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Spatially and temporally resolved temperature measurements of plasma
generated in percussion drilling with a diode-pumped Nd:YAG laser
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Results of spectroscopic temperature measurements of the laser-induced plasma generated during
percussion drilling with a high power diode-pumped, pulsed Nd:YAG laser are presented. SAE
52100 steel was drilled with varying average powers. Helium and oxygen were each used as the
shield gas. Emission spectra were collected with a monochrometer and an intensified charge coupled
detector connected to the optical multichannel analyzer. The plasma electron temperatures were
calculated from the relative intensities of the spectral lines. The spatial and temporal temperature
distributions are presented. Both drilling times and spatial distributions indicate energy absorption
by the plasma. ©1998 American Institute of Physid$$0021-897¢08)02220-§

I. INTRODUCTION plasma interaction on the percussion drilling process at dif-
ferent intensities and varying shield gases. Processing data

Since its first industrial use in the 1960s laser drilling hasfor the drilling time will be correlated with emission spec-
taken on an increasingly important role in materials processtroscopic temperature measurements taken from the laser
ing and manufacturing and numerous aspects of the lasgenerated plasma plume.
drilling process have been studitd. However, the current
Nd:YAG lasers are inadequate for many applications, due to
I|m|tat|o_ns in average power gnd beam qual_|ty. The newesﬁ_ EXPERIMENT
generation of lasers utilizing diode pumping in a slab geom-
etry offers the prospect of multi-kilowataverage power The process studied was percussion drilling of SAE
Nd:YAG systems with focused beams within 2—3 times thes52 100 steel using the TRW risk reduction la¥étrevious
diffraction limit. Precise control of the diode pump source, inwork® demonstrated that the optimal pulse format for drilling
conjunction withQ switching or mode locking, offers flex- occurs when the laser runs in a “gain-modulated” mode,
ibility of pulse format, as well. Peak power densities ap-which produces a burst of pulses in a comb-like pattern with
proaching 16° W/cn are accessible with such lasers, result-the duration of each burst equal to the length of the laser-
ing in significant changes in the nature of the laser—materiafiode pump pulse. The modulated pulse format used in this
and laser—plasma interactions. These changes must be chakperiment consisted of three “spikes” per burst; each spike
acterized and understood if the capabilities of high-was 75 ns full width half maximuntFWHM) and individual
brightness solid state lasers are to be exploited optimally. spikes were separated by 28. The burst repetition rate was

The laser employed in this study was the TRW risk re-|imited to 3 Hz by the data acquisition rate of the diagnostic
duction laser,a diode-pumped Nd:YAG slab laser with op- apparatus. The driling was performed using a hyper-
tional frequency doubling and high beam quality (+3.7  Gaussian beam with a spot size at the workpiece of 460
X DL). The maximum average power available+600 W A cover gas was supplied at a pressure of 60 psi via a con-
(unstable resonator configuratjprvhich occurs at a repeti- centric nozzle with an exit diameter of 1 mm and positioned
tion frequency of 400 Hz and a duty cycle of 20%. The pilot3 mm from the surface of the workpiece. Helium and oxygen
process studied was percussion drilling of SAE 52 100 steelvere the two gases used.

Percussion drilling was chosen for two reasons: first, for its Drilling experiments were performed with laser output at
simplicity and suitability for studying the laser materials in- the fundamentall.064 um) Nd:YAG laser wavelength. The
teraction in new intensity regimes and second, because thgser fluence was varied through the use of a rotatable half-
laser’s high beam quality and repetition rate make percussiofave plate located between a pair of thin film polarizers. The
drilling of small holes an application with an impact on average power was varied from 25 to 200 mW, resulting in
many industrial application@.g. drilling cooling channels in peak power densities ranging from on the order of 1®
turbine bladeSand perforation of wing leading surfaces for 107 W/cn2. A quarter wave plate imposed circular polariza-
reduced drag. tion on the final processing beam.

The primary goal of this study is to obtain diagnostic  The thickness of the SAE 52 100 workpiece was 0.76
data to enhance understanding of the influence of the lasermm. The total drilling time was measured by the number of
pulses required for full penetration. Full penetration was de-
apresent address: Cymer, Inc, San Diego, CA. tected using an infraredR) fluorescent card placed behind
Author to whom correspondence should be addressed. the workpiece.
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FIG. 1. Layout for diagnostic experiments. FIG. 2. Typical spectrum for the 419-432 nm region.

Emission spectra were taken from the plasma plumgiprium (LTE) assumption and the Boltzmann relation:
generated during the drilling process using a Princeton In-

struments intensified charge coupled devikgCD) camera '17\3£‘92A2‘ _Ex-Ey
mounted in the image plane of a ISA HR320 spectrometer glAl-Iz)\g\ - kT
fitted with a 2400 groove/mm grating. The entrance slit
width was set to 25um for maximum resolutiorfmatching

the CCD spacing on the ICODThe detector array was

wherel;, A, g;, E;, and\; are, respectively, the integrated
line intensity, spontaneous decay rate, level degeneracy, up-
binned into groups of ten along the vertical direction. Lightper Ieyel energy, and waveleng;h of the electronic transition
i . . ssociated with each spectral line When the upper level
was imaged onto the spectrometer entrance slit by a smgl% L ;
energy divided by the Boltzmann constant is plotted versus

150 mm focal length fused silica lens of 50 mm diameter. 3 ; o .
The lens positioned yielded a magnification factor of 3 be-ln(”‘ /gA) and the data for all the Fdines is fit to a straight

. ) . - X .~ line using linear regression, the resulting slope is used to
tween the image and object. The pixel binning, the imaging, ; . . T
2 : . . etermine the temperature via the relationship:

system maghnification, and the intern&@ertica) magnifica-
tion of the spectrometer combined to give imaging spatial 1

resolution of 137um and a total coverage of 5.2 mm. The T=- slope

spectrometer was oriented with the plume axis parallel to the i i )
entrance slit and the image positioned with its axis on the Figure 3 shows this process of temperature determina-

entrance slit. Figure 1 is a schematic of the experimentalio" When oxygen is used as a cover &8 mW average
setup. power, 200 ns delay, 0 mm from the workpiece surfabe

The acquisition gate time on the spectrometer was set tStandard deviation of the slope is used to estimate the uncer-

50 ns. Emission spectra were acquired only after the firsiainty in the temperature measurements.

spike in each burst, due to limitations on the retriggering rate

of the gate circuitry. Ten acquisitions were accumulated fofll- RESULTS AND DISCUSSION

each spectrum to improve signal to noise and average out the Figure 4 shows the drilling timéexpressed in terms of
effects of shot-to-shot variations. The emission spectra weraumber of pulsesrequired to achieve full penetration of a
taken over the first ten bursts in the drilling process. The gat@.76 mm thick SAE 52 100 workpiece as a function of aver-
was triggered by a photodiode monitoring reflected laseage power with helium and oxygen as cover gases. The data
light from the second thin film polarizer. Delay of the gate points represent average drilling times, the error hatssd.
opening relative to the trigger was varied from 50 to 500 ns.  For both cover gases, the number of pulses needed to
Spectra were taken over a wavelength range of 419-432 nndrill through decreases as the average power is increased but
Data were taken over eight time delays: 0, 50, 100, 150, 20@he improvement in drilling time is not proportional to the
250, 300, and 500 ns after the peak of the first spike in eaclncrease in power. The data suggest the second order poly-
pulse. When helium was used as the assist gas, spectra taken

with gate delays of less than 100 (.., during the strongest

part of the spikgexhibited continuum rather than line emis- TABLE 1. Data on spectral fines.

sion. For oxygen assist gas, delays of less than 150 ns did not gA

provide discernible emission lines. Energy of upper (degeneracy A
A typical spectrum for the 419—432 spectral region asWavelength(nm) level (cm™) coefficieni 107/s

well as the neutral I_:eline§ analyzed are s_hpwn in Fig. 2 419.910 48 383 25.0
Seven neutral iron lines were identified for detailed  421.936 52514 27.0

study to obtain temperature distributions. The specifications 426.048 42816 15.0

of these lines from National Bureau of Standait¢BS) Z‘gg-i‘l‘; ;‘g gg? (2)-31

datd are displayed in Table |. _ 430701 20 708 5o
Temperature estimates are calculated from the integrated 431 509 40 895 15

line intensities according to the local thermodynamic equi



4124 J. Appl. Phys., Vol. 84, No. 8, 15 October 1998 li, Duffey, and Mazumder

27.5 T T T T T 8500
y=33.17193-0.0001196587x _
27 T=8357.1 K 8000 ©
26.5 |- -
7500 ¢ o " o
g 26r } s 7000 = e -
S o E. —_ o -7
m% 255 |- - 2 ] © g @ e o
05 |- i g 6500 — e & - =TT o 100 115
£ < A o x-a| 8 -150ns
245 |k i = 6000 Foh-px-pa =T RTT7T — & -200 ns
' --A--300ns
24 |- 4 5500 4 e - @ - 500 ns
235 L . . ' ' s000 L ¢ % reeooo- e
510* 5510° 610* 6.510° 710* 7.510° 810 . . L L L L .
Efk 0 02 04 06 08 1 12 14 16

Height Above Workpiece (mm)
FIG. 3. In(\%gf) vs E/k (50 mW average power, 200 ns delay, 0 mm from

the workpiece surface, oxygen cover gas FIG. 5. Temperature vs height above workpige& mW ave power, He

cover gas

nomial curve fit shown in Fig. 4. Although the curve fit

. . . . . 8500
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drilling time seen in Fig. 4 may be due in part to energy
absorption by the plasma. The rate of increase is much
larger—between 25 and 50 mW—than after. There are also
three points where the average temperature decreases after a
power increaséafter 100 mW at 100 ns and after 50 mW at
300 and 500 ns Anomalies at the 100 ns delay are probably
due to errors in spectral interpretation at the short delay time.
These decreases in average temperature after 50 mW coin-
cide with a decrease in the rate of increase in temperature.

Figures 14—20 show the time evolution of the plasma
temperature for fixed average power levels with oxygen as
the cover gas. Comparing these figures with those seen for
helium, it is seen that the temperature found in the plasma is
higher when oxygen is used as the cover gas. When oxygen
is the shield gas, the plasma also seems to reach a uniform
temperature by 500 ns for powers less than 150 mW.

Figure 21 shows the time progression of the spatially
averaged temperature values. As with helium a constant
cooling rate is indicated throughout the 100-500 ns delay
range for all power levels up to 150 mW. The discrepancies
seen at the higher power are attributable to the difficulties in
interpreting spectra at high powers. Between powers, the
cooling rates vary from 2 to 8 10° K/s with the same mean
value of 4x 10° K/s as seen with helium. This average cool-
ing rate may hold for both cover gases as well as all powers,
with measured individual variations in the data due to experi-
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