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Limiting current in a relativistic diode under the condition
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Mike Lopez, Y. Y. Lau, John W. Luginsland,® David W. Jordan,

and Ronald M. Gilgenbach

Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor,
Michigan 48109-2104

(Received 20 February 2003; accepted 1 August 2003

The maximum emission current density is calculated for a time-independent, relativistic, cycloidal
electron flow in a diode that is under the condition of magnetic insulation. Contrary to conventional
thinking, this maximum current isot determined by the space charge limited condition on the
cathode, even when the emission velocity of the electrons is assumed to be zero. The self electric
and magnetic fields associated with the cycloidal flow are completely accounted for. This maximum
current density is confirmed by a two-dimensional, fully electromagnetic and fully relativistic
particle-in-cell code. ©2003 American Institute of PhysicgDOI: 10.1063/1.1613654

I. INTRODUCTION may be tempted to take this SCL solution of Lovelace and

_ . . . . Ot as the maximum emission current density for time-
Magnetic insulation remains an important problem in.

pulse power systems and high power microwave SOurceér)dependent cycloidal flows in a relativistic crossed-field

While there have been numerous publications on the subje&@P: . _ _
in the last three decadés!® strictly speaking, the maximum Surprisingly, Christensdrdiscovered that the maximum

injected current for a time-independent cycloidal flow in aemission current density wamt given by the SCL condition
relativistic diode under the condition of magnetic insulationfor a deeply nonrelativistic cycloidal crossed-field flow, even
has never been solved, even for the one-dimensional, plan#rthe electrons are emitted with essentially zero velocity. She
geometry. The present paper provides the solution to thigiscovered this unexpected result in her simulation study of
fundamental problem. noise in crossed-field flows. She found that the maximum
When a diode is magnetically insulated, an electron rey|jowable current was slightly higher than that predicted
leased from the cathode begins its cycloidal trajectory undef,y 1, the SCL condition. This result is unmistaken, even

the crossed electric and magnetic field, reaching a maXimu'{hough the code she used, POBIis a one-dimensional
excursion within this crossed-field gap before returning to ’

the cathode surfacéFig. 1). A collection of such electrons (1D), electrostatic code that ignores relativistic and diamag-
then constitutes a cycloidal electron flow in the gap. In thisnetic effects. When the SCL condition is relaxed, the maxi-

paper we calculate the maximum emission current densit{)“um current is derived semianalytically in the nonrelativistic
that is allowed under the time-independent condition, for degime and there is excellent agreement between the analytic

given gap voltage, gap spacing, and insulating magnetigheory and the simulation resuits.
field. In this paper, we present the maximum emission current

It has often been taken for granted that the maximundensity in a relativistic, magnetically insulated diode. Moti-
current that can be admitted into a gap is attained when thergated by the findings reported in Christensome do not use
is sufficient space charge in the gap to force the electric fielghe SCL condition. Instead, we determine the surface electric
on the emitting surface equal to zero. Under this conditionfie|q that allows maximum emission current density. The
additional electrons with zero emission velocity will be re- analysis is otherwise similar to Ott and Lovelddecluding
“”.”ed to _the cathode and a virtual .CthOd? is forfiedf. the relativistic effects and the effects of the self electric and
This condition of zero surface electric field is known as the L . _

magnetic field of the cycloidal electron flow. While Ron,

Mondelli, and Rostokéralso considered a relativistic diode

by the SCL condition for electrons with zero emission veloc-under the condition of magnetic insulation, they left the elec-
ity. Adopting such an assumption for a magnetically insu-tric field and magnetic field on the cathode surface as free
lated gap is natural. Thus, Lovelace and’@#lculated the parameters. Mendetonsidered the general case of arbitrary
equilibrium relativistic cycloidal flows in a magnetically in- canonical angular momentum, but much of his analysis also
sulated gap under the SCL assumption. They included thkeft the surface electric field as a free parameter. Here we
self-electric and magnetic fields of the cycloidal flow. From determine the surface electric fieldnd surface magnetic
the discussions given at the beginning of this paragraph, onfeld) that yields the maximum injection current density, us-
ing the model and notations of Lovelace and €@ur results
dScience Applications International Corporation, Albugquerque, NM. are in the form of a set of universal curves that give the
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i.e., the external magnetic field3, exceeds the relativistic
Hull cutoff magnetic field,Byg. The latter is determined
from Eq. (3) by replacing the ¥) sign with the &) sign.
The magnitude of the emission current density,, in units
of the 1D nonrelativistic Child—Langmuir valuk, , may be

written as
J, 9
Cathode J_ _ (kd)2< vir vt (4)
FIG. 1. Cycloidal electron orbits in a magnetically insulated crossed-field CL (V=1)

gap.
where Jc = (4/9)eo(2e/m)Y2v%2/d? and k is defined by

J,.=(mc’le)(eo/2)k?, as in Ref. 2. Note that has the unit

maximum current density at various gap voltages, while thef m™*. In this paper, we seek to maximize the value of Eq.
gap spacing and the external magnetic field may have ger4) as a function oB/By at various values of gap voltage,
eral values as long as the condition of magnetic insulation i/

satisfied. These curves reduce to the established results in the The analysis is substantially more complicated when the
deeply nonrelativistic regime. They have been confirmed by>CL condition is relaxed for the present problem. In this
a two-dimensional particle-in-cell code, which is fully rela- Paper, we shall only record the few equations that are needed
tivistic and fully electromagnetic. It is interesting to note thatto determine the maximum current density. They are chosen
the maximum current density in a magnetically insulated di-S0 that the relevant physical quantiti@sg., the thickness of
ode is, in general, about 10% higher than that predicted frorfhe electron sheath, the degree of diamagnetis), retty be

the SCL condition, though the physical reason remains unobtained. They are written in such a way that they may
clear. readily be compared with the corresponding ones of Love-

lace and Oftwhen the SCL condition is taken. The notations
are also similar.
Il. THEORY AND SIMULATION Following Lovelace and Ott, we first introduce two di-
mensionless parameters,and 3, defined as the ratio of the
total magnetic field to the external magnetic field,xat0
and atx=x, respectively. Herex, is the maximum excur-

Consider a planar gap with the cathode located=a0
and the anode at=d. An external magnetic fieldB, is
imposed in they-direction (Fig. 1). The cathode is held at 5
zer ntial and the an is hel itive vol g
Eicctions are mjected fom the cathod wih 2070 emiasiofalTode and he otal magnetc field incluces he damagneie
velocity. They reach a maximum height, , into the gap ield. Another dimensionless parametey,is defined:
before returning to the cathodg (< d). We shall determine okd\ 4
the maximum injection current density,, , for this time- K:(
independent cycloidal flow. Following Lovelace and &g
assume that the total magngtlc flux within the_gap 'S U\ now introduce the dimensionless surface electric figld,
changed regardless of the injected current density. This COlefined as
responds to perfectly conducting cathode and anode plates.
Mathematically, this assumption removes the arbitrary con- Ed \2
stant when we solve for the magnetic fi¢tdfrom the Am- &%= ) )

pere’s law, curlH=J. Thus, the total magnetic flux is equal mc'/e

to that of the vacuum gap. We shall also follow Lovelace and, herek_ is the magnitude of surface electric field. We take
Ott to use the dimensionless quantities, to be non-negative. The value 6ieeds to be determined to

©)

na

1 2

na

(6)

_ eV maximizeJ, /J¢, .

V=1+ 3, 1) The next seven equations, Ed3)—(13), are obtained
from the time-independent force law, continuity equation,

n=wd/c, (20 Ampee’s law, and Poisson equation. Thele=0 limits are

et - 2
to represent the gap voltage and the external magnetic fielddentical to the corresponding ones of Lovelace and“Ott,
In Egs. (1) and (2), e (e>0) andm are, respectively, the which we shall individually identify. Let us first introduce a

electron charge and rest massis the light speed, and, ~ TUnction.

=eB/m is the nonrelativistic electron cyclotron frequency 112 1

associated with the external magnetic field. Sl units are used f(p)=— \/ﬁ_ ( 1— 7) + &2 7
throughout. 2 p

Magnetic insulation requires that . . . .
g q whose rootp,,= p(«, 8) is to be determined numerically in

B 7 terms of k and 6 by solving f(p,;) =0. Among the multiple
—>1, (3)  roots of Eq.(7), we choose only the one that gives the same
Brr V-1 pm as in Lovelace and Ott in the limié approaching zero.
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[In the limit 5=0, Eq.(7) appears in the integrand of E®)
of Lovelace and Ott] From this root ofp,,, we may define

the function,
0,(x)=2 f . ®
K)= —
’ 1 p?\f(p)
The physical meanings follow: p=vy/y,=(1

+v2B82) Y2 whereg, and 3, are the velocity componen(&
units of the light speeda) in the x and z direction respec-
tively, y=(1—B82—B2) 2 is the relativistic mass factor,
v,=(1—pB2) Y2 is the relativistic mass factor associated
with the z-component of the velocitfFig. 1), and f(p)
=[(d/ pa)dp/dx]?. As in Lovelace and Ott;y=p coshé,
and the vector potentiglhormalized tomc?/e) associated
with the self-consistent magnetic field A= p sinhé. At x
=X, , 0=6,, and p=1. Thus, the electron’s relativistic
mass factor ak, is equal to cosld, and the electrostatic
potential atx, is equal to (mc?/e)(coshé, —1), by energy
conservation. Moreover, at=x, /2, p=ppm.>

The value ofx, is given by

Xe 9(x)

d na’ ©)
_ Pm dp

g(K)—2J1 —W (10

It may be shown that the following equations are satisfied:

V coshé, — 7 sinhé, — 1= §(V sinhé, — 5 coshé, ),

(11)
Bla=coshd, — dsinhé,, (12
n—sinhé, = »B—(coshd, — &sinhé, )g(«). (13

Equations(8), (10), and(12) may readily be compared with,
respectively, Eqs(113, (9), and (21) of Ref. 2. Equations

(13) and(11) may also be compared, respectively, with Egs.

(12b) and (129 of Ref. 2 if one recalls that the relativistic
factor (V) atx=x, is coshé, and that the normalized vec-
tor potential @, ) there is sinly, .

The following algorithm has been used to determine the

limiting current for a pair of assigned valuesy,V), that
satisfies Eq(3). The value ofB/Bg is immediately known
from Eg. (3) for this pair of normalized gap voltage and
external magnetic field. The following steps are then taken

(@
(b)

Assign a value of5 (6>0).
Obtain numerically the solution té, from Eq. (11).
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FIG. 2. The normalized limiting current density in a crossed-field gap under
the condition of magnetic insulation, at various gap voltage, V. Also shown
are the corresponding values when the space charge liG8@0d condition

is imposed on the cathode.

Figure 2 shows the normalized limiting current density
at three diode voltage¥/=0.5 kV, 500 kV, and 1 MV, de-
termined from the algorithm given in the preceding para-
graph. Also shown are the values when the SCL condition is
imposed. The results of Lovelace and‘Gtte indistinguish-
able from the curves in Fig. 2 under the SCL condition. It is
seen that the true maximum injection current density is
higher than that obtained from the SCL condition by about
10%. From Fig. 2, higher gap voltage seems to alldaveer
current into the gap, in particular at lower values of the mag-
netic field, B. This seemingly counterintuitive result arises
from our normalization ofl, by thenonrelativistic Child—
Langmuir value Jc, , as was done in Lovelace and Gt
relativistic energies, Jory and Trivelpiéeshow from an
electrostatic, 1D analysis that their 1D current density scales
asV instead ofv®2 We should emphasize that the 1D analy-
sis of Jory and Trivelpie® completely ignores the self
magnetic field, which for a high current relativistic diode
may exert a force that is comparable to the space charge
force. The limiting current density including the self-
magnetic field is very difficult to calculate whenev8r
<Bygr, and we shall return to thignsolvedproblem toward
the end of this paper.

The calculations given above have been confirmed by
three tests(a) We have shown that our numerical algorithm
yields identical results to Lovelace and ®it we set the
surface electric field equal to zero, as stated in the preceding

paragraph(b) TheV=0.5kV curve in Fig. 2(the one with-

out the SCL assumptigns indistinguishable from Christen-
son’s nonrelativistic resultsthe latter were obtained by an
entirely different algorithm(c) Most importantly, we use the

The meaningful solution is the one that is the same asimulation codeMAGic,?> which is a 2D, fully relativistic

in Ref. 2 in the limit5=0 (SCL).
Find the value ofx so that Eq.(8) yields the same
value of @, .

(©

(d) For these values af and«, obtaing(«) from Eq.(10).

(e) ObtainB from Eq. (13) and thena from Eq.(12).

(f) Obtain kd from Eg. (5) and henced, /Js from
Eq. (4).

(g) Repeat Steda) until J, /Jc is maximized with re-

spect toé.

and fully electromagnetic code to show that steady state cy-
cloidal flow can occur beyond the injection current predicted
from the SCL condition, and that the maximum injection
current is consistent with the formulation given above. The
data of samplevaGic runs are shown in Fig. 3, where we
increase the injection current in a 500 kV diode. Time inde-
pendent flow ceases to exist when the injection current
reaches the level predicted in our theory.
In the above-mentionediAGIC simulations, the gap
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0.45 injection current equals the value given by the SCL condition
- r (the dotted curves in Fig.)2the surface electric field on the
:‘é 04 R cathode isnotequal to zero. In fact, that surface electric field
B 035 e never equals zero as long as the injected current is below the
2 § predicted limiting current(which is typically 10% higher
§ 03 than the corresponding dotted curve in Fig. @hile the
< - 500kV e . . .

3 b e e BRSO limiting current density is about 10% higher than that corre-
3028 T o StablePC | sponding to the SCL condition, the total charge in the gap at
02 . ' . ' . & UneiebiePIG this limiting current density i¢essthan that corresponding to
1 11 12 13 14 15 16 17 18 the SCL condition; the latter is also equal to the total space

B/Bh (Relativistic) charge in the Brillouin flow of the same external electric and

magnetic fields[For this deeply nonrelativistic regime, it

FIG. 3. maGic 3|mqlat|on d'ata for a 500 kV diode. The'two curves are .. readily be shown that, when the SCL condition is as-
reproduced from Fig. 2, with the upper curve representing the maximum

injection current, and the lower curve assuming space charge limited condSUmMed, the maximum excursion of the cycloidal orbif (
tion on the cathode. Virtual cathode is observed in aeic simulation  Fig. 1) is identical to the Brillouin hub height for the same
only when the injected current reaches the upper curve. magnetic field and gap voltage, and that the total space
charge in that cycloidal flow is also identical to that of the
Brillouin flow.] Once the injection current exceeds the pre-
separation is 0.0025 m. The width of the parallel plates iglicted limiting value, the laminar cycloidal flow quickly col-
0.025 m. The left and right sides of the simulations arelapses into a mildly turbulent Brillouin flowl) which has
closed with a periodic boundary condition. The voltage islittle x-directed motion(2) whose electric field on the sur-
applied between the two plates with an external magneti¢ace is close to zero, ar(@) whose space charge at the gap is
field in the ignorable direction. Since these are 2D Cartesianoughly given by that given in the laminar Brillouin flow.
simulations, the current density is in units of A/m as the  Thus, for a fixed value oB/By (>1), at the value of
ignorable direction is unit meter length by default. The in-J/Jc. on a dotted curve of Figs. 2 and 3, there are two
jected current density is imposed at the surface in units o$olutions, one with the surface electric fi¢ld equal to zero
A/m per unit length in the ignorable direction. This is trans- (SCL condition and the other wittEg nonzero.All simula-
lated into charge on a given number of macroparticles petions so far suggest that the former is inaccessilVe shall
cell. Typical emission numbers are 2 to 8 macro-particle pepostpone to a separate publication for an in depth examina-
cell per time step. The particles are injected into the simulation of the multiplicity of the solutions, the seemingly inac-
tion with an energy of 1 eV. The injected current is rampedcessibility of the SCL solution, and the implications on the
over 4 ns to avoid shock excitation of the system. It shouldhumerical algorithms that imposed such a condition on the
be noted that it is critical to avoid shock excitation. Raisingemitting surface.
the current too rapidly, or using an insufficient number of
particles(i.e., discrete particle noise&an cause collapse of
the flow into turbulence in just a few cyclotron periods.

It is not obvious why the limiting current, as represented  We should point out that the cycloidal flow solutions
by the solid curves in Figs. 2 and 3, should be about 10%studied in this paper are likely to be unstable. In previous 1D
higher than that associated with the SCL condition, represimulations of nonrelativistic, cycloidal crossed-field flows
sented by the dotted curves in Figs. 2 and 3. Since this is alsasing the electrostatic code PDPif is found that a small
true for the nonrelativistic diode, as shown in the 0.5 kVac gap voltagé?® or a small external resistanéeor a small
curves in Fig. 2, the self-magnetic field is not the main rea-misalignment in the external magnetic fiéftnay render the
son why the limiting current should be higher than that pre-cycloidal flow unstable even when the emission current den-
dicted from the SCL condition. In fact, the evolution of the sity is only a small fraction of the critical values depicted in
phase space plots in our particle simulations behaves qualkig. 2. The final state of these destabilized cycloidal flows, to
tatively the same for both a relativistic diode and a nonrelaa high degree, is approximated by the Brillouin flow. This
tivistic diode, as we increase the injected current from zerdinal Brillouin state is in fact anticipated by Slatéand by
to a value beyond thé&heoretically predictediimiting cur-  Bunemart® who argue that the equilibrium cycloidal flow is
rent. To avoid the complications associated with the selfat a higher energy state than the equilibrium Brillouin flow,
magnetic field, we describe in the next paragraph this evoluas the latter does not possesslirected motion(Fig. 1). In
tion for just a deeply nonrelativistic crossed-field diode,spite of the overwhelming evidence in favor of the Brillouin

Ill. REMARKS

which has been documented in great detail in Ref. 3. state, McDowefl! recently concluded from his simulations
In a nonrelativistic diode under magnetic insulation, asthat the final state in a crossed-field device might well be the
the injection current increases, the phase space yphas ¢, , cycloidal orbits that are studied by Slater after all, with an

see Fig. 1 remains qualitatively the same as that of a singleelectron density extending much further into the crossed-
particle in the vacuum gap, up to the predicted limiting cur-field gap than is allowed by the Brillouin layer. In this sense,
rent. The electric field on the cathode surface is always acthe likely final state of the crossed-field flow remains an
celerating for all values of injection current below the pre-open question. Relativistic Brillouin flows are studied in

dicted limiting current. That is, in the simulation, when the Refs. 32, 33.
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