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The two-dimensional melting transition of charged polystyrene spheres in aqueous colloidal 
suspension has been studied by molecular dynamics simulation of a screened Coulomb system. 
Some central predictions of the Kosterhtz-Thouless-Halperin-Nelson-Young theory of 
defect-mediated melting are confirmed, such as an apparent divergence of the correlation lengths 
for translational and bond-orientational order at different thermodynamic state points, but there 
are also predictions of the theory that are violated. The defect topology is very complex, with 
oscillation periods of the defect density of many million time steps duration. The need for 
extensive sampling and, to a lesser degree, the choice of potential function continue to be the 
crucial issues for any attempt to generate a hexatic structure by means of computer simulation. 

1. INTRODUCTlON 

Monodisperse colloidal particles in aqueous suspension 
provide a model system of unique versatility for the study 
of classical condensed phase phenomena.“’ Thus such sus- 
pensions have recently been used in several kinds of exper- 
imental setups to study the nature of the melting transition 
in two-dimensionally (2D) restricted geometries.3-5 Sur- 
prisingly, the conclusions drawn from the various experi- 
ments are conflicting, adding to a multitude of contradic- 
tory data that have been obtained over the last decade and 
a half in numerous other investigations of 2D melting, both 
experimental and theoretical.6*7 Motivated by these unre- 
solved controversies, we here present a computer simula- 
tion study of the 2D Yukawa system as a simple model for 
charged colloidal suspensions. The rationale is that simu- 
lation results will not only complement the experimental 
information, but may also help to clarify the origin and the 
essence of the ongoing disputes regarding the interpreta- 
tion of the experiments.. 

The strong interest that has been shown in 2D melting 
for more than a decade emanates from the theory of defect- 
mediated melting by Kosterlitz, Thouless, Halperin, Nel- 
son, and Young (KTHNY) . This famous theory predicts a 
peculiar two-step melting process. First, a continuous tran- 
sition leads from the solid to a bond-orientationally or- 
dered phase, a so-called “hexatic”; then a second transi- 
tion, also continuous, leads from the hexatic phase to the 
liquid.8,g This is to be opposed to the conventional view of 
melting, for systems in both 3D and 2D, where a single 
first-order transition takes the system from the long-range 
(or quasi-long-range) ordered state of the solid phase to 
the disordered state of the liquid phase. The physical driv- 
ing force behind the KTHNY transitions are long- 
wavelength fluctuations that lead to the unbinding of de- 
fect pairs, specifically pairs of dislocations (solid -+ hexatic ) 
and pairs of disclinations (hexatic *liquid). No account is 
made of short-wavelength fluctuations, related to effects of 
local packing and such phenomena as the possible occur- 
rence of grain boundaries. 

Because of the just mentioned incompleteness of 

KTHNY theory, no consensus has emerged concerning its 
applicability to real systems. Nevertheless, it seems that at 
least some experimental systems, such as certain smectic 
liquid crystals, lo have provided go od indications in support 
of the theory. Probably the most compelling evidence for 
KTHNY-type melting has been obtained by Murray et al. 
in experiments with colloidal suspensions of simple poly- 
styrene spheres that are confined between glass plates.3 
There are also other experimental systems with more indi- 
rect indications for two-step melting as prescribed by 
KTHNY theory.6 

Even the experimental evidence for 2D colloidal sus- 
pensions is not uncontested4,5 (see Ref. 11 for a recent 
comprehensive review), reminiscent of the highly contro- 
versial interpretations that have been given of many of the 
numerous computer simulation studies of 2D melting. A 
good example of the latter predicament is provided by two 
recent papers on the hard-disk system that contain quite 
different inferences about the nature of the melting transi- 
tion.t213 Intricate issues also arise in the analysis of simu- 
lations of the inverse-twelfth-power-law system that we re- 
examined recently.t4 

Nevertheless, it appears that a majority of simulation 
results has been interpreted as indicative of a first-order 
transition, or at most a weak first-order transition,6’15 
whereas at least some experimental data appear to provide 
definite hints in favor of KTHNY-type melting. It is not 
clear if this apparent disparity between experiment and 
simulation has to be attributed to ( 1) either fundamental 
differences between the types of systems that have been 
studied, or (2) inherent problems with the setup of current 
simulations, in particular regarding system size and degree 
of sampling, or (3) different methods for data analysis and 
interpretation. 

Even though it can be argued that all of these issues are 
potentially relevant, the true significance of each point still 
needs to be determined. What appears to be called for is a 
systematic investigation of the same type of system with 
both experimental and simulation methods. This is the goal 
of the present paper. We conduct a series of very long 
molecular dynamics simulations of a crude model for 
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charged colloidal suspensions, employing a simple, pair- 
wise additive model potential. We then look for evidence 
similar to that of the experimental information.3-5 In par- 
ticular we try to determine-just as in the experimental 
case-if structures from the intermediate region of the 
phase diagram exhibit all the features of a true hexatic or if 
they have to be attributed to conventional two-phase coex- 
istence. 

While several modest simulation studies of the (un- 
screened) 2D Coulomb system have been reported,16-‘9 
there is only one previous simulation study of the 2D 
Yukawa system” and this study was mostly limited to a 
characterization of its thermodynamics. This is in stark 
contrast to the 3D Yukawa system which has received a lot 
of attention21-26 and whose melting transition has repeat- 
edly been addressed from the viewpoint of phenomenolog- 
ical theories of melting.2626 In this paper, we will ignore 
the 2D analogs of these theories and only focus on argu- 
ments for and against KTHNY-type melting, as obtained 
from a direct analysis of the microscopic structure. We also 
do not study the entire phase diagram, but rather work 
with one specific set of potential parameters-basically 
chosen ad hoc-such that the simulated system resembles 
in some ways the experimental colloidal sphere systems3” 
and in particular the systems of Murray et aL3 

The organization of this paper is as follows. In Sec. II, 
we describe the computational methods. The results are 
presented and discussed in Sec. III, first addressing the 
orientational and translational correlation functions, and 
then examining the defect density and defect topology. The 
final Sec. IV contains the conclusions. 

II. METHODS 

A system of 1225 particles in a periodically replicated 
rectangular unit cell of approximate area A = (25 x42) 
pm2 was studied, corresponding to a 25 X49 supercell of an 
unstrained triangular lattice. This is a fairly small system, 
but given the fact that size dependencies have to some 
extent been studied before ‘?12’ we decided to use the avail- 
able computational reso&ces for performing very long 
simulation runs. The simulations are performed in the tra- 
ditional, strictly 2D simulation setup. (Based on experi- 
mental evidence concerning a dependency of the phase 
transition behavior. on the dimensionality of the 
system,3(d)‘29 one would expect-if anything-that this 
could imply a slight bias towards KTHNY-type melting 
behavior.) 

The colloidal particles, suspended in a medium of di- 
electric constant .sr, interact with the pairwise additive, 
Yukawa-type potential function 

1 se-Kr U(r) =E, r 
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and the dielectric constant of water (~,=78) in all simu- 
lations. For the Debye screening length I/K we generally 
use 1/~=0.20 pm. It will later be seen that this yields a 
melting density about halfway between the melting densi- 
ties of the Murray et al. two colloids. Some data were also 
collected for a screening length of 1/~=0.15 pm; no qual- 
itatively different observations were made and results of 
these simulations will not be presented. 

Of course the potential function ( 1) can only be ex- 
pected to give a very crude and qualitative representation 
of the actual interactions in the experimental system under. 
study. 2121(b)P23*30 For example, the potential is purely repul- 
sive without a Hamaker-type attractive term, and we do 
not have an explicit geometric factor that could account 
for finite sphere size effects. These omissions should not be 
of concern for simulations in a fairly narrow phase transi- 
tion region where we can simply take the charge Z?as a 
renormalized and practically density-independent value 
that represents all of the more subtle effects in an empirical 
and summary fashion. In general, one would expect the 
sphere-sphere interactions in a realistic model for the ex- 
perimental 2D system to be even more complex than in the 
3D bulk system, due to the image charges induces in the 
confining walls. We do not attempt to account for such 
effects. ’ _ 

The pair interactions are evaluated up to a cutoff dis- 
tance of r-,=2.3 pm. Since our simulations are in a sense 
loosely modeled on the experimental studies of Murray et 
al3 we use a particle mass of 8.95 X 10’ amu. For an ap- 
proximate density of 1.0 g/cm3, this would correspond to 
spheres of 0.305 pm diam, i.e., exactly the sphere size of 
both monodisperse colloids that have been studied experi- 
mentally. 3 

The equations of motion are integrated with the leap- 
frog Verlet algorithm,31 A roughly linear increase of the 
energy fluctuation with increasing time step shows a clear 
change in slope for time steps >0.45 ,XS; therefore a time 
step of At=0.35 ,us (about l/40 of the Einstein vibrational 
period) is used. Runs of at least 130 000 and sometimes 2 
million steps are carried out. Certain runs are carried on 
even longer, for as long as 8 million or 22 million steps. 
The latter is equivalent to about 8 s of laboratory time. 

NVT simulations are carried out, mostly using an isok- 
inetic constraint algorithm.31 In the very long runs the 
system is alternatively coupled to--a heat bath by periodic 
reinitialization of the velocities,3 ’ thus presumably improv- 
ing the sampling efficiency even more. The runs are carried 
out at room temperature (20 “C) and the phase transition 
is explored via density variation, similar to the experimen- 
tal setups.3-5 

r- 

To characterize the translational order, we calculate 
the total pair correlation function 

(1) 

The charge P is an effective, renormalized charge that is 
much smaller than the actual charge Z. In Murray et al.‘s 
experiments two different kinds of colloidal spheres were 
used whose renormalized charges have been estimated to 
be SF=750 e. and F=loOO eo.3(d) We use P=750 e, 

g(r) = @WEW--r)), (2) 

where the ensemble brackets are understood to imply 
proper normalization and averaging over all pairs of par- 
ticles and all angles. At solid densities, we can also calcu- 
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late the individual translational correlation functions that 
are obtained from the Fourier components Po of the mi- 
croscopic density p(r) ,9 

gG(r)=(p8(r')pG(r'-r)). (3) 

Here pG is the translational order. parameter with respect 
to a particular reciprocal lattice vector G of the underlying 
crystal structure 

pG=@. 

We only consider the first three vectors of the triangular 
lattice, IGel =Gc, IG,I =d3Go, and lGZl &2G,, where Gc 
=47r/( J3ao), with a0 being the lattice spacing. The corre- 
lation function (3) is always averaged over the three equiv- 
alent crystallographic directions; if a particular 
configuration was obtained in a liquid-solid traverse (with 
possible “misorientation” relative to the computational 
unit cell) the exact lattice orientation is determined lirst. 

The orientational order is characterized by calculating 
the bond-orientational correlation function g6( r) ,. 

g6(r)=(yg(r’)y6(r’-r)), ‘35) 

where Y?e is the order.parameter for the local orientation of 
the “grain” that is given by the “geometric bonds” (with 
angles & relative to an arbitrary reference axis) of a given 
particle with its six closet neighbors k, 

(6) 
” k=l . 

As a measure of the deviation from triangular order, Ys 
has an absolute value of one for a particle in a perfectly 
ordered environment and represents the spatial orientation 
of the local “grain” through the phase factor. All correla- 
tion functions are calculated using fast-Fourier-transform 
(FIT) techniques,3’ descretizing the relevant data on a 
1024 X 1024 square lattice, l4 and usually averaging the cor- 
relation functions over a number of independent configu- 
rations. ._ 

Finally, the defect structure is determined by Voronoi 
tessellation with a standard algorithm,3’ identifying discli- 
nations as particles with either more or less than six nearest 
neighbors. 

III. RESULTS AND DISCUSSION 

It is well-known32 that there is no volume change on 
melting in a D-dimensional system that interacts via an 
inverse-power-law potential rmn provided that n<D. From 
the equation of state, P= f (p), of our simulated 2D sys- 
tern (not shown), we conclude that to a good approxima- 
tion this apparently also applies to the smoothly truncated 
Yukawa potential. Thus there are virtually no constraints 
regarding the width of the potentially hexatic region. 

The equation of state also indicates that the phase tran- 
sition takes place at an approximate density of pz 1.17 
pm-‘; corresponding to a nearest neighbor distance of a0 
=0.99 pm. In the experiments of Murray et al., freezing is 
observed at nearest neighbor distances of a,=0.78 pm 

. 
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RG. 1. (a) Correlation lengths 6 and & for assumed exponential decay 
of translational and orientational correlation fknctions g(r) and g,(r), 
respectively. The lines drawn are only guides for the eye. (b) Power law 
exponents TJ and o6 for assumed algebraic decay of the same two corre- 
latioii fun&ions. The lines drawn are only guides for the eye. 

[Ref. 3(a)] and ao= 1.31 pm [Ref. 3(d)], for their two 
choices of colloid. Our system thus lies about halfway be- 
tween these two values. -. 
A. Orientational and translational order 

Figure 1 (a) gives the correlation lengths & and 6 for 
orientational and translational order, respectively, as ob- 
tained by fitting the bond-orientational correlation func- 
tion g6(r) and the pair correlation function g(r) to expo- 
nential decay envelopes. In the two-step freezing scenario 
of KTHNY theory these correlation lengths diverge at dif- 
ferent thermodynamic state points. If we analyze our data 
the same way as Murray and Van Winkle3@’ and identify 
‘the onset of orientational and translational order- with cor- 
relation lengths of &~30a, and c=: 15a,, respectively, 
then we have to conclude that there are two distinct tran- 
sitions at densities of pz 1.161 and 1.172 pm-‘, respec- 
tively. Thus there is an intermediate (and possibly hexatic) 
region that is about z 1% wide in the density. An obser- 
vation of this kind is at the heart of Murray and Van 
Winkle’s original claim to have successfully identified a 
hexatic phase in the colloidal sphere system.3(*) 

The correlation length for translational order in Fig. 
1 (a) only grows to a maximum of {z45ao, due to the fact 
that the order of a 2D solid is only quasi-long-ranged (ac- 
tually giving rise to an algebraic decay law, see below), and 
probably also indicating a certain microgranularity of ,the 
simulated solid. This is unsatisfactory, but also seen in the 
experimental case. Thus for the Murray et al. two colloids 
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r Cpml 
10 

FIG. 2. Log-log plot of the orientational correlation function g6(r) at 
density p=1.164 pm--*. 

a maximum occurs at g~90a, [Ref. 3(a)] and {z4Oa, 
[Ref. 3 (d)], and in the system of Tang et al. the transla- 
tional correlation length does not even rise to more than 
,$~lOa, until far into the solid region.’ Hence our simu- 
lated system would in this regard appear to- be not much 
worse than is the case under the best experimental condi- 
tions. 

Figure 1 (b) is obtained by alternatively fitting gs(r) 
and g(r) to algebraic decay envelopes r-76 and rw9, re- 
spectively. The interpretation of the new figure is some- 
what less clear; a particular impediment is the fact that the 
translational decay exponent 77 barely falls below r] =: 1.0, 
again because of the only quasi-long-range positional order 
and the microgranularity of the solid. Nevertheless, the 
picture is at least consistent with a delay between the den- 
sities where orientational and translational order diverge. 

A power-law decay is in fact expected for the bond- 
orientational order in the presumed hexatic phase. Figure 2 
gives a log-log plot of the decay of the correlation function 
g6(r) at a density of p= 1.164 pm-“, towards the liquid 
side of the intermediate region. Obviously, the correlation 
function can be well described by an algebraic decay law, 
at least up to a distance of ~20 pm. (The deviations seen 
for larger distances would be consistent with the presence 
of a finite fraction of a solidlike phase.) More specifically, 
KTHNY theory predicts that the decay exponent drops 
continuously from a value of vs= l/4 at the liquid to 
hexatic transition to Q=O at the hexatic to solid transi- 
tion.’ From Fig. l(b), we find q6z0.35 at the density of 
pz 1.161 pm-’ that corresponds to the former of the two 
transitions. The predicted exponent of r/i= l/4 is not too 
far from this value and probably just outside the error bar 
of the simulation value. 

We now turn to a more detailed analysis of the trans- 
lational order. Figure 3 shows its decay upon reaching the 
melting density of p= 1.172 pm-‘, but now resolved with 
respect to the first few Fourier components of the micro- 
scopic density. Just as for the overall pair correlation func- 
tion, the quasi-long-range order of the solid phase is ex- 
pected to give rise to algebraic decays r-qG of the 

lo" 

Id: 

gG(r) 

loo 

IQ2 
1 IQ 

rbml 

FIG. 3. Log-log plots of translational correlation functions go(r) for tirst 
three reciprocal lattice vectors Go, 6, , and G2, and at density p= 1.172 
pm-*. The exponent of the algebraic decay law, rP0, is ~~0.7 in all 
three cases. 

individual correlation functions gG( r) . More specifically, 
KTHNY theory predicts that the decay exponents 776 de- 
pend quadratically on the length of the Bragg vector G if 
the system is at the solid to hexatic transition.’ If/z and p 
denote the Lame elastic constants we have 

vo(solid-hexatic) =kT 4~~(2~+il) 3p+A IG12. (7) 

Specifically for the first Bragg point, Go, the decay expo- 
nent at the transition is predicted’ to fall iq the range 
r]o= l/4-1/3. 

From the double-logarithmic representation of Fig. 3 it 
can be seen that the decay at a density on the borderline 
between solid and intermediate phase is in fact algebraic 
over the entire distance range (r<40 ym) for each of the 
first three reciprocal lattice vectors. However, there is 
hardly any difference between the three cases, and the de- 
duced decay exponents qo, vl, and q2 are all on the order 
of ~0.7, contrary to the prediction of the theory. Of 
course, our determination of. the melting density may be 
quite inaccurate. We therefore present in Fig. 4 data indi- 
cating the variation of the power law exponents qo, vi, and 
Q with density. Due to the lack of extensive statistical 
averaging, only qualitative trends can be deduced, but it is 
nevertheless clear that there is in fact little difference be- 
tween the first three lattice vectors, regardless of the den- 
sity range, and that the decay exponent r], for the first 
Bragg point will definitely not be very close to the pre- 
dicted range of l/4-1/3. t 

We thus see that the results of a more detailed analysis 
do not really support the initial conjecture regarding pure 
bond-orientational order in the intermediate region. We 
have to conclude that a result such as shown in Fig. 1 is 
apparently much less telltale than expected at the outset. 
However, this does not necessarily contradict the Murray 
et al. claim of having successfully identified a hexatic phase 
in the experimental colloidal sphere system. In fact, if the 
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PIG. 4. Power law exponents qo, as a function of density, obtained by 
fitting translational correlation functions go(r) for first three reciprocal 
lattice vectors to algebraic decay laws. The lines drawn are only guides for 
the eye. 

latter detailed analysis of translational order is applied to 
some of the colloidal sphere data the predictions of 
KTHNY theory appear to be reasonably well obeyed,3(d)‘11 
in contrast to what is found here. Obviously there must a 
significant difference between experiment and simulation, a 
point to which we will return in Sec. IV. 

B. Topological defects 

The dissociation of defect pairs is at the heart of 
KTHNY theory. Figure 5 shows the evolution of the total 
defect density (i.e., the fraction of all particles with ~5 and 
27 neighbors) in a 22 million step run at a system density 
of p= 1.170 prne2. This is a density in the intermediate 
region--slightly on the solid side-and the run corre- 
sponds to ~8 s of laboratory time. (We note that the 
dynamics in our system are not strictly Newtonian because 
of the use of an algorithm for canonical ensemble sam- 
pling.) This is a time range that is not very far from the 
equilibration time that is implicit in the experimental pro- 
cedure of Tang ef aLS It is also clear that the 22 million 
time steps exceed the sampling-whether by molecular dy- 
namics or Monte Carlo-in virtually all previous computer 

0.2 

FD 

0.1 

0.0 -.- 
0 5 10 15 20 

million time steps 

FIG. 5. Fluctuation of defect density F, ( =fraction of particles that are 
not sixfold coordinated in a Voronoi tessellation) during 22 million step 
run at density p= 1.170 pm-‘. 

simulations of 2D melting by at least one, if not several 
orders of magnitude (regardless of the kind of system). 

The pattern seen is quite dramatic. The defect density 
does not only fluctuate between extreme values of ~0% 
and ~30%, but one can also infer fluctuation cycles of 
considerable length, some of them apparently extending 
over millions of time steps. In addition, up to about 20 
million time steps there is an apparent drift towards an 
overall higher defect density. However, the trend during 
the last few million time steps make this conclusion less 
definite, and the pattern seen would also be consistent with 
the presence of one long oscillation of >30 million time 
steps. 

We do not have enough data for a detailed analysis, 
but we can still conclude that correlation times of r>lO s 
are contributing to the dynamics of our system. The cor- 
relation times for translational and orientational motion in 
the experimental colloidal sphere system (as obtained from 
analysis of van Hove correlation functions) were found to 
range between 0.1 and 10 s. 3(b) This seems to be qualita- 
tively consistent with our findings. 

Murray puts strong emphasis on the need for sufficient 
equilibration.” The colloidal sphere experiments were in- 
deed carried out after waiting for up to a few days, ratio- 
nalized with the suggestion that dislocation climb across a 
translational correlation length of the system is important 
for equilibration. 3J1 ’ Murray has estimated that the time 
for dislocation climb is about z 10 h in a system of 0.305 
ym sized spheres.” Following this argument, proper equil- 
ibration of the Yukawa system in the present simulation 
setup would require enormous runs, vastly exceeding the 
length of our 22 million step run. Even if the latter argu- 
ment should not be valid, we are still left with a drastic 
illustration of the sampling problem in simulations of 2D 
phase transitions. It is likely that a comparable problem 
also affects the experiments of Tang et aI.’ This would 
naturally explain the generally great resemblance of their 
observations with ours. 
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FIG. 6. Defect structure in three representative configuratidiis for.density 
~=I.170 pm-*. Open and filled circles denote five- and sevenfold coor- 
dinated particles, respectively, as determined by Voronoi analysis. 

We now turn to the defect structure. Within KTHNY 
theory, we expect 5-7-5-7 quartets in the crystal, 5-7 pairs 
in the hexatic, and isolated 5’s and isolated 7’s in the liquid. 
Figure 6 displays the defect pattern in three arbitrary con- 
figurations of the long run at an intermediate system den- 
sity. An identifiable fraction of free, or incipiently free, 
dislocations was observed in the intermediate region of the 
colloidal suspension experimentsB5 and also in simulation 
studies of the r-l2 and Coulomb systems. 14*i9 According to 
the figure, the Yukawa system is no exception to this rule, 
i.e., occasionally we do tind “free” dislocations that are 
separated by at least a few nearest-neighbor distances. It 
can also be seen that the defect structure is in general very 
complex and that clustering of dislocations is the norm, 
similar to previous observations in the other systems.335P’4219 

Overall, the “clumping” of defects in the pictures looks 
more similar to what is seen in the colloidal sphere exper- 
iments of Tang et al.5 than to what is seen by Murray et 
aL3(c)13(d)V11333 It is tempting to associate this clumping 
with lack of equilibration, .as previously suggested by Mur- 
ray.” Still, there is not really a pronounced tendency for 
the clumping to occur in the form of grain boundaries 
which are so central to Chui’s theory of first-order melt- 
ing.34 There are other differences with respect to the pre- 
cise defect structure between the various systems, but we 

have not analyzed these in any detail. We tinally did not 
investigate whether pairs of dislocations dissociate and re- 
combine during the course of the simulation. Such events 
have not been seen in the experimental system of Tang et 
al., and this absence has then been used as an argument 
against the applicability of KTHNY theory.5 However, as 
pointed out by Murray et aZ.,3(d) the theory is based on a 
renormalization group treatment and the defect dissocia- 
tion may take place on an arbitrarily large length scale. 
Hence, this does not provide a very sensitive test. 

IV. CONCLUSIONS 

Does the melting transition in our simulated Yukawa 
system really follow the scenario of KTHNY theory? 
Based on the evidence shown we do not believe that the 
intermediate phase us obtained in this set of simulations can 
be called a true hexatic. This is so despite the fact that two 
central expectations of KTHNY theory are easily con- 
firmed, namely a delay between the divergences of transla- 
tional and orientational order upon melting and the pres- 
ence of “free” dislocations in the intermediate-phase. It is 
only upon closer inspection that disagreements between 
theory and simulation become obvious. In this sense, we 
fully agree with the skepticism of Tang et aL5 concerning 
hasty confirmations of the theoretical predictions, whether 
in an experimental or in a simulated system. 

It may nevertheless be going too far, for more than one 
reason, to call the agreements between theory and simula- 
tion entirely fortuitous. First, indications are that the first- 
order and KTHNY transitions are very close, such that 
one of them barely pre-empts the other. Most likely, the 
actual melting mechanism-whichever one that may be- 
will still be strongly influenced by the other.35 Second, we 
cannot exclude the possibility that much more extensive 
sampling will still give us an intermediate phase that is 
genuinely hexatic in character. This seems to be a partic- 
ularly intriguing possibility considering the similarity of 
our simulation results with the experimental data of Tang 
et aL5 As mentioned earlier; the latter may well suffer from 
an equilibration problem if compared with the experimen- 
tal procedure of Murray et aL3 

Now proceeding to the experimental data, does the 
melting transition in any of the colloidal sphere systems 
really follow the scenario of KTHNY theory? Although we 
have shown that the crucial initial observation3(‘) of a de- 
lay in the divergence for translational and orientational 
order is not a strong indicator for the presence of a hexatic 
phase, we still believe that there are good reasons to answer 
the question in the affirmative, at least with respect to the 
data of Murray et al3 The latter have been shown to be in 
agreement with subtle predictions of the theory,3(d) and at 
the same time there are no observations that would literally 
and unequivocally contradict any predictions. The experi- 
ments of Tang et al,’ on the other hand, appear to pose 
more of a problem. Since their data resemble so much our 
simulation data it would not be too surprising if all our 
reservations concerning the applicability of the theory 
would equally apply to this set of experiments. 
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Thus there is apparently a discrepancy between the 
data of Murray et ai. on the one hand and the data of 
Tang et al5 and the present simulation data on the other 
hand. What is the origin of this discrepancy? We find it 
helpful to again successively address the points put forth in 
the Introduction of this paper. 

( 1) It has occasionally been conjectured that the type 
of transition may depend on the nature of the potential 
function, with “soft” interaction potentials favoring a 
KTHNY-type phase transition since only in the latter type 
of system short wavelength effects (neglected in the the- 
ory) are not expected to be quite that dominant. Examples 
for a systematic variation in the interaction potential can 
be given for both experiment and simulation. Thus the two 
sets of experiments by Murray et aLs and Tang et a1.3 were 
carried out with spheres of 0.305 and 1.0 pm diam, respec- 
tively, while it has been estimated that the screening length 
l/~ should be comparable in the two cases.3(d) Hence, 
there is an implicit difference in the range of the interaction 
potential, with the Tang et al. system being more hard- 
sphere-like. Murray et al. have speculated that this could 
explain some of the differences in the melting behavior of 
the two cases.3(d) 4 similar variation is encountered if we 
compare the present simulation of a Yukawa ( = truncated 
Coulomb) system with the simulation of the full Coulomb 
system by Bedanov et al. l9 Unfortunately, no run times are 
given for the latter, rather old study and it is difficult to 
assess its apparently “easy” confirmation of the predictions 
of KTHNY theory.19 Because of the true long-range char- 
acter of the interactions, sampling in the true Coulomb 
system is naturally expected to be even more difficult than 
in the Yukawa system. 

A more complex issue is the difference between the 
interaction potential that is actually effective in the exper- 
iment vs the one in the simulation. We note that the width 
in density of the intermediate region is only z 1% in the 
current study of the Yukawa system, as opposed to the 
about 4%-8% (depending on the identity of the colloid) 
in the experimental case. 3(a)y3(d)15 Many-body potentials 
may be necessary to realistically model colloidal spheres 
between glass plates with induced image charges. In this 
context, we mention that the introduction of explicit po- 
larizability has more recently been one of the major inno- 
vations in the routine computer simulation of bulk aqueous 
systems. Implementation of similar techniques in simula- 
tions of 2D melting would be a most interesting develop- 
ment. 

longer runs, possibly using different ensembles and new 
sampling schemes, are called for. Naturally, there are ad- 
ditional problems with the setup of 2D computer simula- 
tions, such as related to system size,27 boundary and initial 
conditions, l4 substrate effects, and the possibly non- 
negligible 3D character that is left by the experimental 
confinement. 

(3) A tinal source of discrepancy between expe$ment 
and simulation is the data analysis and interpretation. The 
results presented in Sec. III illustrate vividly how much 
care has to be exercised to identify evidence for KTHNY- 
type melting that is only superficial (or even deceptive). 
We find that there is often little difference between the data 
from experiment and simulation if these are only analyzed 
in a uniform mariner.... 

In summary, we suspect that a true hexatic has not 
been obtained in any simulation study to date, including 
the present study of the Yukawa system. This is primarily 
a problem of insufficient sampling. Choice of the “right” 
potential function might considerably facilitate the search 
for evidence of KTHNY melting. Even if such evidence 
has been obtained, careful analysis has to be carried out in 
order to recognize agreements with theoretical predictions 
that are only coincidental. Truly penetrating tests have to 
be devised, such as related to the predicted temperature 
dependence of the various correlation lengths. Because of 
simultaneous and unavoidable changes in the screening 
length of the colloidal interactions such a test cannot easily 
be carried out experimentally, but can still be accom- 
plished in straightforward computer simulations with a 
suitable potential function. 
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