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The formation of thick borders on an initially stationary fluid sheet
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The formation of thick borders on an initially stationary two-dimensional fluid sheet surrounded by
another fluid is examined by numerical simulations. The process is controlled by the density and the
viscosity ratios, and the Ohnesorge numpe&h= u/(pdc)®°]. The main focus here is on the
variation with Oh. The edge of the sheet is pulled back into the sheet due to the surface tension and
a thick blob is formed at the edge. In the limits of high and low Oh, the receding speed of the edge
is independent of Oh. Different scaling laws, however, apply for the different limits. The speed
scales a8/~ (a/pd)®® in the low Oh limit as proposed by TaylgProc. R. Soc. London, Ser. A

253 13 (1959] and asV~o/u in the high Oh limit. For low enough Oh, the edge forms a
two-dimensional drop that is connected to the rest of the sheet by a thin neck and capillary waves
propagate into the undisturbed sheet. The thickness of the neck reaches an approximately constant
value that decreases with Oh, suggesting that the blob may “pinch-off” in the inviscid limit.
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I. INTRODUCTION (starting with Rayleigh'), but how such filaments are pro-
duced from the edge is not understood at the present time.
Atomization of liquids is an integral part of most com- Here, we have a more modest objective and examine

bustion systems and many industrial procesgsge how a free two-dimensional edge recedes and accumulates
Lefebvre! for examplé. In many atomizers, as well as dur- fluid. The investigation is carried out by solving the unsteady
ing natural processes that lead to the formation of drops, &lavier—Stokes equations numerically for an initially station-
thin sheet of liquid that eventually breaks up into drops isary sheet. The study shows that the edge of the sheet is
formed. The formation of such sheets is sometimes intenpulled back by surface tension, forming a thick blob. The
tional, as in a simplex nozzle where swirl is used to producespeed at which the edge is pulled back depends primarily on
a cylindrical cone, or it may form more naturally as in the the Ohnesorge number and to a lesser degree on the density
late stages of drop breakupefebvre?). While liquid sheets —and viscosity ratio of the sheet and the surrounding fluid. For
can disintegrate into droplets in many different ways, theow enough Ohnesorge number, the edge forms a two-
initial breakup often consists of the edge receding and accudimensional drop that is connected to the rest of the sheet by
mulating fluid. This particular scenario is clearly visible in a @ thin neck. This “necking” is a purely two-dimensional
number of published pictures such as those in Mansour angffect that is quite different from the breakup of a circular

Chigier2 and Rizk and Lefebvrd While a large number of fluid filament into drops. Although we examine an initially
authors have examined the stability of liquid shdeee, e.g., Stationary sheet here, our study is motivated by simulation of
Mansouret al,2* Rangel and Sirignan®® Kawano et al.,’ the_ Kerm—HeImhoItz_ msta_bﬂny be_tween |mm|s_C|_bIe I|qu|c_is
and Lozancet al®) the focus has been on the formation andWh,'Ch show a'two-d|men3|onal pinch-off for finite density
growth of waves that lead to a breakup in the middle of the@llos _and high Reynolds P“mb‘?réTryggYan?” ”and
sheet and not at the edge. It is, however, clear from théJnverdﬂz). We note that two-dimensional “pinching” has

pictures referenced above that the actual formation of dropglso been seen in Hele—Shaw flo@syggvason and Aréf)

takes place at an edae. either at the rim of the sheet or nd more recently in inviscid simulations of the Kelvin—

P . ge, . . elmholtz instability between immiscible liquids of the same
holes in the middle. The edges often eject filament that therdensity (Hou, Lowengrub, and Shel). The downstream
break'up”mto drops by cap!llary break(xpalled' rim disin- evolution of a fluid sheet emerging from a finite size slot is
tegration” by Fraser and Eisenkldm The motion of a free

X he i uti ¢ e ional
edge of a liquid sheet was studied by Tay’1%who argued aﬁgé?xmated by the time evolution of a two-dimensional

that the edge receded at the speed of an asymmetric wave. Tﬁe motion of the edge of a liquid sheet has been exam-
He also dls_cussed the brgakup of the gdge, but did not Iderilﬁed analytically by Keller and Miksi& who derived a simi-
tify conclusively the dominant mechanism. The breakup Ofjai solution for the initial motion of a fluid wedge. Com-
filaments has been studied by a large number of authorgiational studies appear to be limited to the work of Oguz
and Prosperetf who conducted boundary integral simula-
3Electronic mail: msong@wow.hongik.ac.kr tions of the evolution of a thin sheet of air surrounded by
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the surface tension at the interface is included as a delta
outer fluid (po, 20) function, which gives a contribution at the interface only.
surface tension (o) The dens_ity an_d viscosity are different for the she_et and the
7 surrounding fluid, but we take the material properties of each
vl ]:d ( inner fluid (p¢, 24 fluid particle to remain constant, so
Dp Du
¢ C o % B ° @
rectangular fluid
sl domain where D/Dt denotes the material derivative. This reduces
the mass conservation equation to the incompressibility con-
FIG. 1. Definition sketch of the problem. dition:
V.-u=0. 3)

liquid. Their study was motivated by the coalescence of ayhen combined with the momentum equation, B).leads
|IQU|C| drop with a flat surface and their primary focus was ONtpo a Poisson equation for the pressure.
the effect of the approach velocity of the drop. Equations(1)—(3) are solved for the rectangular do-

In addition to quantifying the process, we offer an ex-main shown in Fig. 1. The top and bottom boundaries are
planation of the dynamics of the neck formation by lookingtaken as periodic and the vertical boundaries are full slip
at both the vorticity and the pressure distribution. In the fOI_Wa”S. To solve the Navier—Stokes equations a standard
lowing sections the formulation of the problem with a brief second-order, centered finite difference scheme with a mul-
explanation of the numerical procedure is given and the retigrid Poisson equation solver for the pressure equation is

sults, with discussions, follows. used and the interface is updated using the front tracking
method developed by Unverdi and TryggvasénThis
1. FORMULATION AND NUMERICAL PROCEDURE method introduces a separate grid for an interface moving

_— . - across the stationary grid. At each time step, new density and

The initial setup of the problem is shown in Fig. 1. The 50 qgjty fields on the stationary grid are obtained from the
two-dimensional fluid sheet has density and viscosjtand e\ [ocation of the interface. Even though the interface has a
Kis rgspectlye!y, while the density gnd viscosity of the sur-g,¢e thickness, it remains very sharp if fine stationary grids
rounding fluid isp, and ., respectively. The surface ten- 5.o sed—the thickness of the interface is of the order of the
sion, o, is constant and the fluids are initially stationary. Themesh size of the stationary grid. This tracking method pre-
free e_-nd of th_e sheet, on the left, has a s_em|C|rcIe Sh_al‘?e W'%nts numerical diffusion of the interface as well as humeri-
a radius that is equal to half the sheet thicknesSihe infi- 5| oggillations often encountered in high order shock cap-
nitely long sheet is modeled as a sheet of lerigtiso our  ying schemes. The surface tension, which is expressed as a
simulation must be stopped before any disturbance reach@g,i, 'function in Eq(1), is distributed to the stationary grid
the right boundary. _ following Peskirt® and acts as a body force. The time inte-

The flow evolution is controlled byl and the material 4 a4i0n is second order and the spatial resolution for the cal-
propertiesp;, po, fi, fo, ando. Simple dimensional réa- ¢ aions presented here is 51228 mesh points, in most

soning yields three dimensionless parameters, the density rgases Resolution studies have shown that this grid results in
tio, r=po/pi, the viscosity ratiom= uo/p;, and the Ohne- o, agsentially fully grid-independent solution.

sorge number, Of /_(pid_‘r)o'S (the ratio of viscous forces Although the fluid motion can be understood in terms of
to surface tension While different density and viscosity ra- the pressure and the velocity, it is often helpful to examine

tios can affect the flow we fix those at 0.1 in most of OUrthe evolution of the vorticity in order to comprehend the

investigation and focus primarily on the effect of Oh. For|;,amatics of the flow better. The following equation gov-

low enough density and viscosity ratios, the dynamics of they g the evolution of the vortex sheet strength of an interface
ambient fluid has a relatively minor effect as will be shown separating two inviscid fluids of a different density:

later.
The flow is governed by the Navier—Stokes equations  dy ou o 2 3(pi—Po)
that in conservative form are at +y—<-s=2Aa-s— —_—. (4)
Js pitpo Js
(i;)_tu +V-(puu)=—Vp+V-u(Vu+Vvu") Herel= (u;—u,) -sis the vortex sheet strength at the inter-

face,U=0.5(u; + u,) is the velocity of a point on the inter-

face moving with the average velocity, aag 0.5(a; +a,) is
+ foKnﬁ(X—Xf)dS- (1)  the average of the fluid acceleration. The subsciifsd o

denote conditions in the fluid on either side of the interface.
Here, u is the velocity,p is the density,u is the dynamic A=(p,— pi)/(po+ p;) is the Atwood ratiop is the pressure,
viscosity, k is the curvature of the interface,is the surface ands is a tangential vector to the interface. This equation
tension, and; is the position of the interfacen is a unit  was originally derived by Baker, Meiron, and OrsZam a
normal vector to the interface. Equati@) is written for the  slightly different form, and has, for example, been used by
whole flow field (both the sheet and the ambient flushd  Tryggvasor® in his simulations of the Rayleigh—Taylor in-
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stability, and by Rangel and Sirignghdor the Kelvin— C
Helmbholtz instability. If we integrate Eq4) over a small Lf

material segment of the interfacks, and write the pressure C—

jump across the interface ag— p;= ok wherex is the cur- C

vature, taken to be positive when the curvature center is in CC\\

the fluid outside the sheet, we have the following equation

for the change of the circulation of the segment: (

TG o [ mae
= a-sas
dt As pitpo

(ky—Ko). 5

Here x, and x_ are the curvatures of the interface at the
boundaries of the segment. While the vorticity generated C
along the interface due to the curvature variation will diffuse CC\
into the fluid, the change in the circulation helps to explain C\
the deformation of the interface.

C\_—_
ll. RESULTS C\'_—C\

In the following simulations the domain size is 4 by 1 in (
the x and they directions, respectively, and the density and <\~
viscosity ratios are fixed at 0.1 unless otherwise stated. The C\/'::

initial length of the sheet is 3.7 and its thickness is 0.15 times (b)
they dimension of the computational domdsee Fig. 1. As

will be shown later the evolution is essentially inviscid for —
most practical systems and we have therefore selected to C

make time nondimensional by {°d*%¢%9) in all the fig- C
ures. Lengths are made dimensionlessipthe initial thick-
ness of the sheet. C\/\,~___

In Fig. 2(@) the interface separating the sheet from the
ambient fluid is shown at 13 different dimensionless times
starting from time zero. The Oh is 0.98 and we expect vis-
cous effects to be large. For a better view, the lower parts of
the interfaces are not plotted, except for the last time, and
each frame is shifted slightly down and to the right with (©
respect to the preceding one. The free end of the sheet i8G. 2. Evolution of the sheet boundary. The lower part of the boundaries
pulled to the right by the surface tension and Fi@) 2hows  are not plotted except for the last time and each frame is shifted slightly
a monalonic ncrease in the size of the blob, formed at tng" 141 e Ffh i Sspee s e prece o0 Ornensoriss e
edge, as it moves to the right. If we decrease the viscosity by, gogs.

a factor of 10 (Ok-0.098) the evolution of the boundary is

different as shown in Fig.(®). As in Fig. 2a), a growing

rim moves to the right, gathering up fluid from the sheet, but

unlike the high Oh case a neck forms in front of the blob.the edge to the right. For the highest Qhe top framég this
Lowering the Oh further (O&0.0098), Fig. £c), results in  vorticity diffuses both into the sheet as well as into the am-
a more pronounced necking and the formation of symmetribient fluid, and even though there is a region of opposite
waves that propagate along the sheet, away from the bloleurvature where the blob connects to the rest of the sheet, the
For the lowest Oh, the wave has reached the end of theorticity generated there is overwhelmed by the diffusion of
computational domain at the last few times. While the resultgshe primary vorticity. The absence of secondary vorticity is
are, in principle, not applicable to an infinitely long sheet foralso clear in the streamline pattern. As the Oh is decreased
those times, we have included those frames since the rest ¢he middle framg secondary vorticity of the opposite sign
the solution appears to be relatively unaffected. is generated due to the positive curvature in the neck region.

The observed evolution is perhaps best understood byhe primary vorticity forms a boundary layer on the front
examining the vorticity and the pressure. The vorticity and goart of the blob and is shed into the ambient fluid. The
few streamlines with respect to a stationary frame of referchanges in the flow due to both the shed vorticity as well as
ence are shown in Fig(8) for the three cases from Fig. 2, at the secondary vorticity are visible in the streamline plot. As
time 6.53. The vorticity is plotted in the upper half of eachthe Oh is reduced furthdthe bottom framg the boundary
frame and the streamlines in the lower half. Only a part oflayer on the front of the blob becomes thinner and vorticity is
the computational domain is shown, for clarity. Due to cur-also shed from the neck, into the blob. The small viscous
vature variations, positive vorticity is generated near the endliffusion allows the positive curvature to the right of the
of the sheet, resulting in a dipole-like structure that pusheseck to form tertiary vorticity that causes secondary necking
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complete stop near the neck and a slight backflow is seen in
the neck due to its propagation to the right. Further reduction
in the Oh(the bottom framgshows pressure fluctuations in
the blob due to vorticity shed from the neck and several
pressure minimums in the necks that have formed to the right
of the blob. A slight backflow is seen in each neck.

The formation of the neck seen here is very different
from necking of axisymmetric filament¢see Stone and
Leal 2! for exampl@, where the azimuthal curvature creates a
high pressure region in the neck which squeezes fluid away,
further reducing the neck diameter. Here, there is a pressure
minimum at the neck. The formation of the neck is easily
explained by looking at the vorticity generated by the
changes in curvature along the sheet surface. The secondary
vorticity generated by the positive curvature where the blob
joins the rest of the sheet pushes the blob boundary outward
on the left, but inward on the right, thinning the sheet. Once
the neck is formed, the negative curvature leads to vorticity
of the same sign as the primary vorticity, forming a new blob
connected to the rest of the sheet by a region of positive
curvature. This process repeats itself, forming the wave train
to the right of the blob. At high Oh, diffusion prevents the
formation of any significant secondary vorticity and no neck
forms. The increase in the relative velocity through the neck
as it gets thinner and lowering the pressure is also consistent
with inviscid analysis. We must therefore conclude that un-
like axisymmetric necking, necking in two dimensions ap-
pears to be an essentially inviscid phenomena.

In Fig. 4(a) the position of the edge is plotted as a func-

o tion of the nondimensional time for the three cases shown in
(b) Fig. 2. Initially, the motion is nearly linear, but at late time
the speed is reduced slightly. This is, most likely, due to the
FIG. 3. Vorticity, stream function, velocity, and pressure distributions. Ohfinite size of the computational domain as will be discussed
=0.98, 0.098, and 0.0098 from the top. Tim8.53.(a) Upper half: vortic- — gpyqrty \While the lower Oh sheets move faster than the high
ity contours, dashed lines show negative vorticity. Lower half: stream func- . . .
tion. (b) Velocity vector and pressure along the center line of the sheet. Oh sheet, there is very little difference between the two
lower Oh cases. The diameter of the bloheasured perpen-
dicular to the sheet at the point where it is thickdst the
and so on, leading to the formation of waves propagating t@ame three cases, as well as the thickness of the “neck” for
the right. the two low Oh cases, is plotted versus nondimensional time

The velocity vectors and the pressure along the centein Fig. 4(b). Since the velocity of the edge is nearly linear,
line of the sheet are shown in Figi3 for the same cases as the diameter of the blob grows as a square root of time. As
in Fig. 3@. For the highest Oh casghe top framg¢ the  we saw for the speed of the edge, the high Oh blob grows
pressure in the sheet is highest at the free edge and decreas&svest and the growth of the lower Oh blobs is comparable.
as we move along the sheet to the right, accelerating the fluidihe lowest Oh case, however, exhibits an oscillatory growth
to the right. Although the decrease in the pressure is nearlgue to the waves propagating away from the neck. The neck
monotone, there is a slight increase as the forward motion dbrms relatively rapidly for both the low Oh sheets, but the
the fluid flowing from the blob is brought to a halt and de- lowest Oh sheet forms a considerably thinner net3% of
flected outward. Due to the finite size of the computationathe original thickness for Oh0.0098 vs 73% for the Oh
domain and the closed right and left boundary, there is &0.098 casg As the blob diameter oscillates, so does the
pressure drop in the ambient fluid between the two ends. Ineck thickness.
an infinitely large domain this would not be the case, al- The computations presented in Figs. 2—4 were done us-
though some local pressure drop would be necessary to moweg a relatively small computational domain. To examine the
the ambient flow from the front of the blob to its back. Sinceinfluence of the domain size, we have recomputed the Oh
the density of the ambient flow is relatively low, this effect =0.098 case using a twice as wide domaiesolved by a
has small influence on the sheet evolutidiscussed lat¢r 512 by 256 grigl, and the results are shown in Fig. 5. Both
As the effect of viscosity is reducdthe middle framg the  the original sheet from Fig.(B) as well as the results for the
pressure in the blob is nearly constant and a region of veriarger domain are shown at timé.53 at the top. At the
low pressure is seen in the neck where the blob is connectdabttom the position of the edge, the size of the blob, and the
to the rest of the sheet. The fluid in the blob comes to aize of the neck versus time are shown for both cases. The
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» N solid lines are for the bigger domain and dashed lines are for the smaller
8 N domain. Open circles: blob thickness. Filled circles: edge position. Tri-
% 3 angles: neck thickness. Gt0.098.
c I blob, Oh=0.98
ok neck, Oh=0.098 L Lo i
N blob, Oh=0.098 tricities were used for the initial shape and the blob thickness
' P o0 and the edge position were compared with the results ob-
1 tained using a half-circle end shape. The results were mini-
= : mally affected by the initial shape of the end, in agreement

I T ETUI ST RS I with a similar test done by Oguz and Prospet&fir a re-

o ° 5 e 15 20 ceding air film.

FIG. 4. (a) Edge and neck position vs timé) Blob and neck thickness vs IV. DISCUSSION
time. Filled symbols represent the edge or the blob, and open symbols
represent the neck. Squares are used forQ@0B098, diamonds for Oh For very viscous sheetiigh Oh, the dynamics will be

=0.098, and triangles for Gh0.98. independent of the density. In this case there is no free pa-
rameter and the evolution must be independent of the Ohne-

velocity of the edge in the larger domain is essentially con-

stant(since the position changes lineagrlput the velocity of - —©—— blob thick(r.1) E 20
the edge and the growth of the blob in the smaller domainis  FZ 207 20 ek oom ek
reduced slightly at later times. However, the initial behavior 58— edge posi(r.1) PR
L . . [ —-—0O—-- edge posi(r.01) E
shows no significant dependency on the domain size, anc [ _ _0— - edge posi(r.004) .
this good agreement at early times suggests that the edg. 4|~ 2 ::g‘;:::gig;;) ’514
receding velocity can be estimated by measuring the slope olg |- —a- - necktick(.004)._8 412 .
the line from the smaller domain at time 3 or so. g sk =2 E P £
To examine the effect of the density and the viscosity 2 | g
ratio, we have repeated the ©0.098 simulationusing the =T 8
smaller computational domairfor r=m=0.01 andr=m 2r de
=0.004. The shape of the edge is essentially unchanged, bu C ]
the evolution is slightly faster as seen in Fig. 6 where the  1& . ';4
position of the edge and thicknesses of the blob and the neck - - 2
are plotted versus nondimensional time, along with the re- OLF Y T T 50
sults forr=m=0.1 from Fig. 5. While the results for the 0 > dme 10

larger density and viscosity ratio are essentially identical, the
velocity of the edge for the higher ratios is about 12% Iower.g'G- 8. Cog“p?‘“soﬂ of the '“;erlfzci? Shap/e and t;]e e‘g"““g” fsf;}'gfere”t
The neck thickness is, however, unchanged. lensity and viscosity ratio. Solid linegio/p;=po/ui=0.1, dashed/dot

. N ines: po/pi=po/ui=0.01, dashed linesp,/pi= po/pi=0.004. Circles:
We have also examined the effect of the initial shape Oyop thickness. Squares: position of the edge. Triangles: thickness of the

the end of the sheet. Two half-ellipses with different eccen-neck. Oh=0.098.
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=V/(o/p;d)®® and squares fov,=V/(o/u;), whereV is the dimensional
edge speed.

phase speed is found by tracing the location of the crest of
the first wave for four consecutive times starting with time

lution is independent of the viscosity and since there is agair§'53’ and the group speed is found by tracing the first point

no free parameter, the evolution must also be independent Q; h?re per:urtk;]athnf]toff E{Ee ;Ihieg are nottllceableih Slbnlci t_rt1e
the Ohnesorge number in this limit. The behavior is, of Irst wave 10 the night ot the blob does not leave the biob, 1

course, different and while the velocity must scale \As {?::OW‘T‘ that thg ed%ﬁ mgjlstbmove ;’t\{'th ? speed thatt is only a
—(0/pd)®in the low Oh limit, in the high Oh limit it must '€ slower (since the blob is getting longer as it grows

O .
scale asV~oa/u. To examine where the transition takes Taylor® suggested that the receding speed of the edge

place, we show the translation speed of the edge as a fun4§—hOUId bev2=1.414 using the same dimensionless unit as

tion of Oh in Fig. 7. The speed is estimated from Fi¢a)d ours. The translation speed of the neck is very close to Tay-
and similar plots from a few additional simulations, by com- Io'r S (1'35 for Oh:'0.098), but the spe.ed OT the edgg ltself is
puting the slope of the curve shortly after the initial accel_sllghtly different since the blob is getting bigger as it moves.
eration has been completed. The results in Fig. 5 suggest thg{)r the initial transition this difference is ta ¥ correction

the velocity at this time is .independent of thé size of theand for the later time it is associated with the elongation of
computational domain and that it will remain constant inthe bob as seen in Fig. 2. For the larger density and viscosity

unbounded domains. The speed is made nondimensional [ﬁ‘t'os tthe Tpefedsoo'; ghggzdgetﬁnd the ngpk are 1'|21 and %'55’
two ways, using the velocity scales defined above. For théeSp_?C Vel orh fh thl'nk € san;(;:h |menk3|orr]1 ess uni "th
low Oh range we see thit=1.02(c/p;d) %5, independent of 0 examine how the thickness of the neck changes wi

Oh, and for the high Ohy=1.02(c/ ), again independent Oh, the minimum thickness is plotted versus Oh in Fig. 8.

of Oh. Between those two limiting cases there is a transitiorN.) 'neckmtgr]]}skobservfet(:] for OE hkl)gher tlhadn about 0'25.,{'th(;
region (0. 0Oh<5.0) where the velocity depends on Oh. minimum thickness ot the eck obviously decreases wi

The speed of the wave propagating in front of the bloband it seems fairly likely that the thickness would become
can be computed by linear theory for a capillary wave on £ero if viscosity was totally absent. We note that a somewhat

thin shee® In nondimensional unitgvelocity divided by similar effect is seen for two bubbles rising side by side.

[y . pviscid analysis shows that the bubbles move toward each
olpid), the phase speed and the group speed are given |[i@&fher and will eventually touch, but if the Reynolds number

B \/ kd " is finite, the bubbles rise with a finite separation.
~ N po/pi+cothkd/2) ©®

sorge number. For nearly inviscid sheétsv Oh), the evo-

and V. CONCLUSIONS

¢ 5, (kd/2jeschi(kdi2) 7 The formation of thick bord initially stati
pO/pi—I—COtI“(kd/Z) , ( ) e rormation o IC oraers on an Initally stationary

2 two-dimensional fluid sheet, surrounded by another fluid is
respectively. Herek is the wave number defined ds examined by numerical simulations. The primary controlling
=2m/\, where\ is the wavelength. For the lowest Oh, Eqgs. parameter is the Ohnesorge numbeh). In the limits of
(6) and (7) give dimensionless phase and group speeds dfigh and low Oh, the speed at which the sheet recedes is
1.443 and 2.419, respectively, usingneasured as the dis- independent of Oh, but different scaling laws apply for the
tance between the two wave crests next to the neck in Figlifferent limits. Initially, the speed of the edge is about unity,
2(c) at time=6.53. The phase and group speeds measureith the proper nondimensional units. While the finite size of
directly from Fig. Zc) are 1.43 and 2.41, respectively. The the domain used here leads to reduction in the edge velocity
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