28 may render the
cycloidal flow unstable even when the emission current d
sity is only a small fraction of the critical values depicted
Fig. 2. The final state of these destabilized cycloidal flows
a high degree, is approximated by the Brillouin flow. Th
final Brillouin state is in fact anticipated by Slater29 and by
Buneman,30 who argue that the equilibrium cycloidal flow i
at a higher energy state than the equilibrium Brillouin flo
as the latter does not possessx-directed motion~Fig. 1!. In
spite of the overwhelming evidence in favor of the Brillou
state, McDowell31 recently concluded from his simulation
that the final state in a crossed-field device might well be
cycloidal orbits that are studied by Slater after all, with
electron density extending much further into the cross
field gap than is allowed by the Brillouin layer. In this sens
the likely final state of the crossed-field flow remains
open question. Relativistic Brillouin flows are studied
Refs. 32, 33.
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If the electron pulse length is sufficiently short, neith
the time-independent flow solution studied in this paper
the Brillouin state is developed. The emission current den
in a relativistic diode that is magnetically insulated may th
be substantially higher than that predicted in this paper
the time-independent solution. This conjecture is based o
recent study of a nonmagnetized, laser-triggered diode in
deeply nonrelativistic regime,34 where the emission curren
density may be several times the classical Child–Langm
value in a short, transient electron bunch.

The analysis given in this paper is restricted only to
magnetically insulated gap, whereB.BHR. For B,BHR,
the electrons will reach the anode, in which case the limit
current density in therelativistic diode is very difficult to
formulate. The electron velocity necessarily contains
three (x,y,z) components when one includes the se
magnetic field. The self-magnetic field itself is rather co
plicated because it is generated by two current compone
one parallel to the cathodeand the other perpendicular to th
cathode~electrons crossing the gap!. In fact, it must have a
two-dimensional dependence in (x,z). This problem, while
difficult to attack analytically, is of considerable interest
the study of the magnetically insulated line oscillat
~MILO35–39!, a high power microwave source in which th
electron flow is determined by its self-magnetic field~instead
of the external magnetic field, which is absent in the MILO!.
In the deeply nonrelativistic regime, where the self-magne
field can safely be ignored, the limiting current for a non
sulated gap has been calculated.3,17,18,40In this case, the SCL
condition applies, even to electron emission that is restric
spatially41–43 and temporally.34
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