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Computer-aided simulation of a rotary sputtering magnetron
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In the past, computer-aided simulation of sputtering magnetron has been applied mainly to planar
cathodes with flat target surfaces. In this work, we have simulated the target erosion profile of a
cylindrical rotary magnetron by tracing electron trajectories and predicting ionization distribution.
The electric potential is prescribed as a radial function. A fourth-order Runge—Kutta method is used
to solve the electron movement equations, and a Monte Carlo method is employed to predict
electron/Ar collision. It is shown that the simulation can predict the target erosion with reasonable
accuracy. ©2004 American Institute of Physic§DOI: 10.1063/1.1715133

I. INTRODUCTION verify the validity of the simulation methodology for a non-
flat target. Experiments are conducted to compare the erosion
Since being developed in the late 1970s, magnetroprofile in a cylindrical target with the simulation results.
sputtering has been widely used for thin-film depositisee,
e.g., Refs. 1-P A magnetron cathode is the core of the ||, EXPERIMENTS

sputtering system. The most popular cathode is a planar mag- In this work, we investigate the straight section of a

netron characterized by relatively simple configuration with - . .
y y b g rotary magnetron, as shown in Fig. 1. The straight section

flat target surface. A major problem with planar magnetron ud lindrical t ¢ t of NdFeB A
sputtering is the low utilization of target. In the past years,mC udes a cylindrical target, a set o eb permanent mag-

much effort has been devoted to this issue, and the targ s, a?;jha magrletlcallylpernr":eabk_a s:[thee:ryoke.t Thfhd'me.;
utilization has been significantly imprové®:2°One promis- fr:ons 0 et_se ?ar sdgreta_\so Sf ownhm € |giurse otgt]e. erw
ing solution is to use a rotary magnetrdrin which a cylin- € magnetization direction of €ach magnet. Sputiening was

drical target rotates slowly, while the magnet assembly is Se(fol?r?;r?te?cm 'tArr att?/v typlfglog?nsmpgﬁslsﬁretho\fv:h m;]l'orr.t Trhe
statically inside the target cylinder, as shown in Fig. 1. SuchtY cal ~u larget was- eng an oute

a rotary magnetron usually yields utilization higher thandlameter of 142.24 mm. The target thickness was 6 mm and

20%. which is usually not achieved by a planar ma netronthe sputtering process stopped of about half of the target
g y yap ag lifetime. It should be noted that in this experiment the target

In addition, the rotary cathode enables a full etching of the o . : . i

target surface. This makes the sputtering process very stablgc set static without rotating, as we are interested in com
esgeciall durin reactive de osFi)tion gp y paring the erosion pattern in the cylindrical target with simu-

P y aunng P : lation result. In practical process the cathode rotates at a

To optimize the performance of the rotary cathode, the

maanetic field needs to be carefully desianed to meet thspeed of two turns per minute to realize uniform erosion of
ar . : y 9 fhe target surface. The erosion depth in the middle region of
requirements for various coatings. For example, an unbal

g X . th i fil
anced magnetic field may be needed to modify the film strchE e target was measured using a profiler and used to compare

ture. Since the target is not flat, it is difficult to empirically with simulation results.
predict th_e target erosion by only comparing the magnetmm SIMULATION METHOD
flux density over the target surface. Therefore, computer-
aided simulation of the target erosion is quite necessary in The movement of a charged particle in the magnetic and
terms of efficiency and economy. electric fields is governed by the ordinary differential equa-

Previous efforts in magnetron simulation have been contion
centrated mainly on the planar cathode with a flat target d

2-27 ; PR ; (mv)

surface? The simulation is able to accurately predict ———=q(E+VXB), (1)
electron trajectory, ionization distribution, space-charge dis- t
tribution, electric potential, target erosion, etc. It has becomgvhere m is the massy the velocity vectort time, q the
an important means of magnetron design. In this work, wecharge, E the electric field vectorB the magnetic field
apply the principle of planar magnetron simulation to a ro-vector?® To trace electron trajectories, a fourth-order Runge—
tary cathode that has a cylindrical target. The purpose is t&utta method is used to solve E€l) in combination with
the fact that the velocity vector is the derivative of a position
dauthor to whom correspondence should be addressed; electronic malVector’® The numerical simulation takes the magnetic and
fan@mec.ua.pt electric fields as input. As we are investigating the straight
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FIG. 1. Straight section of a rotary magnetron cathode
used for simulation and test.
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section of the rotary cathode, the magnetic field over theslectrons, respectively. Plasma prevails in the presheath re-

target surface can be treated as a two-dimensi@ilprob-  gion; that is,n;=n.. Thus,® is a linear function ofr in

lem and is, therefore, calculated using a 2D magnetic fielgpresheath

simulation software, Finite Element Method Magneils. R_

The field along they axis (refer coordinates in Fig.)1lis D(r)= _aq)o(_r), 3)

assumed to be identical in the straight portion of the cathode (R=ry)

that is far away from the end region. The magnetic field datgyhere« is a constantd, is the voltage applied to the cath-

is tabulated with a 0.5 mm grid in space. The field valueode, being 385 V under normal operation conditions for the

between the grids is interpolated. The magnetic field hagotary cathodeR is target—substrate distan&0 mm in the

little effect on the trajectory of an Arion as Ar' is t00  present simulation andr is the thickness of the sheath.

heaVy. ThUS, the AT ions just follow the electric field and From Bohm’s Criterion, we havaq)oz kTe/Ze, wherek is

strike the target surface, causing sputtering of the target maojtzmann's constant, and, is the electron temperature

terials. with a typical value of 2.5 e¥2 The thickness of the
The electric potentiab is prescribed in a format similar sheath is estimated from Child—Langmuir law, to be about

to a planar magnetrofi. The difference is that, for the cylin- r<=2.5mm. Since is a very short distanceb(r) can be

drical rotary magnetron, the potential is a function of theapproximately expressed by a third-order polynomial in the
radial distancer from the target surface. The potentd  gheath, as

consisting of a sheath and a presheath, satisfies Poisson’s

equation ®=—Po(1+cir+Cor2+cyr’), 4
wherec,, ¢, and c; are constants that can be determined
d2o e from Egs.(3) and (4) so that®, &', and®” are connected
F: - E_(ni_ne)v 2 smoothly atr=rg, respectively. The electric field can be
' 0 derived from the potentiab(r), as
wheree is the charge of electrorg, is the permittivity of E(r)=— dd(r) 5
vacuum, andn; and n, are the densities of Arions and dr °
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FIG. 2. (a) Electric potentiall and(b) electric fieldE used in the simula-
tion.
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Figure 2 shows the derived electric field and potential used
in this simulation.

To predict the target erosion, a Monte Carlo method is
used to determine the electron/Ar collision according to the
total cross sectiof>° High-energy electrons are either
emitted from the target surface, known as secondary elec-
trons, or are born mainly in the sheath region as a conse-
quence of ionization. In the Monte Carlo simulation, the
electrons are started at random positions. Three types of col-
lisions are considered: elastic scattering, excitation, and ion-
ization. All these collisions result in the change of the elec-
tron’s energy and/or its direction of velocity. The energy
losses for ionization and excitation are 15.8 and 11.6 eV,
respectively, while energy loss from elastic scattering is ig-
nored. The direction of a post-collision velocity of the elec-
tron is determined by the differential scattering cross section,
which varies with energif The ionization positions are re-
corded and used to predict target erosion. In our simulation,
ionization through two-step and multistep processes, as well
as Coulomb collisions between electrons or between electron
and ion, are not considered. This simplification may result in
certain error in predicting the discharge characteristics, while
its effect on simulated target erosion may be not significant.

The simulation region isX (—38,38, Y (0,20, andZ
(0,50. Once an electron moves out of the areX#Z plane
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FIG. 3. (Color Simulated electron trajectories above the rotary cathode

surface.(a) top view and(b) side view. The lines in different colors repre-

FIG. 4. Simulated ionization distribution in the straightway of the rotary

sent the trajectories of electrons starting at different positions in the targetathode.(a) top view, (b) side view, and(c) ionization number above the

surface.

target surface.
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12 V. CONCLUSIONS
3 Target surface . o . i
E The erosion profile in the cylindrical target of a rotary
:g 8 / cathode can be predicted with reasonable accuracy using a
g Monte Carlo method by numerically tracing electron trajec-
e 4 tories. The simulation utilizes a prescribed electric potential,
k] - Targetinner surface which is a function of the distance from the target surface

0 ' : ' and consists of a sheath and a presheath. This method may be

0 10 20 30 40 readily applied to the design optimization of a full-sized ro-
X (mm) tary cathode.
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