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The formation of thick borders on an initially stationary fluid sheet
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The formation of thick borders on an initially stationary two-dimensional fluid sheet surrounded by
another fluid is examined by numerical simulations. The process is controlled by the density and the
viscosity ratios, and the Ohnesorge number@Oh5m/(rds)0.5#. The main focus here is on the
variation with Oh. The edge of the sheet is pulled back into the sheet due to the surface tension and
a thick blob is formed at the edge. In the limits of high and low Oh, the receding speed of the edge
is independent of Oh. Different scaling laws, however, apply for the different limits. The speed
scales asV;(s/rd)0.5 in the low Oh limit as proposed by Taylor@Proc. R. Soc. London, Ser. A
253, 13 ~1959!# and asV;s/m in the high Oh limit. For low enough Oh, the edge forms a
two-dimensional drop that is connected to the rest of the sheet by a thin neck and capillary waves
propagate into the undisturbed sheet. The thickness of the neck reaches an approximately constant
value that decreases with Oh, suggesting that the blob may ‘‘pinch-off’’ in the inviscid limit.
© 1999 American Institute of Physics.@S1070-6631~99!04209-9#
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I. INTRODUCTION

Atomization of liquids is an integral part of most com
bustion systems and many industrial processes~see
Lefebvre,1 for example!. In many atomizers, as well as du
ing natural processes that lead to the formation of drop
thin sheet of liquid that eventually breaks up into drops
formed. The formation of such sheets is sometimes int
tional, as in a simplex nozzle where swirl is used to produ
a cylindrical cone, or it may form more naturally as in th
late stages of drop breakup~Lefebvre1!. While liquid sheets
can disintegrate into droplets in many different ways,
initial breakup often consists of the edge receding and ac
mulating fluid. This particular scenario is clearly visible in
number of published pictures such as those in Mansour
Chigier,2 and Rizk and Lefebvre.3 While a large number of
authors have examined the stability of liquid sheets~see, e.g.,
Mansouret al.,2,4 Rangel and Sirignano,5,6 Kawano et al.,7

and Lozanoet al.8! the focus has been on the formation a
growth of waves that lead to a breakup in the middle of
sheet and not at the edge. It is, however, clear from
pictures referenced above that the actual formation of dr
takes place at an edge, either at the rim of the sheet o
holes in the middle. The edges often eject filament that t
break up into drops by capillary breakup~called ‘‘rim disin-
tegration’’ by Fraser and Eisenklam9!. The motion of a free
edge of a liquid sheet was studied by Taylor,10 who argued
that the edge receded at the speed of an asymmetric w
He also discussed the breakup of the edge, but did not id
tify conclusively the dominant mechanism. The breakup
filaments has been studied by a large number of auth

a!Electronic mail: msong@wow.hongik.ac.kr
2481070-6631/99/11(9)/2487/7/$15.00
a
s
n-
e

e
u-

nd

e
e
s
at
n

ve.
n-
f
rs

~starting with Rayleigh11!, but how such filaments are pro
duced from the edge is not understood at the present tim

Here, we have a more modest objective and exam
how a free two-dimensional edge recedes and accumu
fluid. The investigation is carried out by solving the unstea
Navier–Stokes equations numerically for an initially statio
ary sheet. The study shows that the edge of the shee
pulled back by surface tension, forming a thick blob. T
speed at which the edge is pulled back depends primarily
the Ohnesorge number and to a lesser degree on the de
and viscosity ratio of the sheet and the surrounding fluid.
low enough Ohnesorge number, the edge forms a t
dimensional drop that is connected to the rest of the shee
a thin neck. This ‘‘necking’’ is a purely two-dimensiona
effect that is quite different from the breakup of a circul
fluid filament into drops. Although we examine an initial
stationary sheet here, our study is motivated by simulation
the Kelvin–Helmholtz instability between immiscible liquid
which show a two-dimensional pinch-off for finite densi
ratios and high Reynolds numbers~Tryggvason and
Unverdi12!. We note that two-dimensional ‘‘pinching’’ ha
also been seen in Hele–Shaw flows~Tryggvason and Aref13!
and more recently in inviscid simulations of the Kelvin
Helmholtz instability between immiscible liquids of the sam
density ~Hou, Lowengrub, and Shelly14!. The downstream
evolution of a fluid sheet emerging from a finite size slot
approximated by the time evolution of a two-dimension
sheet.

The motion of the edge of a liquid sheet has been exa
ined analytically by Keller and Miksis,15 who derived a simi-
larity solution for the initial motion of a fluid wedge. Com
putational studies appear to be limited to the work of Og
and Prosperett,16 who conducted boundary integral simul
tions of the evolution of a thin sheet of air surrounded
7 © 1999 American Institute of Physics
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liquid. Their study was motivated by the coalescence o
liquid drop with a flat surface and their primary focus was
the effect of the approach velocity of the drop.

In addition to quantifying the process, we offer an e
planation of the dynamics of the neck formation by looki
at both the vorticity and the pressure distribution. In the f
lowing sections the formulation of the problem with a bri
explanation of the numerical procedure is given and the
sults, with discussions, follows.

II. FORMULATION AND NUMERICAL PROCEDURE

The initial setup of the problem is shown in Fig. 1. Th
two-dimensional fluid sheet has density and viscosityr i and
m i , respectively, while the density and viscosity of the s
rounding fluid isro and mo , respectively. The surface ten
sion,s, is constant and the fluids are initially stationary. T
free end of the sheet, on the left, has a semicircle shape
a radius that is equal to half the sheet thickness,d. The infi-
nitely long sheet is modeled as a sheet of lengthL, so our
simulation must be stopped before any disturbance rea
the right boundary.

The flow evolution is controlled byd and the material
propertiesr i , ro , m i , mo , ands. Simple dimensional rea
soning yields three dimensionless parameters, the densit
tio, r 5ro /r i , the viscosity ratio,m5mo /m i , and the Ohne-
sorge number, Oh5m i /(r ids)0.5 ~the ratio of viscous forces
to surface tension!. While different density and viscosity ra
tios can affect the flow we fix those at 0.1 in most of o
investigation and focus primarily on the effect of Oh. F
low enough density and viscosity ratios, the dynamics of
ambient fluid has a relatively minor effect as will be show
later.

The flow is governed by the Navier–Stokes equatio
that in conservative form are

]ru

]t
1“–~ruu!52“p1“–m~“u1“uT!

1E
f
sknd~x2xf !ds. ~1!

Here, u is the velocity,r is the density,m is the dynamic
viscosity,k is the curvature of the interface,s is the surface
tension, andxf is the position of the interface.n is a unit
normal vector to the interface. Equation~1! is written for the
whole flow field ~both the sheet and the ambient fluid! and

FIG. 1. Definition sketch of the problem.
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the surface tension at the interface is included as a d
function, which gives a contribution at the interface on
The density and viscosity are different for the sheet and
surrounding fluid, but we take the material properties of ea
fluid particle to remain constant, so

Dr

Dt
50,

Dm

Dt
50, ~2!

where D/Dt denotes the material derivative. This reduc
the mass conservation equation to the incompressibility c
dition:

“–u50. ~3!

When combined with the momentum equation, Eq.~3! leads
to a Poisson equation for the pressure.

Equations~1!–~3! are solved for the rectangular do-
main shown in Fig. 1. The top and bottom boundaries
taken as periodic and the vertical boundaries are full s
walls. To solve the Navier–Stokes equations a stand
second-order, centered finite difference scheme with a m
tigrid Poisson equation solver for the pressure equation
used and the interface is updated using the front track
method developed by Unverdi and Tryggvason.17 This
method introduces a separate grid for an interface mov
across the stationary grid. At each time step, new density
viscosity fields on the stationary grid are obtained from
new location of the interface. Even though the interface ha
finite thickness, it remains very sharp if fine stationary gr
are used—the thickness of the interface is of the order of
mesh size of the stationary grid. This tracking method p
vents numerical diffusion of the interface as well as nume
cal oscillations often encountered in high order shock c
turing schemes. The surface tension, which is expressed
delta function in Eq.~1!, is distributed to the stationary grid
following Peskin18 and acts as a body force. The time int
gration is second order and the spatial resolution for the
culations presented here is 5123128 mesh points, in mos
cases. Resolution studies have shown that this grid resul
an essentially fully grid-independent solution.

Although the fluid motion can be understood in terms
the pressure and the velocity, it is often helpful to exam
the evolution of the vorticity in order to comprehend th
kinematics of the flow better. The following equation go
erns the evolution of the vortex sheet strength of an interf
separating two inviscid fluids of a different density:

dg

dt
1g

]Ū

]s
–s52Aā–s2

2

r i1ro

]~pi2po!

]s
. ~4!

Hereg5(ui2uo)–s is the vortex sheet strength at the inte
face,Ū50.5(ui1uo) is the velocity of a point on the inter
face moving with the average velocity, andā50.5(ai1ao) is
the average of the fluid acceleration. The subscriptsi ando
denote conditions in the fluid on either side of the interfa
A5(ro2r i)/(ro1r i) is the Atwood ratio,p is the pressure,
and s is a tangential vector to the interface. This equati
was originally derived by Baker, Meiron, and Orszag19 in a
slightly different form, and has, for example, been used
Tryggvason20 in his simulations of the Rayleigh–Taylor in
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stability, and by Rangel and Sirignano6 for the Kelvin–
Helmholtz instability. If we integrate Eq.~4! over a small
material segment of the interface,Ds, and write the pressure
jump across the interface aspo2pi5sk wherek is the cur-
vature, taken to be positive when the curvature center i
the fluid outside the sheet, we have the following equat
for the change of the circulation of the segment:

dG~s!

dt
52AE

Ds
ā–sds1

2s

r i1ro
~k12k2!. ~5!

Here k1 and k2 are the curvatures of the interface at t
boundaries of the segment. While the vorticity genera
along the interface due to the curvature variation will diffu
into the fluid, the change in the circulation helps to expla
the deformation of the interface.

III. RESULTS

In the following simulations the domain size is 4 by 1
the x and they directions, respectively, and the density a
viscosity ratios are fixed at 0.1 unless otherwise stated.
initial length of the sheet is 3.7 and its thickness is 0.15 tim
they dimension of the computational domain~see Fig. 1!. As
will be shown later the evolution is essentially inviscid f
most practical systems and we have therefore selecte
make time nondimensional by (r i

0.5d1.5/s0.5) in all the fig-
ures. Lengths are made dimensionless byd, the initial thick-
ness of the sheet.

In Fig. 2~a! the interface separating the sheet from t
ambient fluid is shown at 13 different dimensionless tim
starting from time zero. The Oh is 0.98 and we expect v
cous effects to be large. For a better view, the lower part
the interfaces are not plotted, except for the last time,
each frame is shifted slightly down and to the right w
respect to the preceding one. The free end of the she
pulled to the right by the surface tension and Fig. 2~a! shows
a monotonic increase in the size of the blob, formed at
edge, as it moves to the right. If we decrease the viscosity
a factor of 10 (Oh50.098) the evolution of the boundary
different as shown in Fig. 2~b!. As in Fig. 2~a!, a growing
rim moves to the right, gathering up fluid from the sheet,
unlike the high Oh case a neck forms in front of the blo
Lowering the Oh further (Oh50.0098), Fig. 2~c!, results in
a more pronounced necking and the formation of symme
waves that propagate along the sheet, away from the b
For the lowest Oh, the wave has reached the end of
computational domain at the last few times. While the res
are, in principle, not applicable to an infinitely long sheet
those times, we have included those frames since the re
the solution appears to be relatively unaffected.

The observed evolution is perhaps best understood
examining the vorticity and the pressure. The vorticity an
few streamlines with respect to a stationary frame of re
ence are shown in Fig. 3~a! for the three cases from Fig. 2, a
time 6.53. The vorticity is plotted in the upper half of ea
frame and the streamlines in the lower half. Only a part
the computational domain is shown, for clarity. Due to c
vature variations, positive vorticity is generated near the
of the sheet, resulting in a dipole-like structure that pus
in
n

d

e
s

to

s
-
of
d

is

e
y

t
.

ic
b.
e

ts
r
of

y
a
r-

f
-
d
s

the edge to the right. For the highest Oh~the top frame!, this
vorticity diffuses both into the sheet as well as into the a
bient fluid, and even though there is a region of oppos
curvature where the blob connects to the rest of the sheet
vorticity generated there is overwhelmed by the diffusion
the primary vorticity. The absence of secondary vorticity
also clear in the streamline pattern. As the Oh is decrea
~the middle frame!, secondary vorticity of the opposite sig
is generated due to the positive curvature in the neck reg
The primary vorticity forms a boundary layer on the fro
part of the blob and is shed into the ambient fluid. T
changes in the flow due to both the shed vorticity as well
the secondary vorticity are visible in the streamline plot.
the Oh is reduced further~the bottom frame!, the boundary
layer on the front of the blob becomes thinner and vorticity
also shed from the neck, into the blob. The small visco
diffusion allows the positive curvature to the right of th
neck to form tertiary vorticity that causes secondary neck

FIG. 2. Evolution of the sheet boundary. The lower part of the bounda
are not plotted except for the last time and each frame is shifted slig
down and to the right with respect to the preceding one. Dimensionless
increases from 0 to 13.08 byDt51.09.~a! Oh50.98,~b! Oh50.098, and~c!
Oh50.0098.
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and so on, leading to the formation of waves propagating
the right.

The velocity vectors and the pressure along the ce
line of the sheet are shown in Fig. 3~b! for the same cases a
in Fig. 3~a!. For the highest Oh case~the top frame!, the
pressure in the sheet is highest at the free edge and decr
as we move along the sheet to the right, accelerating the
to the right. Although the decrease in the pressure is ne
monotone, there is a slight increase as the forward motio
the fluid flowing from the blob is brought to a halt and d
flected outward. Due to the finite size of the computatio
domain and the closed right and left boundary, there i
pressure drop in the ambient fluid between the two ends
an infinitely large domain this would not be the case,
though some local pressure drop would be necessary to m
the ambient flow from the front of the blob to its back. Sin
the density of the ambient flow is relatively low, this effe
has small influence on the sheet evolution~discussed later!.
As the effect of viscosity is reduced~the middle frame!, the
pressure in the blob is nearly constant and a region of v
low pressure is seen in the neck where the blob is conne
to the rest of the sheet. The fluid in the blob comes to

FIG. 3. Vorticity, stream function, velocity, and pressure distributions.
50.98, 0.098, and 0.0098 from the top. Time56.53.~a! Upper half: vortic-
ity contours, dashed lines show negative vorticity. Lower half: stream fu
tion. ~b! Velocity vector and pressure along the center line of the sheet
to

er

ses
id
ly
of

l
a
In
-
ve

ry
ed
a

complete stop near the neck and a slight backflow is see
the neck due to its propagation to the right. Further reduct
in the Oh~the bottom frame! shows pressure fluctuations i
the blob due to vorticity shed from the neck and seve
pressure minimums in the necks that have formed to the r
of the blob. A slight backflow is seen in each neck.

The formation of the neck seen here is very differe
from necking of axisymmetric filaments~see Stone and
Leal,21 for example!, where the azimuthal curvature creates
high pressure region in the neck which squeezes fluid aw
further reducing the neck diameter. Here, there is a pres
minimum at the neck. The formation of the neck is eas
explained by looking at the vorticity generated by t
changes in curvature along the sheet surface. The secon
vorticity generated by the positive curvature where the b
joins the rest of the sheet pushes the blob boundary outw
on the left, but inward on the right, thinning the sheet. On
the neck is formed, the negative curvature leads to vortic
of the same sign as the primary vorticity, forming a new bl
connected to the rest of the sheet by a region of posi
curvature. This process repeats itself, forming the wave t
to the right of the blob. At high Oh, diffusion prevents th
formation of any significant secondary vorticity and no ne
forms. The increase in the relative velocity through the ne
as it gets thinner and lowering the pressure is also consis
with inviscid analysis. We must therefore conclude that u
like axisymmetric necking, necking in two dimensions a
pears to be an essentially inviscid phenomena.

In Fig. 4~a! the position of the edge is plotted as a fun
tion of the nondimensional time for the three cases shown
Fig. 2. Initially, the motion is nearly linear, but at late tim
the speed is reduced slightly. This is, most likely, due to
finite size of the computational domain as will be discuss
shortly. While the lower Oh sheets move faster than the h
Oh sheet, there is very little difference between the t
lower Oh cases. The diameter of the blob~measured perpen
dicular to the sheet at the point where it is thickest! for the
same three cases, as well as the thickness of the ‘‘neck’’
the two low Oh cases, is plotted versus nondimensional t
in Fig. 4~b!. Since the velocity of the edge is nearly linea
the diameter of the blob grows as a square root of time.
we saw for the speed of the edge, the high Oh blob gro
slowest and the growth of the lower Oh blobs is comparab
The lowest Oh case, however, exhibits an oscillatory grow
due to the waves propagating away from the neck. The n
forms relatively rapidly for both the low Oh sheets, but t
lowest Oh sheet forms a considerably thinner neck~43% of
the original thickness for Oh50.0098 vs 73% for the Oh
50.098 case!. As the blob diameter oscillates, so does t
neck thickness.

The computations presented in Figs. 2–4 were done
ing a relatively small computational domain. To examine t
influence of the domain size, we have recomputed the
50.098 case using a twice as wide domain~resolved by a
512 by 256 grid!, and the results are shown in Fig. 5. Bo
the original sheet from Fig. 2~b! as well as the results for th
larger domain are shown at time56.53 at the top. At the
bottom the position of the edge, the size of the blob, and
size of the neck versus time are shown for both cases.

-
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velocity of the edge in the larger domain is essentially c
stant~since the position changes linearly!, but the velocity of
the edge and the growth of the blob in the smaller domai
reduced slightly at later times. However, the initial behav
shows no significant dependency on the domain size,
this good agreement at early times suggests that the
receding velocity can be estimated by measuring the slop
the line from the smaller domain at time 3 or so.

To examine the effect of the density and the viscos
ratio, we have repeated the Oh50.098 simulation~using the
smaller computational domain! for r 5m50.01 andr 5m
50.004. The shape of the edge is essentially unchanged
the evolution is slightly faster as seen in Fig. 6 where
position of the edge and thicknesses of the blob and the n
are plotted versus nondimensional time, along with the
sults for r 5m50.1 from Fig. 5. While the results for th
larger density and viscosity ratio are essentially identical,
velocity of the edge for the higher ratios is about 12% low
The neck thickness is, however, unchanged.

We have also examined the effect of the initial shape
the end of the sheet. Two half-ellipses with different ecc

FIG. 4. ~a! Edge and neck position vs time.~b! Blob and neck thickness vs
time. Filled symbols represent the edge or the blob, and open sym
represent the neck. Squares are used for Oh50.0098, diamonds for Oh
50.098, and triangles for Oh50.98.
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tricities were used for the initial shape and the blob thickn
and the edge position were compared with the results
tained using a half-circle end shape. The results were m
mally affected by the initial shape of the end, in agreem
with a similar test done by Oguz and Prosperetti16 for a re-
ceding air film.

IV. DISCUSSION

For very viscous sheets~high Oh!, the dynamics will be
independent of the density. In this case there is no free
rameter and the evolution must be independent of the Oh

ls

FIG. 5. Comparison of the interface shape and the evolution for differ
domain sizes. In the top frame, the thicker solid line is for the larger dom
and the thinner solid line is for smaller domain at time56.53. At the bottom,
solid lines are for the bigger domain and dashed lines are for the sm
domain. Open circles: blob thickness. Filled circles: edge position.
angles: neck thickness. Oh50.098.

FIG. 6. Comparison of the interface shape and the evolution for differ
density and viscosity ratio. Solid lines:ro /r i5mo /m i50.1, dashed/dot
lines: ro /r i5mo /m i50.01, dashed lines:ro /r i5mo /m i50.004. Circles:
blob thickness. Squares: position of the edge. Triangles: thickness o
neck. Oh50.098.
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sorge number. For nearly inviscid sheets~low Oh!, the evo-
lution is independent of the viscosity and since there is ag
no free parameter, the evolution must also be independe
the Ohnesorge number in this limit. The behavior is,
course, different and while the velocity must scale asV
;(s/rd)0.5 in the low Oh limit, in the high Oh limit it must
scale asV;s/m. To examine where the transition take
place, we show the translation speed of the edge as a f
tion of Oh in Fig. 7. The speed is estimated from Fig. 4~a!,
and similar plots from a few additional simulations, by com
puting the slope of the curve shortly after the initial acc
eration has been completed. The results in Fig. 5 suggest
the velocity at this time is independent of the size of t
computational domain and that it will remain constant
unbounded domains. The speed is made nondimension
two ways, using the velocity scales defined above. For
low Oh range we see thatV51.02(s/r id)0.5, independent of
Oh, and for the high Oh,V51.02(s/m), again independen
of Oh. Between those two limiting cases there is a transit
region (0.1,Oh,5.0) where the velocity depends on Oh

The speed of the wave propagating in front of the b
can be computed by linear theory for a capillary wave o
thin sheet22 In nondimensional units~velocity divided by
As/r id), the phase speed and the group speed are give

c5A kd

ro /r i1coth~kd/2!
~6!

and

U5
c

2 S 31
~kd/2!csch2~kd/2!

ro /r i1coth~kd/2! D , ~7!

respectively. Here,k is the wave number defined ask
52p/l, wherel is the wavelength. For the lowest Oh, Eq
~6! and ~7! give dimensionless phase and group speeds
1.443 and 2.419, respectively, usingl measured as the dis
tance between the two wave crests next to the neck in
2~c! at time56.53. The phase and group speeds measu
directly from Fig. 2~c! are 1.43 and 2.41, respectively. Th

FIG. 7. Dimensionless edge translation speed. Circles are used foVr

5V/(s/r id)0.5 and squares forVm5V/(s/m i), whereV is the dimensional
edge speed.
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phase speed is found by tracing the location of the cres
the first wave for four consecutive times starting with tim
6.53, and the group speed is found by tracing the first po
where perturbations of the sheet are noticeable. Since
first wave to the right of the blob does not leave the blob
follows that the edge must move with a speed that is onl
little slower ~since the blob is getting longer as it grows!.
Taylor10 suggested that the receding speed of the e
should be&51.414 using the same dimensionless unit
ours. The translation speed of the neck is very close to T
lor’s ~1.35 for Oh50.098), but the speed of the edge itself
slightly different since the blob is getting bigger as it move
For the initial transition this difference is at21/2 correction
and for the later time it is associated with the elongation
the bob as seen in Fig. 2. For the larger density and visco
ratios the speeds of the edge and the neck are 1.21 and
respectively, for Oh50.098 in the same dimensionless un

To examine how the thickness of the neck changes w
Oh, the minimum thickness is plotted versus Oh in Fig.
No necking is observed for Oh higher than about 0.25. T
minimum thickness of the neck obviously decreases with
and it seems fairly likely that the thickness would becom
zero if viscosity was totally absent. We note that a somew
similar effect is seen for two bubbles rising side by sid
Inviscid analysis shows that the bubbles move toward e
other and will eventually touch, but if the Reynolds numb
is finite, the bubbles rise with a finite separation.

V. CONCLUSIONS

The formation of thick borders on an initially stationa
two-dimensional fluid sheet, surrounded by another fluid
examined by numerical simulations. The primary controlli
parameter is the Ohnesorge number~Oh!. In the limits of
high and low Oh, the speed at which the sheet recede
independent of Oh, but different scaling laws apply for t
different limits. Initially, the speed of the edge is about uni
in the proper nondimensional units. While the finite size
the domain used here leads to reduction in the edge velo

FIG. 8. Minimum neck thickness vs Oh.
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as the blob grows, one simulation with a larger domain s
gests that the velocity of a sheet in an unbounded fluid wo
remain constant.

The evolution is essentially inviscid for Oh,0.1. In
terms of physical systems, this means that sheets of w
thicker than 0.0014 mm and sheets of kerosene thicker
0.016 mm, for example, can be treated as inviscid, at leas
far as the speed of the edge is concerned. While very visc
sheets form a growing blob at their ends that gradua
merges with the undisturbed part of the sheet, the blob at
edge of nearly inviscid sheets is connected to the rest of
sheet by a thin neck. The thickness of this neck reache
approximately constant value that decreases with Oh, s
gesting that the blob may ‘‘pinch-off’’ in the inviscid limit.

The original motivation for this study was the observ
tion in Tryggvason and Unverdi12 and Tauber, Unverdi, and
Tryggvason23 that a two-dimensional filament or a finge
produced a blob as its end that appeared to pinch off in s
cases. The problem studied here differs somewhat from
situation there since the sheet is initially stationary. The
fect of acceleration or stretching on the breakup of the sh
remains to be explored. Some of the experimental figu
referenced in Sec. I show that a nearly flat sheet with a th
rim ejects fingers of fluids that are perpendicular to the e
and break up into drops by capillary instability in a way ve
reminiscent of the ‘‘crown’’ formed when a drop impinge
on a thin layer of liquid~Yarin et al.24!. This seems to sug
gest that a straight~two-dimensional! edge is unstable to
three-dimensional disturbances that are much longer than
thickness of the edge and that this instability eventua
evolves into those fingers. An understanding of this proc
would greatly enhance the ability to predict drop sizes res
ing from the breakup of a thin film.
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