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A method based on the Monte Carlo technique and variational principle is developed to study the 
ground-state problem in arbitrary quantum wells. A technique is described to use this method to 
study quasi-bound states in systems. The method is applied to AlGaAs/GaAs quantum wells 
subjected to high electric fields. Advantages of this approach over the conventional variational 
approach are identified. 

Novel crystal growth techniques have allowed fabrica­
tion of quantum wells and superlattices and have thus al­
lowed tailoring of optical and electronic response of the 
structures. I~ In order to understand the physical properties 
of the heterostructure device, one has to solve the eigenfunc­
tion problem of the charged particle in the quantum well. It 
is well known that exact analytic solutions to such problems 
are only available for simple potential structures such as 
square well, parabolic well, etc. and even in these structures, 
in general, in the presence of perturbations such as electric 
field, magnetic field, etc. the problem cannot be solved exact­
ly. The variational approach has been widely used to solve 
the problem in general, but it suffers from the following seri­
ous drawback. The energy level and wave function depend 
upon the choice of the starting wave function (exponential, 
trigonometric, etc.). For simple quantum wells, such a 
choice is quite obvious, but for more complicated quantum 
wells (e.g., graded quantum wells, asymmetric quantum 
wells, wells in presence of high electric fields, etc.) such a 
choice often becomes very difficult to make and thus the 
results cannot be relied upon. 

In this letter we describe a method based on the Monte 
Carlo method which is capable of solving the variational 
problem in an arbitrary quantum well under arbitrary per­
turbation. We will also describe a technique to calculate the 
quasi-bound states of quantum well and present results of 
these approaches for electron and hole ground-state levels 
under high electric field. This above problem is of great in­
terest due to its application in light modulation.7

-
9 A number 

of experiments have been reported on this concept, but the 
quantitative understanding is not clear primarily because of 
the difficulty of solving the Schrodinger equation. 

The variational approach to the ground-state problem is 
the following: 

The Schrodinger equation to be solved is 

H¢ = ( ;:\72 + VCr) )¢(r) = E¢(r). (1) 

The ground-state energy Eo is determined from the fact 
that 

Eo = min f ¢*H¢dr, (2) 

where the range of ¢ includes all arbitrary functions subject 
only to the normalization conditions 

f 1¢1 2 dr= 1. (3) 

The variational principle has been used extensively in 
solving a number of problems in the area of quantum 
wells. 10--13 But, as mentioned earlier, it is difficult to rely on 
the quantitative accuracy of a variational calculation, and in 
the particular case of electric field dependence of quasi­
bound levels in a quantum well, the agreement with experi­
ments is rather poor. 13 Recently Miller et al. 14 have used an 
approach based on numerical integration of Schrodinger 
equation and the agreement between our results based on 
Monte Carlo methods and theirs is very good. 

In this letter we describe a method based on the Monte 
Carlo technique which finds a solution to the set of equations 
(1 )-(3), but is not limited to any special choice of the wave 
function. 

The Monte Carlo method. To solve the set of eqs. (1)­
(3) an arbitrary normalized wave function is chosen inside a 
fixed volume (see discussion on quasi-bound states), and 
randomly altered to minimize the energy associated with it. 

This process is repeated (for - 104 iterations) until con­
vergence is obtained. 15 It is important to realize that the final 
solution is independent of the starting wave function al­
though a judicious starting wave function can lower the 
number of iterations required to reach a stable solution. 

Quasi-bound states. The practical computer aspects of 
going through steps (i )-( v) above require that the physical 
space over which the wave function extends is finite. A 
square quantum well may be defined by 

{
o if xo<x<xo + W 

Vex) = v,o 
if x < Xo or x > Xo + W. 

(4 ) 

The space over which the bound state extends is typical­
ly - W so that in the calculations one keeps information of 
distances a few times W In case an electric field E is applied 
to the quantum well, one has an additional potential given by 

Vex) = eEx. (5) 

In this case, the subband levels in the quantum well given by 
Eq. (4) can only be quasi-bound since for large enough x 
away from the well the free-electron (hole) states are lower 
(higher) in energy than the subband levels. Since the Monte 
Carlo method described earlier will always find the wave 
function with the lowest energy, it is clear that the wave 
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function will depend on the size of the system considered. To 
find the true quasi-bound state we exploit the fact that a 
quasi-bound state is confined near the well with very small 
probability away from the well. The following technique is 
used. An arbitrary potential is superimposed on the poten­
tials defined by Eqs. (4) and (5). This arbitrary potential is 
defined by 

{
VI x<xo-L or x;;;,xo+ W+L 

VA = a (6) otherwise 

where we choose VI > Vo. The distance L is gradually in­
creased from a to higher values and the Monte Carlo ap­
proach described earlier is utilized to solve for the lowest 
energy wave function. As the distance L is increased one 
expects that the ground-state wave function will show one of 
the two schematic behaviors discussed below. 

In case of a true quasi-bound state, the energy associated 
with the wave function (as well as other properties such as 
shape, etc.) stabilizes at a value of L = Lc I and remains es­
sentially invariant till L = LC2 after which the energy rapidly 
changes. In case there is no quasi-bound state, the energy 
(and other properties) associated with the lowest energy 
wave function changes uniformly as L is changed. The phys­
ical argument behind this criterion is straightforward. IS If 
the ground state is a true quasi-bound state, it will be con­
fined primarily near the quantum well region. Lc I represents 
the distance up to which the wave function extends (of 
course, an extremely small fraction extends further into the 
barrier). Thus increase in L does not significantly change the 
solution. However, beyond Lc2 , the lowest energy states are 
the free band states. On the other hand, if the electric field is 
too high, one cannot talk about quasi-bound states [e.g., see 
Eq. (14) of Ref. 13J. This criterion is found to work ex­
tremely well for calculating the quasi-bound states as will be 
clear from the results presented below. 

We have applied the above techniques to calculate the 
electron and hole ground-state quasi-subband levels and the 
associated wave functions for square wells formed from 
Alo.3oGao.7oAs/GaAs. We assume band-gap discontinuities 
of 60% and 40% for the AIGaAs-GaAs interface conduc­
tion and valence bands, respectively. We assume electron 
and hole masses of 0.067 and 0.45, respectively. 

In Fig. 1 we show the electron and hole wave functions 
in a 100 A well when electric fields of (a) a and (b) 80 
k V cm -I are applied to the quantum well. Both cases in Fig. 
I satisfy the conditions required for a quasi-bound state 
[case (a) is a bound state J. In Fig. 2 we show the case when 
the applied electric field is 160 k V cm - I. In this case we 
show the wave functions calculated with VI in Eq. (6) cho­
sen to be 1000 me V for electrons and for holes (the results 
are independent of the choice of VI as long as 
VI > Vo);Vo = 216 me V for electrons and 144 me V for holes. 
The L defined by Eq. (6) changes from 60 to 120 A in steps 
of 20 A for the four cases shown. It is clear that for this 
electric field, the hole wave function is not a quasi-bound 
state, but an unbound state. This is consistent with the fol­
lowing physical observation. The hole wave function pene­
trates - 50 A beyond the barrier at x = Xo + WOo At 
E = 160 k V cm - I the shift in the band position over 50 A is 
80 meV. Since the difference between the hole subband and 
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FIG. I. Electron and hole wave functions in a 100 A quantum well in pres­
ence of (a) electric field E = 0; (b) E = 80 kV em-I. 

the barrier at x = Wo is also - 80 meV, at such high fields, 
the wave function becomes unbound. 

Finally in Fig. 3 we show the variation of the subband 
energy (difference between electron and hole energies) for a 
100 and a 30 A quantum well as a function of the applied 
electric field. Detailed results on the tunneling of electrons 
and holes using the above techniques as well as its effect on 
photoluminescence quenching will be published else­
where. IS Here we would like to point out some of the high­
lights of our results: (a) at high fields the results are quite 
different from those calculated using the variational ap­
proach. 13 In particular the electric field at which the levels 
become unbound is found to be much lower. For example, if 
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FIG. 2. Monte Carlo results for the electron and hole wave functions in 
presence of an electric field of 160 kV em - I. At this highfield. the hole state 
is not a quasi-bound state. since the hole wave function does not reach a 
stable stale as the artificial barrier described in the text is removed from 60 
to 120 A in steps of 20 A. 
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FIG. 3. Variation of the subband energy difference as a function of electric 
field for 100 and 30 A quantum wells. 

a 85:15 discontinuity were assumed for the 100 A quantum 
well, the hole levels become unbound at 45 k V fcm according 
to the Monte Carlo calculations, while the conventional 
variational approach suggests that quasi-bound states exist 
up to 100 kV fcm. 13 We believe that this difference arises 
because in the conventional variational approach an expo­
nentially decaying wave function is chosen, even though the 
field is so high that it is meaningless to talk of quasi-bound 
states. The implication of these results for light modulation 
and PL studies will be discussed elsewhere. 15 (b) We also 
point out that this method can be applied to arbitrary shaped 
quantum wells which can provide valuable insight into de-
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signing structures with tailored optical response in presence 
of electric field. 

In conclusion, we have presented a versatile Monte 
Carlo method to calculate bound and quasi-bound levels in 
arbitrary potentials and applied it to the problem of electron 
hole levels in quantum wells under high electric field. 

The author is grateful for valuable discussions with Dr. 
K. K. Bajaj and Dr. P. Yu. 
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