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We explore the use of centroid molecular dynam{€WVID) for calculating vibrational energy
relaxation(VER) rate constants of high-frequency molecular vibrations in the condensed phase. We
employ our recently proposed linear-response-theory-based approach tpQ/ERi and E. Geva,

J. Chem. Physl118 7562(2003], to obtain a new expression for the VER rate constant in terms of

a correlation function that can be directly obtained from CMD simulations. We show that the new
expression reduces to a centroid Landau-Teller-type formula in the golden-rule regime. Unlike
previously proposed CMD-based approaches to VER, the new formula does not involve additional
assumptions beyond the inherent CMD approximation. The new formula has the same form as the
classical Landau—Teller formula, and quantum effects enter it in two way$he initial sampling

and subsequent dynamics are governed by the centroid potential, rather than the classical potential;
(2) The classical force is replaced by the corresponding centroid symbol. The application of the new
method is reported for three model systefi$A vibrational mode coupled to a harmonic bath, with

the coupling exponential in the bath coordinat@3;A diatomic molecule coupled to a short linear
chain of Helium atoms;(3) A “breathing sphere” diatomic molecule in a two-dimensional
monoatomic Lennard-Jones liquid. It is confirmed that CMD is able to capture the main features of
the force—force correlation function rather well, in both time and frequency domains. However, we
also find that CMD is unable to accurately predict the high-frequency tail of the
quantum-mechanical power spectrum of this correlation function, which limits its usefulness for
calculating VER rate constants of high-frequency molecular vibrations. The predictions of CMD are
compared with those obtained via the linearized-semiclassical initial-value-representation
(LSC-IVR) method, which does yield accurate predictions of high-frequency VER rate constants.
The reasons underlying these observations are discussed in terms of the similarities and differences
between these two approaches. 2003 American Institute of PhysicgDOI: 10.1063/1.1613636

I. INTRODUCTION time scalegsuch that the VER lifetime is much longer than
the correlation time of the FFQFand the rotating wave
The problem of vibrational energy relaxati¢dER) in approximation(RWA).*°
the condensed phase has received much attention over the Another difficulty has to do with the fact that extracting
last few decades:*® The VER rate provides a sensitive the very small high-frequency Fourier components of the
probe of intramolecular dynamics and solute—solvent interFFCF can become extremely difficult due to statistical noise
actions, which are known to have a crucial impact on otheaccompanying all real-life simulations. This difficulty is of-
important properties, such as chemical reactivity, solvationten dealt with by using an extrapolation of the exponential
dynamics, and transport coefficients. The calculation of VERgap law, which usually emerges at low frequencies, to much
rate constants has presented theoretical chemistry with atigher frequencie$t*>An alternative, yet similar, approach
ongoing challenge due to the high frequency of most mocombines a short time expansion of the FFCF with a param-
lecular vibrationgin the sense thatw/kgT>1). One impli-  eterized ansatz that exhibits an exponential gap law behavior
cation of the high frequency is that VER is often found to beat high frequencies, and whose FT can be calculated
slow, due to the low density of accepting modes with matchanalytically*3~5*
ing frequencies, and therefore cannot be obtained directly Yet another fundamental difficulty imposed by the fact
from nonequilibrium MD simulations. This problem is usu- that Zw/kgT>1, is that the quantum-mechanicaFFCF,
ally circumvented by resorting to the Landau—Tell&ll) rather than theclassical FFCF, should be used in the LT
formula, which gives the VER rate constant in terms of theformula. The exact calculation of real-time quantum-
Fourier transform(FT), at the vibrational frequency, of a mechanical correlation functions for general many-body sys-
certain short-lived force-force correlation functioRFCH, tems remains far beyond the reach of currently available
which can be calculated from equilibrium MD simulations computer resources, due to the exponential scaling of the
with a rigid solute. It should be noted that the derivation ofcomputational effort with the number of degrees of freedom
the LT formula is based on several assumptions, namelyDOF).>> The most popular approach for dealing with this
weak coupling between the solute and solvent, separation dfifficulty is to first evaluate the FT of the classical FFCF, and
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then multiply the result by a frequency-dependgnantum  proposed to augment CMD with additional approximations.
correction factor (QCF)>3-%8 various approximate QCFs In the present paper, we show that this is not necessary, and
have been proposed in the literature. Unfortunately, estimategbat one can derive an approximate expression for the VER
obtained from different QCFs can differ by orders of magni-rate constant which is only based on the CMD approxima-
tude, and particularly so when high-frequency vibrations ardion, and avoids any other additional approximations. To this
involved. Thus, finding more rigorous ways for computing end, we employ our recently proposed linear-response-based
VER rate constants is clearly highly desirable. theory of VER?® which enables us to express the VER rate

Several strategies have been proposed in order to addresgnstant in terms of a correlation function that CMD can be
the challenge of providing an effective, computationally fea-directly applied to. By imposing on the resulting expression
sible, and versatile approximate method for calculatingfor the VER rate constant the same assumptions that lead to
quantum-mechanical real-time correlation functions. Thesghe LT formula;® we then derive a centroid LT-like expres-
methods are based on various approaches, including a mix&ipn for the VER rate constant, which can be calculated di-
quantum-classical treatmefit;’* analytical continua- rectly from CMD simulations. It should be emphasized that
tion,*®">~8lcentroid molecular dynami¢€MD),8~1%quan-  the derivation of this centroid LT formula does not involve
tum mode coupling theory?’~%°and the semiclassica8C)  any additional approximation beyond the original CMD
approximatiorr?11°-128These methods have been m;)pned,approximatioﬁ0 (see Sec. Il It therefore allows for a clean
with relative success, to a rather extensive set of systems ari@st of the applicability of the CMD approximation to VER,
processes. However, the application of these methods to VERithout mixing CMD with additional, essentially uncon-
in  condensed-phase  systems has been rathéfolled, approximations.
limited.46:51:82.103.1%4t should be noted that such applications ~ The structure of the remainder of this paper is as fol-
are desirable for two main reasoi$) They may give rise to lows. An overview of the relevant CMD theory is given in
better ways for Ca|cu|ating VER rate constants, as well a§eC. Il. The derivation of the centroid LT formula is given in
understanding its under|ying quantum-dynamica] mechaseC. lll. The predictions of the centroid LT formula are re-
nism; (2) The highly quantum-mechanical nature of VER, ported for several model systems in Sec. IV. FinaIIy, a gen-
which often leads to deviations by orders of magnitude be€ral discussion on the applicability of CMD to VER, and its
tween the classical predictions and experimental results, préelationship to the LHA-LSC-IVR-based studies of VER, is
vides an excellent platform for testing and comparing differ-given in Sec. V.
ent methods for their ability to capture quantum effects in
condensed phase systems.

To this end, we have recently considered the application]. AN OVERVIEW OF CENTROID MOLECULAR
of the linearized semiclassical initial-value-representatiorDYNAMICS (CMD)
(LSC-IVR) method of Milleret al 119119:125.129-13¢5, cajcy- _ 40,00 . _
lating the quantum-mechanical FFER. In this case, the In its most recent formulatioff; centroid dynamics
quantum-mechanical FFCF is approximated by a classical@S Peen shown to be based on the following phase-space
like expression, where Wigner transforms replace the corre2Perator(given here in 1D, for simplicity
sponding classical quantities and the dynamics is fully clas- ho(o o o o «
sical. In practice, the computation of the multidimensional ~ #(Xc,Pc)= EJ dif dye! €0 xe) Hin(p=pe) = AH,
Wigner integrals was based on a local-harmonic- - - 1)
approximation(LHA), and the method was therefore desig-
nated LHA-LSC-IVR. The LHA-LSC-IVR method has been wherex.C and p. are the ceptroid position and momentum,
applied to several nontrivial model systems and its predicfespectively, andg=1kgT is the inverse temperature. A
tions were found to be in good agreement with other esticentral role is reserved _for the_trace of this operator, which
mates or experiment. These studies have also shown that tR@esponds to theentroid density
VER of high-frequency mplecular V|prat|ons is dominated py pe(Xe Pe) =TH d(Xc,po)]. )
purely quantum-mechanical fluctuations of the force, which
are unaccounted for in calculations based on classical MO he centroid approach also associates a classicaltke
simulations. troid symbo] A (X.,pc), with each quantum dynamical ob-

In the present paper, we consider the application of anServableA(%,p), which is defined by
other approach, which is based on the CMD method, for T o a
calculating quantum-mechanical VER rate constants in con- AcXe:Pe) =T ¢ (Xe P AR, P) fpe(Xe Po)- @
densed phase systems. Previous attempts by Voth and The centroid densityp(X,pc), turns out to have a
co-worker€2 and Poulsen and co-work8§403104+5 yse classical-like form, which is similar to that of the classical
CMD for this purpose, were complicated by the fact that theBoltzmann distribution,
application of CMD is restricted to correlation function _p2 — go2/2m.—
where at least one of the operatorslifear in the coordi- Po(X,Pg) =€ FPe2Mp (x )= FPc2Me™ AVenlxc)  (4)
nates and/or momentaee Sec. )l This is definitely not the  V ,(Xc) = —In[p(x)]/B in Eq. (4) is called thecentroid po-
case in most relevant VER problems, where the force in théential. It is distinctly different from the classical potential
above mentioned FFCF involves a highly nonlinear functionand can be written in terms of a constrained imaginary-time
of the coordinates. To overcome this difficulty, these workergath integral,
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TABLE I. The centroid formulation of quantum statistical mechanics.

Standard

Centroid

Z= Tr(e’B*")
Tr(e #"A)/Z

Kubo P\ ~BHRA i
Cpa (1) = ETr(e BA(t+i\Nh))
0

dx.dpe e BIPI2m+Ver(xo)]
27h

dxdp. . 2
f f S @ A Vent A (x: o)1 Z

dx.dp. 2
f f C—hce ﬁ[Pc/2m+ch(Xc)]Bc(Xc,pc)AC[Xc,pc;t]

21

27 Bh?

112
) f DX(\) &
X(0)=x(p#)

m
(277;;;12)1’2( mpP
m

e*Bch(xc) = pc(xc) = (

= |im

P—w

with

1 o1
ﬁé‘[x()\)]— lim %S[xl,...,xp]

P—o

L (1
_%fo dx| 5 mIX(\) P+ VIX(M)] (6)

xc—(ﬁﬁrlfoﬁﬁdxx(x)

exp{—S[xX(\)]/h}

P/2 1 P
277,8h2) fdxl---fdxpa(xc—ﬁgl xk)exp[—S[xl,...,xp]/ﬁ}, (5)

It should be noted that Kubo-transformed correlation func-
tions can be related to the corresponding regular correlation
functions via a well known identit}* However, the relation-
ship in Eq.(8) is of little practical use since the exact time
dependence of the centroid symi#Q| x.,p.;t] is given by

Ac(Xc,pe;t)=Trle M (x, ,pc>e‘““ﬁi\1/pc<xc,pc(>é)

and
P and requires the same amount of effort to calculate as in
E‘S‘[xl L Xp]=R z mP (Xe— Xpr1)2 standard quantum mechanics. The CMD method is based on
f o &1 2B%h” " circumventing this difficulty by imposing the following
L P CMD approximatiorP®
+= V(X) (- 7 S iH ~
ALY D e G (x eV~ el x(1),pe(V)], 10
In Eq. (7), Xp,1=X;. It should be noted thai.(x.) is pro-  such that
portional to the probability density of finding a classical cy-
clic chain polymer consisting oP beads, which are con- AclXc,Peit]=Ad X (1), pe(t)]. (11

nected by harmonic springs and subject to the potenti
V(x)/P, with their center of masgthe centroigl at x=x.
The centroid also corresponds to the zero-frequency norm
mode of the chain polymer. The imaginary-time path integral Cms/)\(/‘g glioEr?gt.g‘r)foingi)r].use that a centroid correlation
in Eq. (5) can be computed using classical molecular dynams; . o . .

ics or Monte Carlo simulationéPIMD and PIMC, respec- function similar to that in Eq(8), except thaik, is replaced

tively) for relatively complex many-body syste 4,135 by x¢, wheren is a positive integer, can be shown to be
The above definitions form the basis for' axact identical to the corresponding high order Kubo-transformed

o ) o .__correlation functior?* For example,
classical-like formulation of quantum statistical mechanics,

which is summarized in Table I. The last line in Table | is of
particular importance since it relates the classical-like two-
time centroid correlation function with the exact Kubo-
transformed quantum-mechanical correlation function, when

B is proportional tok (or p),

aI|-|erexc(t) and p.(t) are propagated as classical-like posi-
tion and momentum variables on the centroid potential

1 _ 2
mf dxcf dpce B[pc/2m+vcm(xc)]x(2:Ac[Xc,pc;t]

2 (B B o
= I fo d,BlfO 1d,BzTr(e_[”H)A((—i,81/fi)

1 . . ~
L f dx. f dp.eAPEVen(xoly A [x_ p.:t] XK(—iByh)AL)). (12)

27h
The CMD approximation for the correlation function in Eq.
(120 can then be obtained by applying Eqll) to

1 (8 o
e 7'8HA i
ﬁfo dATr(e PHRA(t+i%N)). (8 A% .pe:t].
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TABLE Il. Commonly used quantum correction factors.

Name Ag(w) Assumption Refs.
Standard 2/(% e By R C(t)]~C%(t) 1, 62, 64
. _ One-phonon process
_ o Bho _
Harmonic Bhol(l—e ) in harmonic bath 54, 61-63
Schofield ghhel2 C(t)~CN(t+inpI2) 66
eﬂhmlz ® _
Egelstaff o f dte'CO(Vt2+(BhI2)2) C(t)=CCl(\t(t+iBhI2)) 44,53, 62, 67, 68
CH(w) J -=
Harmonic/Schofield VAT ) ASTOTE ). M:ﬂtf:rﬁggcp[i;ﬁss 55, 57, 60
IIl. THE CENTROID LANDAU-TELLER FORMULA weak coupling limii. The central quantity in Eq17) is the

VER rate constant, T4, which is given by theLandau-

A. The standard Landau—Teller formula
Teller (LT) formulg®43137-148

We consider the following general quantum mechanical

—pho
Hamiltonian of a harmonic vibrational mode coupled to a iz ﬁﬁé(w) (18)
bath; T2 pho 2u |
|:|=|:|s+ |:|b+|:|bsE|:|o+|:|bS1 13 rere
where (~3(w)=f drel"C(7) 9

~n2
-~ P 1,

N

(14)  is the FT of the free bath FFCF,

is the Hamiltonian of the vibrational mode under investiga- C(7)=(Fo(7)6F)o, (20)

tion (g, p, #, andw are the corresponding coordinate, mo- Where<A>O:Tr[e_ﬁQbA]/Tr[e_ﬁgb] 5[3:|“:_<|§>0 and
mentum, reduced mass, and frequency, respecjively ' '

N (|5(i))2 5leo(t)=e“:'b”ﬁﬁlie*“j'bt/h_ 21)
Hb:igl 2M* HVQ,.QM) (15 Thus, Eq(18) puts the VER rate constant in terms of the FT,

at the vibrational frequency, of the quantum-mechanical
is the Hamiltonian of the bath, which consists of the otherFFCF, which is evaluated with the vibrational mode frozen at
intermolecular and intramolecular degrees of freedonits equilibrium position §=0).

(06N =0, {PM=p, (MO} andV(QW,... 0N =V(Q) It should be noted that the derivation of E¢$7) and

are the corresponding coordinates, momenta, masses, afith) is based on the Bloch—Redfield thedBRT),*>+37~14°

potential energy, respectivelyand and relies on the validity of the following assumptioi$)
Weak systerbath coupling to the extent that first-order

Hps= adF (QW,....QMN) = agF(Q) (16)  time-dependent perturbation thedfermi's golden rulgap-

is the system—bath coupling term, whetds the system-— plies;_(Z) Separation of time scalesuch tha_t the VER life-
bath coupling parametdto be Iate; used in order to keep time Is much longer than thg cor.relat|on t'm? of the FFCF;
track of the order of the perturbation in the golden rule(3) The rotating wave approximation (RWAyhich amounts
o ) - ] to the removal of rapidly oscillating terms, and results in the
limit). The system—Dbath coupling ter,s, is assumed 0 yecqupling of population relaxation from phase relaxation.
be linearized in the vibrational coordinat, VA\/eAaIso as- It is important to note that the LT formula, E¢18),
sume that the force on the vibrational mod&Q), is @ involves thequantumFFCF, rather than thelassical FFCF.
function of the bath coordinates only. It should be noted thatrthe most popular approach for dealing with this difficulty is
this type of potential forceis typically a highly nonlinear to first evaluate the FT of the classical FFCF, and then mul-
function of the bath coordinates, and is usually found totiply the result by a frequency-dependepiantum correction
make a larger contribution to the VER rate constant thafactor (QCF) AQ(w);1’53—68
momenta-dependewentrifugal forces _ _

The standard description of VER is based on the as- C(o)~Ag(»)Cw). (22

: : : i opiAR54,136 _ .
sumption that it follows simple rate kinetié3; Here  T(w)=[*_dtd“co(t),  where  Co()

d . 1 . =(6Fo(t) 6F)$'is theclassicalFFCF[ (- --)5' corresponds to
giloHs)=— T—1<5H s (17 averaging over the classical Boltzmann phase space distribu-
tion, and the time evolution o6Fy(t) is governed by the
where SH=H,—(Hg)o, and (Hyo=rhw/2+hw/(e’"®  classical free bath HamiltonignTable Il lists some of the
—1) is the vibrational energy at thermal equilibriiat the  more popular QCFs. However, estimates provided by the
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various QCFs can differ by orders of magnitude, and particu- e—,eﬁ B
larly so when high-frequency vibrations are involved! > pO)~— 1—ff d)\gA(—iﬁ)\)}, (24)
For example, Egoroet al. have recently estimatedTl/ for 0

O, in liquid O,, at 70 K, and found the following spread of - P N A

values that were based on different QCFs: 0.00095s Where — Z=Tr(e ™), OA=A=(A)eq, (Aeq

(standargy 0.015s! (harmonig, 270s! (Egelstafj, =Tr(e #"A)/Z, and A(—ifi\)=e"Ae™*". A measure-

4030 s* (Schofield. (The experimental value under these ment of VER is initiated by turning the perturbation off at

conditions is 1T; =360 s *.) Similar lack of uniqueness has t=0, and monitoring the expectation value of the vibrational

also been observed in other systeth® energy as a function of time, as it progresses toward its equi-
In this paper, we consider using CMD in order to ap-librium value. Forp(0) in Eq.(24) this yields

proximate the quantum mechanical VER rate constant. As - .

discussed in Sec. I, using CMD to directly calculate a cor-  (SH9()=TI[p(0)sH4(1)]

relation function requires that at least one of the operators is B A .

linear in the coordinates and/or momenta. Unfortunately, the = —fJ AN(SA(—1AN) SH(1))eq, (25

LT formula involves the autocorrelation function of the force 0

operator, which is typically a highly nonlinear function of the

bath dinates. H it that the FFCF t . . S
a’h coordinates. Hence, 1t appears mhat e canno Our basic hypothesis is that VER follows rate kinetics,

calculated directly from CMD simulations. Previous d therefore be ch terized b ¢ sant
attempts to overcome this problem were all based on in@nd can therefore be characternized by a rate constant,

troducing one or more of the following additional .

approximationg?:82:84.86.88.91.103.100) Approximate analytic (SH9®) ekt (26)
continuation;(2) A second-order cumulant approximation; (8H$)(0) '

(3) Approximate semiclassical representation of nonlinear

operators;(4) Approximate classical representation of non- The VER rate constank, can then be written in the follow-
linear operators. All of these approximations have seriou$hg way:

drawbacks. For example, the cumulant approximation will

l%’lereﬁﬂs(t)=e”q‘/”élqse‘”:”’h.

fail if the dynamics is not Gaussian, and will not lead to the <5|f| ) (1)
correct classical limit. In a recent paper, Reichneiral. —A;zke*ktzk at t<k 1t (27)
have derived a formal relationship between nonlinear cen- (6Hg)(0)

troid time correlation functions and high-order Kubo trans-
formed quantum ondgf. Eq.(12)].°* However, in practice,

a numerically exact transformation of these high-orde
Kubo-transformed correlation functions into standard ones, _
becomes very expensive, and therefore impractical in the 5~ !
case of highly nonlinear and/or many-body operators.

Substituting Eq.(25) into Eq. (27), and using the explicit
rexpression for the vibrational energy flux,

PF(Q), (29

then leads to the following general expression for the VER
rate constant:

The above discussion suggests that the LT formula can- . .
not be evaluated directly from CMD simulations without the @ fng&A(—iﬁ)\)[f)F](t))eq
help of additional approximations. In this section, we con- = B ~ ~ .
sider an alternative strategy which is based on expressing the o JodM(SA(—1AiN) SHs)eq

VER rate constant in terms of another corre_lation_function Equation(29) allows us to express the VER rate constant
that can be calculated directly from CMD simulations. TOin terms of a Kubo-transformed correlation function,

this end, we will derive the VER rate constant from “near'fgd)\(b‘A(—ih)\)[f)f:](t))eq, which is distinctly different

response theoryLRT),'*° rather than from BRT. .
from the FFCF. Furthermore, the fact that the perturbation

We start out by considering the possibility of using stan-" """ e
dard LRT. The analysis in this case follows closely that in'S still unspecified, implies that Eq29) actually represents a

Ref. 40, and starts by assuming that the initial state of thg"h_oIe class of new ex.pressions ff)r th? VER rate F:onstant,
overall system has the following from: which correspond to different choices Af One particular

choice, namelyA=§, leads to a correlation function which
can be directly obtained from CMD simulations. Unfortu-
nately, we have found that this particular choice would lead
. o to non-LT VER?*® More specifically, we have shown in Ref.
HereH is the actual Hamiltonian of the overall syst¢of. 40 that whenA=4, first order time-dependent perturbation
Eq. (13)], f is a coupling parameter, aridis a perturbation,  theory(equivalent to Fermi’s golden ruleannot account for
which will be kept unspecified for the time being. We next VER. Thus, in this case VER is dominated by non-LT higher
assume that the perturbaticid, is small enough, such that order terms in the perturbation expansion, and its rate is
p(0) can be substituted by its expansion to first ordef;in  given in terms of multiple-time force correlation functions.

B. Linear-response theory of VER

(29

e BH+A)

p(0)= Tr[e—‘ﬁ(mA)_]' (23
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Non-LT VER is interesting for its own sake and will be ex- (5I:|S>(t)=Tr[A 5|:|s(t)]- (31)
plored in future work. However, in this paper, we are

primarily interested in finding ways to calculate the rate con-lt should be noted that Eq31) applies to any initial state,
stant in the case of LT-type VER. In Ref. 40, we have showrnregardless of its proximity to equilibrium, and is there-
that substituting a perturbation of the forAw (5§)%, can fore more general than standard LRT. The latter can
give rise to an expression that reduces to the LT formuleobviously be retrieved from EQq(31) by substituting
upon imposing the conditions under which BRT is valid A:_ffgd)\e*(B*%)HgAe*%H/Z. Finally, assuming that

(weak system—bath coupling, separation of time scales a”{jﬁﬂs)(t) follows rate kinetics, one can put the VER rate
RWA). Unfortunately, the corresponding Kubo-transformed.gnstant in the following form:

correlation function‘fgd)\(é(m)z(—ih)\)[f)f:](t))eq, can-
not be obtained directly from CMD simulations. The origin .
of this problem and its resolution in terms of an extended a TH{A[PFI(D)}

version of LRT are discussed in the following section. k= w Tr{A SH ! ' (32
S

C. Extended linear response theory of VER o L
It should be noted that the actual validity of rate kinetics, as

The source of the dilemma encountered in the previougyell as the value of the rate constant, may depend on the
section can be traced back to our choice of a Bolzmanizegdy,jice ofA .

initial state, Eq.(23). We have already seen that this form is
not unique in the sense that different choicesAofan give
rise to either LT or non-LT VER pathways. At the same time, A e—ﬁl:l B B

it is conceivable that other types of initial states can give rise ~ A=f? J d,Blj dB,[8G(—iB/h)
to VER of the LT-type. Furthermore, it may be possible to Z Jo 0

We now consider the following particular choice f

find an initial state that will lead to an expression for the X 80(—i B, 11)—(88(—iB1%)8G(—i B, 1A _
VER rate constant that reduces to the LT formula under the =18, (24(=1A (=182 /M) el
conditions of validity of BRTand can be obtained directly (33

from CMD simulations. That this fascinating possibility can
be realized is shown in the present section.

We start out by considering the following, completely i ) - P -
general, form of the initial state of the overall system: f. As such, it must satisfy T{) =0, A'=A. However, it is
important to note that using an initial state in the form of Eq.
(30), with A as in Eq.(33), is not the same as expanding
p(0) in Eq. (23) to second order irf, since the first-order
term is now missing. Keeping this first-order term out is
o . ) ) important for obtaining an expression for the VER rate con-
Thg dewatlen ferm equilibriumA, must obviously satisfy  giant which is independent df [including Eq. (33 as a
Tr(A)=0, AT=A, and keepp(0) positive. Following a second order term in the expansion of E28) would corre-
similar procedure to that discussed in the previous sectiorspond tononlinear, rather tharinear, response theoty
leads to the following general expression for the relaxation Upon substitution of Eq(33) into Eq. (32), we obtain
of (H,) to equilibrium: the following expression for the VER rate constant:

This A obviously corresponds to the second-order term in the
expansion of the original initial state, E@®3), in powers of

e AH
pO)=——+A. (30)

a [84B1I B 50(—iB1/%) 84(~ 182/ H)[PFI(1))eq
wo [BABLIE B SG(—iB1 1) 8A(— 1B /) 6 ) eq

(34

It is important to note that the correlation function in the D. Derivation of the centroid Landau—Teller formula
numerator of Eq(34) can be obtained directly from CMD

simulations[cf. Eq. (12)]. Furthermore, the fact thak is As mentioned above, the correlation function in the nu-
quadratic ind@ suggests that this initial state may relax via amerator of Eq.(34) is directly related to the corresponding
LT-type pathway. This indeed turns out to be the case. Mor&entroid correlation functionicf. Eq. (12)]. Thus, by only
specifically, one can show thiatin Eq. (34) reduces to 7,  IMPosing the CMD approximatiorg. (11), on the centroid

of the LT formula, Eq.(18), upon imposing the three basic Symbol of the time-dependent energy flux operator in Eq.
assumptions underlying BRT. The actual proof, which is(34), we can obtain the following working expression for the
rather tedious, is outlined in Appendix A. VER rate constant:
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(PEH?  pe
I(CMD__I dch' dpcf dch dP exp{ { _(T+ me UCI‘n(QC!qC):H[5qc(_t)]2pCFC(QCqu)

(PO pd -
|jdch dch dch dP, exp{ { _(')_+ Ucm(chqc)“[5qc]2[5Hs]c(qc1pchcaPc) )

(35
where

Uem(Qc.0c) = pw qc/2+vcm(Qquc)+aqc (Qc,de)- (36)

In arriving at Eq.(35), we have made use of the classical-like time-reversal symmetry of the CMD correlation function
((AB(1)Yemp=(Ac(—1t)B:)cmp) - We have also used the centroid symbol of the energy flux operatof28gwhich can be

derived from Eq(3) (see also Ref. 89 for the path integral expressiondfpand Ref. 105 for an explicit multi-dimensional
presentation of the centroid formalignThe derivation is straightforward, although rather tedious, and leads to the following
final result:

Hele=— —[pF(Q)]e=— —poF ) (37
[ s]c_ M[p (Q ]c_ Mpc C(QC'qu

where,Q.={Q,....QM, and
B

f Dq(h)f DQ(Mé{qc—f ﬂQ(k)}@[Qc— fﬁﬁﬁQ(k)}
a(0)=a(Bh) Q(0)=Q(BH) o Bh o Bh

XJBhEF N - N),Q(N)]/A j Dq(A
s i FIQUIeXB =S, QA | )

Fc(Qcan):

f DQ(N)
(0)=a(Bh) Q(0)=Q(B#)

Bh 1

_fﬁﬁd)\ e dA N
qC 0 Bﬁq Cc 0 Bﬁ
P

:.im”dql...qupfdQl.,,fdeg[qC_kZ HQ s 31

P—x

X 6

exp{ —S[a(r),Q( A)]/ﬁ}]

P
|3 F(Qu

exp{—S(ql,...,qp,Ql,...,Qp)/h}JiJdql...qupj er"J deé{ -2 %

-1
exp{—S(dy,....0p,Q1,- .-, QP)/ﬁ}] ; (39

with

P
1
= Sa0),Q00)] =52, [guw%(qk—qm)z

N
1 : )
= lim — S[ql,...,qp ,Q1,....Qp] +2, EM(')wé(Q(k')_Q(k'll)z

P~>oc

1
=gf0 [m[q<x>12+2 >MOQUM)I?

1/1 )
+ 5| 5 RoaETVQ)+aaF Q] | |, (40)

d1=dp+1, Qp+1=Q1, and w;z): P/(BH)?.

1
+ Eﬂqu(h) +VIQM) ]+ aq(MF[Q(N)], (39 F¢(9c.Qo) can be obtained from PIMD or PIMC simu-
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lations of a system consisting dfi+1 chain polymers, are primarily interested in VER under the conditions of va-
whose centroids are fixed ag,Q(",...,Q). More spe- lidity of the LT formula. Thus, we proceed by imposing the
cifically, F;(q.,Q.) corresponds to the average force exertedhree basic assumptions underlying BRT upon the VER rate
on the beads of the polymer chain associated with vibrationatonstant in Eq(35). The details of the analysis are left to
mode,{q4,...,0p}, by the polymer chains associated with Appendix B, and only the final result is given below:
the bath DOF{Q4,...,Qp}. It is important to note that the
centroid symbol of the force is distinctly different from the BRT 1 _
classical force for the corresponding centroid position, i.e., kcmoﬁmzazmccm(m), (41)
Fe(dc, Qo) # F(Qo). '

In principle, one could evaluate the VER rate constént
it exist9 directly from Eq.(35). However, in this paper, we whereCP(w) is the FT of

N (i)y2
(P{))
[dQeldPeexp) — | 2, iy + Ven(Qo

N (i)y2 !
(PY)
[dQefdPeexp) — | 2, oy + Ven(Qo

} OF [ Qc(7)]6F [ Qc]

COMD( 1) = (42

FJQd=FQ.,q.=0], andQ.(7) follows a classical time the follpwing appro>.<imation for the exacguantum-
evolution which is governed by the centroid potential Mechanical FFCFand its FT:

Vem(Qd =Vem(Qc,dc=0). * : ho -

It should be noted thaE“MP(7) has the same form as C(n)= f_mdwef'mﬁccm(w% (43)
the classical FFCF. Quantum effects are introduced in two
distinct ways:(1) The initial sampling and the dynamics are ~(w)% Bhw ECMD(w)
governed by the free bath centroid potential,(Q.), rather 1—e Fio '
than the classical potentia¥/(Q.); (2) The classical force, Inspection of Eq(44) reveals that it coincides with the ap-
F(Qo), is replaced by the corresponding centroid symbol ofproximation based on the harmonic QG&. Table I if
the force,F¢(Q.). Thus, the classical limit oE“MP(7) ob-  ECMP(,) is replaced with the FT of the classical FFCF,
viously coincides with the exact classical limit, which is not EC'(w). Thus, the approximate VER rate constant of Eq.

always the case in some of the other centroid-based apz1) naturally incorporates the harmonic QCF and adds to it
proaches, that also involve additional approximations. At thgyuantum corrections that originate from the difference be-
same timeC“"°(7) does not coincide with the exact quan- yween CEMP(7) and C(7). It should also be noted that
tum result atr=0. In this context, it is important to empha- C(7) in Eq. (43) is complex, with real and imaginary parts.
size that the time integration variabten Eq. (42) has noth-

ing to do with the explicit time variable in Eq. (34). More V. APPL_ICATIO_NS ) o
specifically, one should distinguish betwe@&V°(7) and In this section, we consider the application of &4{1)

the centroid correlation function in our original expression,’or c@lculating the VER rate constant in three model systems:
Eq. (34). The latter is directly related to the corresponding (1) A harmonic vibrational mode coupled to a harmonic bath

Kubo-transformed correlation function and is therefore exaciNIth a force which is an exponential function of the bath

att=0. However, the actual VER rate constant is related tocoo_rdmates;.(Z) A d'ato”!'c molecule goupled to a short
: . . . . chain of Helium atoms with nearest neighbor Lennard-Jones
the behavior of this correlation function &ing times(t

-1 o (LJ) interactions;(3) A breathing sphere diatomic molecule
>k ,)' In fa(?t, ,qu(4l) IS mdeper.\dent' Ohc gnd one cgnnot in a monoatomic solvent with LJ interactions. The param-
take itst=0 limit since the long-time limit is already incor-

L " ) eters are chosen to be the same as in Ref. 133, and the cor-
porated into it as part of the conditions underlying BRiE responding LHA-LSC-IVR-based results are presented
shown in Appendix B, thetoo in the limits of the Fourier

) o - alongside the CMD-based predictions, for the sake of com-
integral originate from the assumption thatT,> 7). parison. The purpose of this analysis is to critically examine

_ Finally, we note that it w_ould_ be more appropriate to e ability of the CMD approximation, upon which E@1)
interpret Eq.(41) as an approximation for théER rate con-  is pased, to quantitatively capture the large quantum en-
stant rather than interpre“V'°(7), Eq.(42), as an approxi- hancement of VER rate constants. It should be noted that
mation for thequantum-mechanical FFCFThe reason for previous studies seem to suggest that CMD, supplemented
this is that Eq(41) originates from Eq(35), which provides by additional approximations, is indeed useful for describing
an approximation for the VER rate constant in terms of anquantum-mechanical VER. In our case, we avoided such ad-
other correlation function. In fact, treating EG#1) as an  ditional approximations, which enables us to perform a clean
approximation for the exact LT formula, E(L8), gives rise  test of just the CMD approximation.

(44)
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A. Exponential coupling to a harmonic bath

Exact
) o . 0.2 ¢ CMD
The first model that we consider involves a bath consist- + Harmonic QGF
ing of uncoupled harmonic oscillators of different frequen- g O o LHALSCAVR
cies, S
" ; (ﬁ)(j))z 1 (N2 H))2 i _
Hyp= + - M@(l 2], 45 0.2}t
o= 2, | oy + MV (@)2AQW) (45
0
and a force which is exponential in the bath coordinates, -
= 04
~ - (&)
F(Q):eR(Q), (46) oot + Harmonic QCF
‘ + LHA-LSC-IVR
where . \

I
wt

,\ . 2MUW el o
RQ =2 ¢l \/————QU. (47)
] fi FIG. 1. The real and imaginary parts of the FFCF, for the case of exponen-

tial coupling to a harmonic bath. The exact, CMD-based, harmonic-QCF-
The fact that the exact quantum-mechanical FFCF can beased, LHA-LSC-IVR-based and classical results are shown.
obtained analytically for this mod®lhas established it as a
convenient benchmark®:®® The exact quantum-mechanical
FFCF is given by

C(7)=eBO)(eB(N—1), 48 1 1
(T) ( ) ( ) TCMD :§2ﬁ (54)
where 1 1

Thus, one may think ot? as an additional QCF that en-
B(r)=(|§o( 7) §(0)>o= dewr(w){[n(w)ﬂ]e—im hances the quantum rate constant over the classical one, and
0 supplements the already built-in harmonic QCF. However,
the fact thatZ? is independent of the frequenay, immedi-
ately implies that this factor will not be able to account for
the rapid growth in the quantum correction factor, expected
I'(0)=2 (c¥)?28w—w®), (500 with increasing frequency.
K The real and imaginary parts of the FFCF, obtained from
andn(w) =[exp(Bhw)—1]"". The calculations reported be- Ed.(43), are shown in Fig. 1. Also shown in Fig. 1 are the

low were performed with a spectral density of the following €xact, classical and LHA-LSC-IVR-based results, as well as
form: a prediction based on the harmonic QCF. The CMD-based

FFCF is somewhat better than the one based on the harmonic
QCF, which should be attributed to th@ factor. Further-
more, the CMD-based FFCF is seen to be in reasonable
i agreement with the exact FFCF, although it should be noted
and for the following values of the parametexs=0.20, @ hat much of the improvement over the classical result is due

=3, andphiw.=4.0. _ o to the inherent harmonic QCF, and not tffefactor.
The fact that the bath is harmonic in this case, made it Despite the reasonable agreement in tinee-domain

possible to establish a simple analytical relationship betweegne must not lose sight of the fact that VER is dominated by

the classical force and its centroid symbol. The details of thqhe high-frequency tail of the FFCF in tfiequency-domain
derivation are left to Appendix C, and only the final result is 5 plot of the the FT of the FFCF, as predicted by E4f), is

+n(w)e' ™, (49

w® w?
T(w)ZZKWeXP(——z), (51
I s

c

given below, given in Fig. 2, in regular and semilog formats. The regular
Fo(Qo)=CF(Qy), (52) plot suggests that the CMD-pased r(_esullt. is in good agree-
ment with the exact result. It is also significantly better than

where the harmonic-QCF-based result, which is once again attrib-
N uted to theZ? factor. Thus, CMD does seem to capture the

_ (F(Q))o bulk of the power spectrum rather well, although much of
(F(Q))Oc this effect should actually be attributed to the inherent har-

N monic QCF and is not directly related to CMD. However, the
= (k)2 K /2y — K)oy —1 semilog plot shows that the high-frequency tail of this power
expl kzl (C™)Teoth phe™/2) ~ (BhwT/2) 7] >1. spectrum, which is relevant for VER, essentially coincide
(53 with the harmonic-QCF-based result. Thus, the modifications
due to thez? factor, which are directly associated with CMD,
Since the bath is harmonic, the centroid potenial,(Q.), are rather small at the high-frequency domain. It should also
coincides in this case with thelassical potential, V(Q,). be noted that the LHA-LSC-IVR-based result is in excellent
This implies thatC®MP(7) = ¢2C®(7) and agreement with the exact result in this case, and is signifi-
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1.5 T T
L Exact
> CMD
1 + LHALSCVR A He: He. Hes Hes
© + Harmonic
% I - Egelstaff QCF LJOLJOLJOﬁ.
S 051 Classical 7
oy
0 ‘ ‘ I FIG. 3. A schematic view of the linear helium cluster model.
22
IS The A, molecule and helium chain are assumed to lie
2 I along the x axis, with the origin positioned on theatom
- '6; which is attached to the wall. The secoAdatom is posi-

tioned atxo=reqt dy, Whererq, is the equilibrium bond
o/ length of A, and &, is the deviation relative to it. The posi-

G 2 Th  the FECE. for th . - tions of Helium atoms 1, 2, and 3 are given By=rg,

. 2. The power spectrum of the , for the case of exponential cou- _ _

pling to a harmonic bath, in regul&upper pandland semiloglower panel tOheat 01, Xo=Teqt Ohent qu‘He_F 9 and Xz=req
formats. The exact, CMD-based, LHA-LSC-IVR-based, harmonic-QCF- T THe-a+ 20 He-Het I3, respectively, WhGVEUHe_-A and
based, Egelstaff-QCF-based, and classical results are shown. OHe_He are the familiar LJ parameters. The position of the

last Helium atom is fixed aty=r ¢t ohe_p+ 30 He_pe- The
overall potential energy of this system is given by

cantly better than the harmonic-QCF-based and CMD-based

OOZJ
N
=
o
3
o«

predictions. _ 1, ,2¢2 \/He-A _

The inability of CMD to provide a significant improve- V(80,61,02,05)= 2pw 8o+ Vg (0he-at 61~ o)
ment over the harmonic QCF is rather surprising in light of + VM oo et 82— 87)
the fact that a seemingly more approximate method, which
supplements the CMD approximation with an approximate +VE§‘He(aHe_He+ 83— 05)
second-order cumulant expansi@+CMD) of the FFCF, has
been known to yield the exact result for this motfel®In +VI T e 83), (55

this case, one expresses the FFCF in terms of the position

autocorrelation function, which can be obtained exactly from, hare V(1) =4¢€[ (o/r)*2— (o/r)®]. The parameters used
CMD when the system is harmonic. However, this fortunate; . he same as these in Ref. 108,_=4.944 a.u.,
coincidence is clearly restricted to harmonic systems, and i&He_He:4_310 au., €ron/Kp=25.1 K, €ro_nd Ko

is not clear how well it will hold in highly anharmonic sys-  _19 5 k_ The force on the diatomic molecule is obtained by

tems such as liquids. Furthermore, the average positionearizing the potential with respect to the diatomic dis-
which is essential for calculating the position autocorreIanorblacemenwo.

function, is ill-defined in simulations of liquids with periodic

boundary conditiongprevious applications of C-CMD were

restricted to cases where the relaxing molecule was held __ﬂ _ 7 HeA +80) (56)

fixed). Thus, the fact that C-CMD, which is more approxi- Idol, o (Trea™ 01).

mate than the method presented herein, happens to be exact 0

for this specific model, should probahiyt be interpreted as

implying that CMD is generally applicable to high-frequency ~ The real part of the FFCF, obtained from Eg3), is

VER. shown in Fig. 4(note that{(F(7)F) is plotted, rather than
(6F(7)6F)). Also shown are the exact, classical, harmonic-
QCF-based, LHA-LSC-IVR-based and C-CMD-based re-

B. A linear helium cluster

The second model to be considered has been recently 148 T Exact ]
03,104 H - n " -u i
used by Poulsen and co-work&rs “for calculating the 3 1.2 Classical =
FFCF via the C-CMD method. In this model, a harmonic © f ©—CMD
. . . : 2§ LHA-LSC-IVR
diatomic moleculeA,, is attached to a wall, and held fixed %08y --CCMD 8

perpendicular to it(cf. Fig. 3). The A atom which is not
attached to the wall is coupled to a short linear chain of four
helium atoms, with the last helium atom held in place. The )
interaction between th& atom and the helium atom next to % 50000 45000
it, as well as the interactions between the helium atoms, are t(a.u)

described by anharmonic Lennard-Jonks)) potentlals, FIG. 4. The real part of thénonshifted FFCF, as obtained for the Helium

Wh_iCh mimic rea”_StiC ”qUid'phaS_e interactions. Only nearestster model. Shown are the exact, classical, harmonic-QCF-based, CMD-
neighbor interactions are taken into account. based, LHA-LSC-IVR-based, and C-CMD-based results.
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sults(the exact and C-CMD-based results were adopted from

Ref. 103. The relatively large deviation between the classi- 80 — LHALSC-IVR |

cal and exact quantum-mechanical results is indicative of the 3 o CMD ]
« " - 80rY -~ Harmonic QCF

fact that the “solvent” is pronouncedly quantum-mechanical .~ hk ._.-Classical

in this case, as could be expected from helium at 40 K. The 5&40? + PP-CMD

failure of the harmonic QCF also suggests that this system is

pronouncedly anharmonic. The prediction based on(&8g).

is seen to provide a rather reasonable approximation of the

exact quantum-mechanical FFCF in this case. This reinforces Of ., rEssmspssedaissd

the notion that CMD is capable of providing a reasonable 0 01 02,03 04 05

approximation for the time-domain behavior of a pro- t

nouncedly quantum-mechanical and anharmonic system. THaG. 5. The real part of the FFCF, as obtained for the breathing sphere neon

agreement between the C-CMD-based prediction and the exiodel. Shown are the LHA-LSC-_IVR-based, CMD-based, PP-CMD-based,
. . . harmonic-QCF-based, and classical results.

act result is clearly not as good, in accord with the more

approximate nature of C-CMD. Finally, it is interesting to

compare the prediction obtained from CMD to that obtainedyaye the same mass, and thiatr) and4(r,q=0) are iden-

via LHA-LSC-IVR. Generally speaking, Eq44) seem t0  tjcal and given by a LJ potentiat? ¢4(r)=(r,q=0)
provide a better approximation to the exact FFCF over the:V,_J(r)=4e[(a/r)12—(cr/r)G].

time interval considered. This nicely reflects the fact that the |, Figs. 5 and 6, we show the FFCF and its FT, as ob-
dynamics in LHA-LSC-IVR is purely classical, whereas the {3ined from simulations where the mass and LJ parameters
dynamics in CMD includes quantum effects via the centroidyere chosen to coincide with these of liquid neon, namely,
potential. However, LHA-LSC-IVR is exact at=0 and  ;—2 72 A ande/kg=47.0 K. The calculations were per-
clearly provides a more accurate description of the initiakkgrmed on a 2D liquid consisting of 81 atoms confined to a
decay of the FFCF. Noting that correlation functions are Of'square, at a reduced density and temperaturg*cf 0.70

ten found to be short-lived in truly condensed phase system§p:9_46 nm‘z) andT* =0.68 (T=32 K), respectively. Pe-
and that their high-frequency FT is dominated by this shortjogic houndary conditions and a potential cutoff at Bave
time decay, then leads one to expect that LHA-LSC-IVRpeen employed. The real part of the FFCF, as obtained from
would be better suited than CMD for calculating high- Eq. (43), is shown in Fig. 5. Since the exact quantum-

Ny
<
T

Spa e g T T A

frequency VER rate constants. mechanical result is not known for this case, and experimen-
tal results are unavailable for this particular model system,

C. A diatomic solute in a monoatomic solvent evaluation of the quality of the approximation is difficult.

(breathing sphere model ) However, Eq.(43) yields a FFCF which is clearly different

. h ¢ ) , | . _from the classical one, and close to the one obtained via
we ne?<t consider the V_ER ora dlatom|_c solute In a; YA SC-IVR. However, it is important to note that this
monoatomic solvent. The vibrational mode is assumed Qyiterence arises almost exclusively from the harmonic QCF.
have a spherical symmetry, and can therefore be viewed aShe ET of the EECE. as obtained from Hd4), is shown in

“ H 43,150,151 ’ hka
breathing sphere. The  solute—solvent and Fig. 6 on a semilog plot. The high-frequency tail of E44)

solvent—solvent interactions are treated in terms of Sphe“(:learly coincides with that obtained via the harmonic QCF.

pally symmetric pair potentials. The overall potential eNergYThys in this case, the fact that we used CMD instead of
is given by classical MD did not make a differendas long as we ap-
plied the harmonic QCF to the latjeit should also be noted
L 2 that the prediction of LHA-LSC-IVR, which has been seen
V=zpo®qt Zk ¢o(Fji) + 2 b(Fjo,0), (57) o be very reliable in other model&? deviates considerably
: : from that based on CMD or the harmonic QCF.

where ¢4(r) is the solvent—solvent pair potentiad(r,q) is
the solvent—solute pair potentialy is the distance between
the jth andkth solvent atoms, and, is the distance between

the center of mass of the diatomic solute and jtiesolvent § o
atom. The force is obtained by the linearization of the poten- S . TN
. . = o .
tial with respect tag, 2 [ e LHALSCIVR ». A,
2 -1+ & PPCMD . ~
'} ®  Classical s
~~~~~~~ Standard QCF
~~~~~ Harmonic QCF LA
[ ——~- Schofield QCF LI

N
aq

'
N
1

—— Eglastaff QCF

F=

0
qzoz_E _¢

7 Jq

r- . 58 L L L L
:0( jo) 8 026 40 60" 80 100
()

q

; il FIG. 6. A semilog plot of the FT of the FFCF for the breathing sphere neon
In order to enhance the computational feasibility, calcula model. Shown are results obtained from CMD, PP-CMD, LHA-LSC-IVR,

tions were p_erformed on a two-dimensional ”qUi_d and_ undelyassical mechanics, and the standard, harmonic, Schofield and Egelstaff
the assumption that the solvent atoms and the diatomic solutgcFs.
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— Classical

1500 >—CMD B
Y ---Harmonic QCF

o Helium (40K)
= | I ; | A
>
0.5f
FIG. 7. The real part of the FFCF, as obtained for the breathing sphere or
Helium model. Shown are the CMD-based, PP-CMD-based, harmonic-
QCF-based, and classical results. -0.5
9k Neon (32K)
1 L 1 L L L
In Figs. 7 and 8, we show the FFCF and its FT, as ob- 1 5, 2 2.5
tained from simulations, where the mass and LJ parameters r

were chosen to coincide with these of liquid helidthe L kG, 9. centroid pseudo pair potentials for the breathing sphere helium and
parameters were adopted from Sec. IV Bhe calculations neon models.
were performed on a 2D liquid consisting of 81 atoms con-

fined to a square, at a reduced density and temperature of . ,
p*=0.70 (p=13.46 nm2) and T*=3.92 (T=40 K), re- helium intensifies the quantum nature of the system, with the
spectively. The real part of the FFCF as obtained from Eq_result that the centroid pseudopair potential becomes signifi-
(43) is shown in Fig. 7. In this case, the CMD-based result iScar_1t|y diﬁergnt in comparison to the classical pa_ir potentiz_il,
significantly different from, and presumably more accurateV/Nich explains why using CMD does make a difference in
than, the harmonic-QCF-based result. The reason for this cdf'S Particular case.

be traced back to the fact th&@“MP(7) is significantly dif-

ferent from its classical counterpart in this more pro—V- DISCUSSION

nouncedly quantum mechanical liquid. The FT of the FFCF,  vER of high-frequency molecular vibrations represents
as obtained from Eq44), is shown in Fig. 8 on a semilog 3 rather unique example for an important, highly nonclassi-
plot. The high-frequency tail of Eq44) clearly deviate from  ca| and inherently condensed-phase process. Experimental
that obtained via the harmonic QCF. Thus, in this case, th§ER rate constants are often found to deviate from the cor-
fact that we used CMD instead of classical MD does make @esponding classical predictions by several orders of magni_
difference. tude, and bridging this gap represents an important test and a
In order to get further insight into the above observa-challenge for any method that aspires to account for quantum
tions, it is instructive to consider an approximate version ofgynamical effects in condensed phase systems. It should be
CMD, which is based on centroid pseudpair) potentials  emphasized that in most cases of interest, classical mechan-
(PP-CMD),****instead of the full CMD potentidlcf. Figs. 5, ics would provide reasonable predictions of the bulk proper-
6, 7, and 8 The centroid pseudopair potentials for the twotjes of the solvent, under the prevailing conditions. However,
cases considered above are shown in Fig. 9. In the case QR is extremely sensitive to these very few high-frequency,
neon, the CMD pail’ pOtential essentia”y coincides with theand therefore very quantum-mechanicaL modes of the sol-
classical pair potential. This is not surprising since neon is §ent that are in resonance with the high frequency of the
relatively heavy atom. This observation explains why usingrelaxing vibrational mode. CMD has been observed in the
CMD instead of classical dynamics does not change the reyast to be rather accurate in predicting such quantities as
sults in Figs. 5 and 6. At the same time, the smaller mass dfjffusion coefficients in pronouncedly quantum liqufdst
has also been shown to work reasonably well for barrier
crossing problems, where the extreme sensitivity of the rate

2—{949«;% ‘ . to the barrier height seems to be in step with the idea of
LI :@'m.é\ ] introducing quantum effects by means of an effective cen-
AN ) troid potential®'%However, as we have shown in this pa-
X3 ".\_\\ 0'2:;.\ | per, CMD can run into difficulties in the case of VER, where

(2,)9 '.‘_\\ '<>~;~0 the centroid force is essentially dominated by the large ma-
9 0" Classical "a>< i jority of classical modes, which completely overwhelm, and

-=-- Harmonic QCF "a ™

..... PP.CMD AN obscure, the very few quantum modes that are relevant for

-1h ;7 Standard QCF . VER. The fact that the VER rate constant is given in terms of

G 60 560 a second order Kubo-transformed correlation function may

o* have further contributed to the inaccuracy of CMD. For ex-

FIG. 8. A semilog plot of the FT of the FFCF for the breathing sphere ample, in the case of .exponentlal coupl]ng to a harmonic
helium model. Shown are results obtained from CMD, PP-CMD, classicaP@th, CMD would _gve the exact first-order Kubo-
mechanics, and the standard, harmonic, Schofield, and Egelstaff QCFs. transformed correlation function, but not the second-order



9042 J. Chem. Phys., Vol. 119, No. 17, 1 November 2003 Q. Shi and E. Geva

one. It should be noted however, that the rate constant foAPPENDIX A: THE LANDAU-TELLER LIMIT

LT-type VER cannotbe given in terms of a first-order Kubo- ) ) ] o

transformed correlation function that can be directly obtaineq " this appendix, we outline the derivation of EQ.8)
from CMD simulations(unless additional approximations oM EQ.(34) in the LT limit. To this end, one has to find the
are employey leading terms in the expansionlof Eq.(_34), in powers ofa.

In retrospect, the above observations are perhaps not sdf-¢an be readily shown that the leading term in the expan-
prising if one takes into account the basic procedures used Byj°N ©f the denominator is of Oth order in while that in the
CMD in order to account for quantum effects. Perhaps moréXPansion of the numerator is second ordewiriThus, the
surprising is the fact that the seemingly similar LSC-IVR leading term in the expansion b_f'_s alsp OT second order in
method has been found to outperform CMD in the case oft @nd the corresponding coefficient is given by
VER, and actually provides very accurate predictions of the
VER rate constant® After all, LSC-IVR also leads to a
classical-like expression for the FFCF, with non-classical
sampling and “Wigner symbols,” instead of centroid sym-
bols, of the corresponding operators. In order to gain further
insight into this observation, it is important to note that the . A
high-frequency tail of the LSC-IVR FFCF power spectrum is X oG(— |ﬁ2/ﬁ)[pF](t)}} ' (A1)
dominated by a nonclassical term which is very sensitive to !
quantum fluctuationsf the force around its average vaftf. . .

The centroid symbol of the force, E@8), which correspond  Here z2=Try(e #s), Z0=Tr,(e #"b), and[---], is the
to the averageforce over the corresponding imaginary-time first-order term, with respect ta, of the corresponding ex-
cyclic path, seem to miss this effect. Another evidence impression. .

favor of this interpretation comes from our recent work on It should be noted thate #H, 5g(—i%B,), &9
the relationship between LSC-IVR and CMB We found (—i%By), and[pﬁ](t) all depend explicitly orw, and have
that the centroid correlation function can be obtained fromhe following nonvanishing zero and first-order terms when
the LSC-IVR correlation function, by decoupling the cen- expanded in powers af:

troid, which corresponds to the zero-frequency normal mode

of the corresponding imaginary-time cyclic path, from the

higher normal modes. These higher normal modes, which - -

LSC-IVR can account for, are responsible for the very same [e P"]o=e"F",

quantum fluctuations that seem to play a key role in VER.

We note in passing that the analysis in Ref. 153 was per-

formed in terms of first-order Kubo-transformed correlation . - (B R

functions, whereas our expression for the VER rate constant, [e AH] = —e’ﬁ"'of dB18o(—ihaB)Fo(—i7B1),

Eqg. (35), is given in terms of a second-order Kubo- 0

transformed correlation function. However, it seems reason-

able to assume that the general argument remains valid for

this case too. [86(~i%B1)Jo=0o(~ i By),

The analysis presented in this paper is also valuable be-
yond the particular application to the VER problem. More
specifically, we have shown that one can take advantage of
the freedom in choosing the perturbation in linear-response [66(—i%B)],=
theory, in order to relate rate constants to correlation func- 2po
tions that can be obtained directly from CMD simulations. It
should be noted that the same idea has been recently em- 1 .
ployed for calculating reaction rate constants from CMD —e (BNl —(F),
simulationst®®1% The general procedure, which avoids the peo
need for adding approximations to CMD, should be appli-
cable for any process that can be characterized by a rate [[bﬁ](t)]OZﬁO(t)l’iO(t)i
constant. We hope that by utilizing this procedure one will be
able to extend the application and testing of CMD to a wider

. h R i t R R
range of problems than is currently available. [[PFI(t)]1=5 Jodtl[qO(tl)f)o(t)Fo(tl)Fo(t)

2w? B B1 . .
k()= f d/alJ dB, Trie PR sq(—iB, /1)
ZZp| Jo 0

B ~
JldxFo(—im)[ewrmw
0

—Po(t)Go(te) Fo(t)Fo(ty)]. (A2)
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k()=
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202 (B By i - ) - ) )
7570 Jo dﬂljo dB, Tr{[e PM]180(—iB1 /%) 8o(—iB2 /%) Po(t)Fo(t)}

B B1 - . B B y
+ [ "ap, | "ap, Trte o sa—i 8y 1) o~ 820 po(OF o0} + [ ap [ s, Trfe Poag(—i 1)
0 0 0 0

~ ) ~ “ B B1 P ) R . A
X010 PO Fo(0) + [ g, g, Trre B”oqc)(—l/ﬂ/ﬁ)%(—uﬂzlm[[pF](t)h}}

(A3)

In order to proceed, one has to substitute the correspondinbhus, under these two approximations?) reduces into

zeroth and first-order terms from Eq#2) into (A3). The
resulting equation can then be further simplified to yield

K@) =[L(t)+R(t) +T(1)], (A4)
where
1
ﬁ(t)ZM—wRQ{(l W)f dTeleC( 7)
1+ 1—,1—)] dre” "’"C(T)] (A5)
R(t)= M%}Re{ eZith;dTe‘wT[C(T)—C(—T)]],
(A6)
and
Bhow oo
ﬂt)—#w e{ﬁe sioIm| e'!t
xf dxe‘”ﬁwC(—t—im\)}
0
B
+25ir(wt)fo d)xC(—t—iﬁ)\)}. (A7)

The LT formula emerges from E¢A4) when the two
additional approximations of BRT are imposed on it:

(1) Within BRT, rate kinetics is obtained at the Markovian
limit, which is reached whemh becomes larger than the

correlation time of the FFCF, denoted by. 7 is typi-
cally very short in liquids {-ps), particularly in com-
parison to the VER lifetimeT ;. In the case of Eq.34),

lim,_., £(t). It is then easy to show, with the help of the
following identities:

1 w Clw')
(w)-l——'Pf da)'w,_ ,

w

(A8)

1.
j dre'*"C(7)= >

C(—w)=e PC(w), (A9)

that

7Bﬁw ﬁ ~
k@ ~lim £(t)= Bﬁ—w —C(w),

t—o

(A10)

which is identical to IF, in the LT formula, Eq.(18).

APPENDIX B: THE DERIVATION OF THE CENTROID
LANDAU-TELLER FORMULA

In this Appendix, we outline the derivation of the cen-
troid Landau-Teller formula, Eq41), from Eq.(35). To this
end, one has to find the leading terms in the expansion of
kemp . EQ. (35), in powers ofa. The leading term in the
expansion of the denominator is of Oth orderdnand is
given by

“ dch dch dQCJ dpcexp| [ZN p(l))z

Pc
+ %—’_Ucm(Qcaqc) ][5qc]2[5Hs]c(qc !pC!QC'PC):|

0

_ 50 2 Bhwl2 B1
- TbuBPw® sinh(Bhwl2)’ (B1)

where we have used Eq&5) and (72) of Ref. 89 for the

7, corresponds to the plateau time that signals the onsefentroid density and energy centroid symbol of a free har-

of rate kinetics. Assuming that> 7. in Eq. (A4) then has
two implications:(1) The transient term7(t), vanishes
[C(—t—iAN)—0 att>7]; (2) the limit of the time
integrals in the term#£(t) andR(t) can be extended to

o0,

()

monic oscillator, respectively. The first nonvanishing term in
the expansion of the numerator is second orderainit
should be noted that.(Q.,q:), 9.(—1), andF.(Q¢,qc)

all depend explicitly or. The corresponding zero and first
order terms obtained when these quantities are expanded in

Decoupling the population and phase relaxations withigowers ofa are as follows:

BRT also requires the averaging out of terms which ro-

tate rapidly with the frequency«2(the RWA). Applying
this approximation to Eq(A4) leads to the removal of
the rotating ternfR(t).

[pC(QCqu)]OZ Pg(QC)Pc(Qc)a
[pe(Qc,0c)]1= — Bpi(de) p2A(Qo)UF (Qo),
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c . (2wt
[8Gc(—1) Jo=0c co wt) - —50) sin(wt), Rewo(t)= g[ S'”(w_w>CCMD(O)
—1 ‘drsi —COS{Zwt)J'thCOS(wT)CCMD( 7)
[0~ 0=~ | drsirflt-nIFdQu -~ 0
1 i ‘ i CMD
+ ,uw2<F°(QC)>C’ —sm(Zwt)dersm(wr)C (r)f. (BH

The centroid LT formula emerges from E@3) when
[Fe(Qc.Ge)Jo=Fc(Qe)s [Fe(Qc,Gc)]1=0. (B2) the two additional approximations of BRT are imposed on it.
Using the zeroth and first order terms from E@82) in  1huS, assuming that>., wherer is the correlation time
order to find the leading second order term in the expansiofif CCMD(T)’ implies that we can extend the limit of the time
of the denominator of Eq(35), followed by some algebra, integrals in Eqs(B4) and(B5) to . Averaging out of terms

then leads to the following result: which rotate rapidly with the frequencyw2(the RWA) then
leads to the removal of the rotating terRicyp(t). k&)

k&io=[ Levo(t) + Remp(D)], (B3)  reduces as a result into ljm.. Lowp(t), which coincides
with Eq. (41).
where
APPENDIX C: EXPONENTIAL COUPLING TO THE
B[t oD HARMONIC BATH: THE CENTROID FORCE
Lewn() = “ fodTCOQ“’T)C (7), (B4) In this appendix, we outline the derivation of E&2).
To this end, we consider the centroid symbol of the exponen-
and tial force operator, Eq46),

N P

i i) ) \amDa@mol) - _ il pasP ()2 (21002

FC(QC):HllfdQ(lJ)...f de;”eC 2M 1hQY 5( Q(CJ)_p 1;1 Q(kl))e B3_[12MDeg+ (1P)112MI(01))21(Q)
i= =

P -1
X[JdQ(lj)"‘f ng)g( QV-pty Q(kj)>e—ﬁ25_l[1/2M(i)w§,+(1/P)1/2M(j)(w(j))z(Q(kJ))z]} _ (C1)
k=1
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