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The contribution of intramolecular multiple scattering in electron diffraction patterns of gas molecules 
is investigated by Glauber's method. An analytical expression for three-atom scattering is derived for 
the limiting case in which the distance between atoms is large compared with atomic radii. This expression 
accounts well for the discrepancies between observed and conventionally calculated scattered intensities 
reported by Jacob and Bartell in the case of ReFs. The analogous four-atom scattering is found to be very 
small. 

Electron diffraction patterns of free molecules give 
Fourier transforms with peaks corresponding to inter
nuclear distances. Observed peaks deviate systemat
ically from peaks calculated by current theoretical 
expressions, the discrepancy increasing as atomic num
ber increases. If heavy atoms are present this discrep
ancy may seriously interfere with structure analyses.1,2 

The principal failure of kinematic diffraction theory 
was treated many years ago by Schomaker and Glauber3 

and others,4 who showed that phase shifts on scattering 
may split radial distribution peaks into two compo
nents, symmetrically (neglecting small effects of an
harmonicity). Observed peak splittings are often de
cidedly asymmetric, however, by an amount far in 
excess of random errors in current experiments, and 
other anomalies occur. 

Observed asymmetries cannot be accounted for by 
adjusting atomic scattering factors unless the atoms 
are made markedly aspherical. They can be explained, 
however, by intramolecular multiple scattering, a topic 
treated previously by several workers.5 ,6 Since previous 
treatments have involved difficult mUltiple numerical 
integrations as well as approximations of uncertain 
validity, it seemed worthwhile to explore a method 
susceptible of quite rigorous treatment yet capable of 
analytical evaluation of scattered intensities. The pres
ent paper is a preliminary note to illustrate the method 
in a limiting case yielding a simple but fairly accurate 

result even for real molecules. A later communication 
will offer a more general and detailed account applica
ble to all cases. 

The three-atom system in Fig. 1 will be considered, 
assuming that the atoms M, 2, and 3 all present spher
ical, nonoverlapping, static potential energies to an 
incident electron. A convenient treatment is a partial 
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FIG. 1. Three-atom 
system. Wave incident 
along the dashed lines. The 
three orientational vari
ables {jz, {3y, and '" do not 
constitute a proper Eulerian 
set but they are satisfactory 
coordinates for the orienta
tional averaging in view of 
the small range of {3z and 
(3y over which effective 
eclipsing of atoms M and 
2 occurs. 

wave expansion modified to handle systems without 
spherical symmetry with phases evaluated by Glauber's 
approximation.7 To introduce the method it is conven
ient to start with the familiar partial wave expansion 
and progress to a semiclassical expression associating 
the quantum angular momentum [l(l+ 1) J/2fi~ 
(l+ 1/2)fi with the classical angular momentum mvp= 
fikp, where p is the impact parameter. The scattering 
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factor for an axially symmetric system may be ex
pressed ass 

/(s) = (2ik)-1 I: (2/+1) [exp(2ioz) -IJPz(cosO) 
z 

~(2ik)-ll«l (21+1)[exp(2ioz)-IJ 
o 

X 10[2 (l+t ) sin!OJdl 

= (2ik)-1 100 

2kpl exp[2io(p) J-lI1o(sp)kdp 
o 

= ( -ik) t'"1oo I exp[2io (p) J-l1(211" )-1 
o 0 

Xexp(is-p) pdpdcp 

= (-ik/211") If exp(is-p) 
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FIG. 2. The solid curve represents the difference between the 

reduced intensity observed for ReFs by Jacob and the reduced 
intensity calculated by the conventional two-atom expression. 
The dashed curve represents the cos sr component of the three
atom scattering calculated according to Eqs. (17) and (21). 

Xlexp[2io(x,y)J-lldxdy, (1) it follows that 

with s = k inc - kSCBtt and in which the final expression, 
which is mathematically equivalent to the second ex
pression in the case of axial symmetry, is also applica
ble to general systems within the restrictions outlined 
by Glauber.7 The phases o(x, y) may be evaluated 
according to the semiclassical approximation7,8 

mel 100 

o(x, y) = - 2h2k -00 vex, y, z)dz. (2) 

Since vex, y, z) is a sum of atomic contributions, the 
phases o(x, y) can be represented as a sum of atomic 
contributions. In the event that one atom eclipses 
another in the course of molecular rotation, the pair 
will generate an augmented scattering for that orien
tation, according to Eq. (1). It turns out that the 
interference between this augmented scattered wave 
and a wavelet scattered by some other atom gives rise 
to the principal discrepancies between observed and 
calculated diffraction patterns referred to in the intro
ductory paragraph. Referring to the three-atom sys
tem in Fig. 1, we note when atom 3 is not eclipsing 
(or eclipsed by) atoms M and 2 that 

exp(2io) -1 = exp[2i(OM+02+03) J-l 

~ I exp[2i(OM+02) J-ll + [exp(2ioa) -IJ 

(3) 

since for any given impact parameter, p, either (OM+02) 
or 03 is zero by virtue of nonoverlap of the projections 
of the potential energy functions on the x, y plane. 
Further, we note that since 

exp[2i(0.lf+02) J-1 = [exp(2ill.lf)-1J+[exp(2iIl2) -IJ 

+[exp(2ioJl)-IJ[exp(2iIl2)-I], (4) 

/M,2(S) = (-ik/211") f f exp(is-p) 

X I exp[2i(OM+02) J-1ldxdy 

= /M(S) exp(iS-PM) +/2(S) exp(iS-P2) +/M2(S) 

(5) 

in which the Pi are components of the radial vectors ri 
in the x, y plane, in which/M(s) and/2(s) are conven
tional partial wave atomic scattering factors as defined 
by Eq. (1) for isolated atoms at the origin, and the 
"eclipse amplitude" /M2 is 

/M2(S) = (-ik/211") If exp(is-p) [exp(2ioM) -1J 

X [exp(2i02) -1Jdxdy. (6) 

Accordingly, we may write the scattering factor for 
the three-atom system as 

/(s) =/M exp(is-pM) +/2 exp(is-P2) 

+/3 exp(iS-P3) +/M2(S) + - - - (7) 

and the elastic differential cross section averaged over 
all orientations as 

(du/dQ)o= <1*(s)/(s»o 

= I: L/i*!i(exp[is. (Pi-Pi) J)o 
i i 

+2 Re(j3* exp( -is-Pa)/M2(S) )0+- - -, (8) 

in which the first term on the right hand side is the 
conventional two-atom expression and the next is the 
three-atom interference term we seek. Analogous three
atom terms with/i* exp( -is-Pi)!ik will occur for every 
combination with j~k. They will contribute signifi
cantly only when j and k are nearly eclipsed. The 
treatment remains valid if i=j or i=k. Since it is 
impossible with a nonzero angle w (see Fig. 1) for 
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i, j, and k to be eclipsed simultaneously, the formally 
allowed combinations ji, jijk and jij, /ik are negligible. 

It is very simple to evaluate the three-atom spherical 
average in Eq. (8) in the event that the internuclear 
distance R is large in comparison with the atomic 
radii. This average involves integration over three 
Eulerian angles9 a, {j, and 'Y or, in our limiting case, 
over the three variables {jx, {jy, and c/> of Fig. 1. Let us 
assume that atom M is at the origin and that, at 
a={j='Y=O, atom 2 is on the z axis in the direction of 
the incident momentum while atom 3 is in the yz 
plane. For large R, we may envision the spherical 
average simply as the averaging over {jx and (jy angles 
of Fig. 1 while holding c/>=O, followed by an average 
over c/>. If R is large, OM(X, y) and 02(X, y) eclipse each 

other effectively over such a small range of {jx and {ju 
that the integrand in (f3* exp( -isop3)jM2)fl is very 
small unless {jx and {jll are very small in which case the 
component of P3 along s is very little changed from 
its value at perfect eclipsing of atoms M and 2. There
fore we may write 

(!a* exp( -is 0 P3)jM2)fl';::::;)!a* (exp ( -isop3) )4> (fM2).ph, 

(9) 
where 

(exp( -isop3) )4>= (211")-1 [" exp[ -i(sS sinw) coscf>Jd4> 
o 

=Jo(sS sinw) (10) 
and 

(fM2).ph= « -ik/211")f f exp(isop) [exp(2iOM) -lJ[exp(2i~) -lJdxdy).ph, (11) 

which simplifies to 

(fM2).ph';::::;)[( -ik/211") If exp(isop) [exp(2ioM) -lJdxdyJ(exp[2i02(0, 0) J-1 ).ph 

= jM(s)(exp[2i02(0, 0) J-l).ph (12) 

since a little reflection shows that, when atom 2 is delocalized in a spherical shell of large radius, the phase 02(X, y) 
averaged over the orientation of atom 2 is virtually constant in the x, y range w~ar zero where the localized OM(X, y) 
is significant and, hence, the 02 term can be factored as shown. That is, designating the coordinates of atom 2 as 
X.l = R coSc/>2 sin82 and Y2 = R sinc/>2 sin82, by definition 

(exp(2i~) -1)8ph= (411"R2)-1 If {exp[ - (2im/2kh2)fV2(X-~, Y-Y2, z)dzJ-1IR2 sin8~2dc/>2 

= 2i(02(X, y) +i022 (x, y) + 000 )8ph 

= 2i(02(0, 0) +i022(0, 0) + 0 0 0 )8ph{1 +[(x2+y2) /2R2J+ 0001 

';::::;)2i(02(0, 0) +i022(O, 0) + 000 )8P/t 

at small x and y. Moreover, it is apparent that Eq. (13), for so=O and x=y=O, can be written as 

(exp(2i02) -1 )8ph = [2/ (411"R2) J(211"/ -ik) { ( - ik/211") f f exp( iSo° p) [exp(2i02) -1 Jd~dY21 

= (i/kR2)!a(SO) 

== (i/kR2)!a(0) , 

(13) 

(14) 

where the first factor of 2 in the rhs represents the two eclipsing conformations, M by 2, and 2 by M. Moreover, 
the accuracy of Eq. (10) can be improved by (a) shrinking the effective vertical distance S sinw to atom 3 to 

(S sinw)eff';::::;)S sinw[1-!({jl)M-t«~w)2)MJ= S sinw[1-i({j2)A.-t«.:lw)2)A.J== S sinw(l-E) (15) 

by incorporating the effect of foreshortening due to motion over an arc in displacements over the mean square 
Eulerian eclipsing angle (fj2)A. and over the angular molecular vibrations, and (b) by multiplying by the vibra
tional temperature factor exp( -lb2/2) where 

(16) 

in which l2 and «~W)2)A' represent mean square bond stretch and bend amplitudes of vibration. Neither E nor 
l.2 can be ignored in real cases if accuracy is desired. Since ({j2)A. is perforce very small in our limiting case of 
very large R, the present treatment does not lead to a useful evaluation of the correction E. The eclipsing latitude 
({32)A' decreases with s as the broader components of the atomic V(r) become less effective in scattering, and a full 
treatment10 is required for numerical evaluation of E. 
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Collecting the above terms together, the three-atom differential cross section of Eq. (8) becomes 

(du/dfl.)M2.3= 2 Re(j3* exp( -is'P3)jM2)f1 

= 2 Re(i/kR2)ja*(s)jM(s)h(0) [exp( -l,2s2/2) ].lo(sS sinw[1-EJ) 

= - (2/kR2) I la(s) II jM(S) II h(O) I sin[71M(s) +712(0) -713(S) JX [exp( -l.2S'2/2) ].lo(sS sinw[1-EJ) 

(17) 
if the imaginary part of E is neglected. 

Identical reasoning in which atom 2 is made the center of the sphere gives the analogous result in which the product 
jM(s)h(O) of Eq. (17) is reversed to jM(O)h(s). A more rigorous treatmentlO reveals that the correct leading 
term contains, in general, neither of these quite similar quantities, but rather is as follows: 

(du/ dfl)M2.a= 2 Re{ (i/kR2)ja*(S )jM(SM )h(S2) [exp( _l,2s2/2) J(1 +E)lo(sS sinw[l-EJ) }, (18) 
where 

sM=[l-(S/R) coswJs, 

s2=[(S/R) coswJs, 

(19a) 

(19b) 
and 

In electron diffraction analyses, Eq. (18) is applicable 
if the distance S sinw corresponds to no true, major 
internuclear distances. If w=90°, however, S sinw is a 
bond distance and the (1rSS)-1/2 sin sS component of 
loesS) is at least partially absorbed into the experi
mental scale factor in the (SS)-1 sinsS term in con
ventional analyses. Indeed, in one of the most definitive 
studies to date involving a heavy atom, Jacob2 found 
in the case of ReFs that the unexplained residual in 
(du/dfl) was an almost pure cossS component for 
S=r(Re-F), modulated by a smooth envelope. If the 
sinsS term is removed from lo(sS[l-EJ) , the coeffi
cient of thecossS term can be deduced from 

lo(sS[l-EJ)~ (1rSS)-1/2{ cos(sS[l-EJ) 

+sin(sS[l-EJ) } 

= (1rSS)-1/2{[cossSE+sinsSEJ sinsS 

+[cossSE-sinsSEJ cossS}. (21) 

The agreement between the "reduced intensity" 
three-atom cossS component of (du / dfl)ReF .F/ (du/ dfl )tot 
for the 24 ReF, F eclipsing combinations in ReFs cal
culated according to Eqs. (17) and (21) and the re
duced intensity residuals observed by Jacob is shown 
in Fig. 2. The agreement confirms that three-atom 
interatomic intramolecular scattering accounts for the 
principal effect observed. Similar conclusions arrived 
at by different routes have been drawn by Bonham, 
Piexoto, and Liull and by Yates.12 

Four-atom scattering can be studied by an approach 
analogous to that outlined above. If the four atoms 
are all different, the associated intensity is negligible 
unless two pairs or three individual atoms eclipse simul
taneously. Rhenium hexafluoride, with parallel pairs 

(20) 

of fluorines and with linear F-Re-F groups which can 
interfere with a fourth atom, contains the atomic ar
rangements required for optimum four-atom scattering. 
The magnitude of the four-atom effect is much less 
than that of the three-atom effect, however [by a 
factor the order of fp(0)/kR2J, in the case of ReFs 
with 40 kV electrons. 
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