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transitions can be observed to infer all four W /s, the 
relationships given will be of use in data analysis. 

* This investigation was supported in part by the Air Force 
Office of Scientific Research (ARDC) under contract. 
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THE relative order of the chemical shifts in the ring 
spectrum of the triphenylcarbonium ion was esti­

mated by Moodie, Connor, and Stewart! and measured 
by us2 from appropriately deuterated species. The 
chemical shifts which we originally reported are essen­
tially correct: Opara-ortho=0.525 ppm and Opara--meta= 
0.355 ppm. However, the coupling constants were in 
error. We have reevaluated the latter by the method 
of total reproduction of the NMR spectrum, based on 
the complete solution of the secular equation for the 
system AB2C2• The calculations followed the general 
procedure used by Schneider, Bernstein, and Pople3 

for pyridine, an AB2X 2 spectrum. Our spin wave func­
tions and Hamiltonian matrix elements were identical 
to those used in the pyridine case, except for the in­
clusion of a few additional off-diagonal matrix ele­
ments, made necessary by the removal of the X approx­
imation for AB2X 2• 

Table I is a list of the additional nonvanishing 
matrix elements for AB2C2 in the spin wave notation 
of Schneider, Bernstein, and Pople.s 

The diagonalization of the submatrices of the com­
plete Hamiltonian and the computation of line intensi­
ties were performed on an IBM 704 computer for 
several sets of trial coupling constants, using the 
measured relative chemical shifts. Line intensities were 
calculated for each of the 110 transitions allowed by the 
selection rule LlF.= ± 1, where F. is the total z com­
ponent of angular momentum of a given spin wave 
function. In order to approximate the general ap­
pearance of an NMR spectrum, we drew a smooth 
curve through points which were evaluated by (1) 
plotting a Lorentz curve about each of the computed 
transition intensities, using a single value of T2 esti­
mated from the experimental linewidths and, (2), 
adding up the contributions from all 110 curves at small 
regular intervals over the span of the spectrum. The 

experimental60-Mc spectrum of triphenylcarbonium is 
shown in Fig. 1 (a), together with the calculated spec­
trum [Fig. 1 (b)] which was judged a best fit after 
several trial sets of parameters. 

The value used for T2 was 0.4 sec, and the chemical 
shifts in cps were as follows: J om =8.2, Jom ,=0.5, 
J mp=8.0, Jop =1.2, J mm , = 1.7, J oo=1.2. The primes 
are used to denote a proton on the opposite side of the 
ring; Jom ' is very small and could be negative, but the 
signs of the other J's are all apparently positive, and 
correct within ±O.5 cps. 

The relative chemical shifts of the ortho and meta 
protons are the reverse of those estimated by O'Reilly 
and Leftin,4 but their alternative assignments are in 
good agreement with ours. A complete spectral calcula­
tion identical to that of Fig. 1 (b), except for the reversal 
of the meta and ortho shifts, yields quite a different 
spectrum [Fig. 1 (c)] which does not agree well with the 
observed one. Using these authors' calculations for the 
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FIG. 1. (a) 60-Mc NMR spectrum of the triphenylcarbonium 
ion. (b) Calculated 60-Mc spectrum. (c) Calculated, 6O-Mc 
spectrum with ortho and meta chemical shifts reversed. 
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TABLE I. Off-diagonal matrix elements of the AB2C, Hamiltonian 
not included in the AB2X2 approximation. 

Symmetric 

(ls! I H I 2sl) = (4sj I J1 I 6s) 

= (1L; 1 J1 i 3S_l) 

= (2q IIII3q) =! (Jom+Jom ') 

(ls\ ! H !3s\) = (lSI III ! 4S1) 

= (3S-) I H , 6q) 

= (l.L) Ill!3q) = l/VlJoJ' 

(lSj Illl3sl) = (3sj Ill! 5s:) 

= (2L: ! II 14L!) 

= (.k, [ 11!6s_,) = l/Y'lJo", 

(25, III ' 6s\) = (3sj I II I 6s;) 

= (lL: 1114q) 

= (IS-) IH 15q) = VOl' 

(ls\ !HI2sj) = (2s! III ! 5s,) 

= (2L! IHISLj) 

= (5q' Ii 16L\) = l/VlJom' 

An tisymmetric 

(lall H 12~) 

= (3al I H 1 4al) 

= (la_I! H !2a_l) 

= (la_I! H !2a_l) 

(Jal! II 14al) 

= (2al I H 14a,) 

= (ILl I H I 3a-l) 

= (la_II H !4a_l) 

ring-current contribution to the chemical shifts, we 
suggest that the discrepancy may be resolved by asum­
ing the slightly larger value of 1.2 A for the effective 
van der Waals radius of hydrogen, which increases 
the average inclination angle of the benzene rings to 
about 30° from the horizontal. 

* Supported in part by a grant from the University of Michigan 
Cancer Research Institute. 
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THE intrinsic viscosity of a solution of partially 
coiled polymer molecules is being investigated by 

us using a procedure developed by Burgers! and ex­
tended by Kirkwood and Riseman.2 The coiling of the 

polymer molecules is described by the chain statistics of 
Hermans and Ullman.3 In this treatment, two param­
eters are important, the length n and a quantity i\ which 
is large when the chain is tightly coiled and is small when 
the chain becomes straight. Specifically, if (} is the angle 
a tangent to the chain makes with an arbitrary axis, i\ 
is one quarter of the average square change in (} per 
unit of chain (see p. 958 of the work cited in footnote 3). 

The formal treatment is similar to that of Kirkwood 
and Riseman, the solution of the problem depending 
on an inhomogeneous integral equation of the Fredholm 
type. The result may be written 

['1J= - (N /lOOMo'1oE) [( (ROI'ey) (Fl,e",) )A,dl 
o 

= (rN /1200Mo'1oX2)F(Xn), (la) 

«ROk' ey ) (F" e",) )A,= (- r€j6) (Rok' ROI )A' 

- (r /6'11''10) [' (CROk ' ey) (Fs' exh,(l/ Rls )A,dS, (lb) 
o 

where ['1] is the intrinsic viscosity; '1']0 is the solvent 
viscosity; r is the friction constant per unit length; 
E is the shear gradient of flow; Mo is the molecular 
weight per unit length; ROk and Rol are vectors from 
the mass to positions k and I units distance along the 
chain; FI is the force exerted on the solvent by an ele­
ment of the chain at I; e", and ey are unit vectors in the 
x and y direction. 

The (Rok,Roz!Av is easy to calculate, but (1/ Rls)A" the 
kernel of the integral equation, is not. In our treatment 
it is approximated by the formula 

(1/ RIB )AV= [1/ (RI,2 )A,J~G (i\ \l-s \) (2) 

(RznAv= \l-s \/i\- (1/2i\2)[1- exp(-2i\ \l-s \ )J, 
where G varies from 1.00 to 1.38 as the particle changes 
from a rod to a coil form. 

It is easy to show that if i\ is allowed to approach 
zero, Eq. (la) assumes the form obtained previously 
for the rodlike molecule,4.5 and as A becomes large, the 
solution is essentially similar to the result obtained for 
the random coiU 

From Eq. (la), one can recognize that the intrinsic 
viscosity may be considered as a product of two func­
tions, one of which depends on i\ the stiffness parameter 
and the other on the product of the stiffness parameter 
and chain length. Multiplying by n2 in the numerator 
and denominator, the intrinsic viscosity may also be 
expressed as a product of n2 and a function of the stiff­
ness parameter times chain length, 

The Fredholm equation [Eq. (lb) ] which applies 
to the stiff chain model cannot be solved in terms of 
known functions as could the problems of the works 
cited in footnotes 2, 4, and 5. Instead, numerical compu­
tations are being used to obtain a solution. A serious 
difficulty is encountered because of the mathematical 
singularity in the kernel of the integral equation. 


