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We have used the double-crystal x-ray rocking curve technique to determine lattice constant, 
strain relaxation, thickness, and critical thickness of a thin In,Ga,+As layer embedded in 
GaAs. In this work we have measured and analyzed x-ray data over a wide scan angle ( -2.00). 
This allows the simultaneous determination of buried layer thickness and strain. The 
measurement results were analyzed by the dynamical diffraction theory. The critical thickness 
for an InGaAs layer embedded in GaAs obtained from x-ray data is shown to be larger than that 
predicted by the force balance model. The strain tensors as a function of layer thickness are also 
analyzed for the buried InXGal+As of different x values. 

I. INTRODUCTION 

There are a number of semiconductor devices whose 
active regions consist of strained layers buried under one or 
more layers of different composition and thickness. In 
these devices it is crucial to determine the structural pa- 
rameters such as layer thickness, lattice strain, strain re- 
laxation, and critical thickness which ultimately determine 
dislocation density, band structure and band gap, transport 
and optical properties, and device performance. 

Double-crystal x-ray diffraction technique has been 
widely used to characterize the structural properties of 
semiconductors. Recent advances in epitaxial techniques 
such as molecular beam epitaxy (MBE) have allowed the 
synthesis of near perfect semiconductor heterostructures, 
both strained and lattice matched. The x-ray wave fields in 
these structures are usually coherently related and the re- 
sultant Pendell6sung fringes can be easily observed. These 
fringes and the Bragg peaks contain information on the 
structural parameters. HoweveT, when multiple layers are 
put together, the Pendelliisung.fringes from each individ- 
ual layer are modulated by others, resulting in rather com- 
plicated rocking curves. 1-3 The rocking curve becomes 
even more complex when a structure involves layers of 
graded strain. In these cases, the structural parameters 
must be determined by fitting the simulated and measured 
rocking curves. 

For studying strain and strain relaxation of a buried 
layer, one can use the ABA structure in which a thin layer 
of composition B is sandwiched between thicker layers of 
composition A. This structure is very useful for under- 
standing the origin of the Pendellbsung interference phe- 
nomena and many authors24J5 have suggested that the 
structural parameters of an ABA structure can be deter- 
mined from the interference profile in the vicinity of the 
Bragg peak of A. It has been pointed out that5 ( 1) if we 
know precisely the lattice spacing of A and B then the 
thickness of B can be determined with a precision of 
&At/4 but with an uncertainty of some multiple of At 
(At=d2/6d, where d is the lattice spacing and 6d is the 
difference between the lattice spacings of layers A and B); 

(2) if we know precisely the number of lattice planes of B, 
then the lattice spacing can be estimated to an accuracy of 
d/4 with an uncertainty of some multiple of d. However, 
when we lack precise knowledge of both the plane spacings 
and the layer thickness, examining only the angular region 
of the Bragg peak of A fails to provide any useful informa- 
tion. This deficiency can be remedied by using a large scan 
angle to cover the Bragg peaks of both layers A and B and 
the associated fringes. The lattice parameters and layer 
thicknesses can then be obtained without too much uncer- 
tainty. 

In the present study the double-crystal x-ray rocking 
curve technique has been used to characterize a series of 
MBE-grown strained InXGal -,As/GaAs heterostructures 
in which an In,Ga,+As layer is sandwiched between a 
GaAs cap (-2000 A) and a thick GaAs substrate. The 
results have been analyzed by the dynamical diffraction 
theory. We have measured and analyzed x-ray data over a 
wide scan angle ( - 2.0”). This allows the simultaneous and 
accurate determination of buried layer thickness and strain 
tensor. In addition, we can also determine the critical layer 
thickness and strain relaxation of buried layers. 

II. EXPERIMENT 

A computer-controlled high-resolution double-crystal 
x-ray diffractometer was used to obtain the rocking curves. 
The x-ray source is generated from a conventional copper 
target. A -0.2 mm x 1 mm slit 15 cm away from the 
silicon first crystal was used to improve the collimation and 
monochromatic property of the x-ray beam. The slit is 
narrowed down from both. sides such that the tails of the 
intensity profile of the x-ray source are blocked and the 
intensity is about one third of that without the slit. This 
arrangement reduces the angular divergence of the x-ray 
beam incident on the sample crystal and allows the reve- 
lation of very fine features in the rocking curves. Slow scan 
also helps to improve the signal to noise ratio. For exam- 
ple, in the constant scan-speed mode, the standard devia- 
tion of the measured intensity is proportional to the square 
root of scan speed. 
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The experimental samplesconsist of a series of strained 
In,Gai -,As/GaAs heterostructures in which an 
In,Gai-,4s layer is sandwiched between GaAS layers. 
The samples were grown~on ( 100) GaAs by MBE. After 
oxide desorption a 2000 A GaAs layer was first deposited 
at 600 “C!. The growth was then interrupted for 90 s to 
allow the substrate temperature to ramp down to 520 “C. 
The InGaAs buried layer and a 2000 8, GaAs cap were 
then grown in sequence. The substrate temperature was set 
to 600 “C! right after the growth of InGaAs without inter- 
ruption. Pregrowth calibration of growth rates and com- 
positions agreed with post-growth double-crystal x-ray 
data to an accuracy of 95%. For Iri,Gai+As with x=0.2, 
the Bragg peak of the buried InGaAs layer can be seen in 
logarithmic scale even when the layer is as thin as 150 A. 
For smaller x, the minimum InGaAs thickness for observ- 
ing its Bragg peak is larger. 

Ill. X-RAY DIFFRACTION FROM MULTILAYERED 
HETEROSTRUCTURES 

Because of the complex nature of the measured x-ray 
rocking curves, numerical simulations are usually required 
to extract the structural parameters. Kinematic,6 semiki- 
nematic,’ and dynamical*-” diffraction theories have been 
used for the analysis. Before going into the numerical sim- 
ulations, it is helpful to examine some analytical approxi- 
mations in order to gain physical insight into the interfer- 
ence patterns. In the literature, both the Darwin-Prins” 
and the Taupin-Takagi’2”3 equations have been applied to 
analyze x-ray rocking curves. In fact, as shown in the Ap- 
pendix, the two formulations are equivalent under the as- 
sumption that the crystal is a continuous medium. The 
Taupin-Takagi equations can be combined into a single 
differential equation .of X (the normalized amplitude ratio 
of the diffracted wave to that of the incident wave):‘o>12714 

dX 
-id,=X2-hjX+ 1, 

where 

(2) 

‘!o,H,R= L ‘2 Fc,H, of, 

(3) 

(4) 

cr=b(8--8s)sin 20s. (5) 
Here z is the distance in the crystal, being zero at the 
bottom of the layer and of positive values toward the sur- 
face, b= - yH/yo , where y. and yH are the direction co- 
sines of the incident and diffracted waves, respectively, 8 
and eB are the rocking angle and the Bragg angle, respec- 
tively, V is the volume of the unit cell, il is the x-ray 
wavelength, F is the structure factor of the group of atoms 
in the unit cell, 3/e is the classical electron radius (2.8 18 

X lo-’ A), and C is the polarization factor which is equal 
to 1 and cos 28 for perpendicular and parallel polarized 
waves, respectively. 

A. The kinematic approximation 

In the kinematic approximation, the effects of multiple 
reflections are neglected. For a semiconductor layer thin- 
ner than a few thousand A, this is a good approximation 
because this thickness is much less than the x-ray extinc- 
tion length. In this approximation the quadratic term in 
Eq. ( 1) is omitted and the resultant equation can be solved 
analytically for a layer of constant 7 and arbitrary thick- 
ness and for a section in a layer where 71 can be considered 
to be constant. The solution is given by6*” 

sin $Z LYz=Xoe-“Vz+ie-iVz - ( 1 ?1 ’ 
where X0 is the normalized amplitude ratio at the bottom 
of the layer and X, is the ratio at the top. This equation can 
be used to simulate the diffraction profile of- a multiple- 
layer crystal structure. Given CJB, z, and $ for each layer, 
one can then obtain the corresponding 7 and 2. The value 
of X at the crystal surface is then obtained by applying Eq. 
(6) recursively. The reflectivity, or the ratio of the inten- 
sity of the diffracted wave to that of the incident wave at 
the crystal surface, is given by 

2 

R=KH x. 

1 $R /I 1 
(7) 

The rocking curve for a crystal is then given by R-as a 
function of the glancing angle 8. 

For ( 100) oriented III-V compounds, the first term in 
the numerator of Eq. (3) is negligible if 6 deviates more 
than -0.01“ away from 0s. For a single crystal layer with 
finite thickness z and with no incident x-ray beam from the 
bottom, the reflectivity at the surface of the crystal can be 
approximated by 

R-k 
sin2[(27rzcos e,//z)(e-e,)] 

(e-43 ’ 
where k is a constant. Equation (8) suggests that the dif- 
fraction profile of a single layer is similar to the optical 
far-field interference pattern of a single slit with slit size of 
z cos 0s. The intensity maxima of the Pendellosung fringes 
occur when the condition (2rz cos 6JB/;1) (8 - 0,) = (M 
+ 1/2)~ is satisfied for m=O, f 1, f2,... . The layer thick- 
ness can be obtained from this relation and is given by 

2=/2/(26e cos e,), (9) 
where he is the angular separation between adjacent max- 
ima. For a single uniform epitaxial layer, this relation can 
give very accurate estimation of the layer thickness, as 
confirmed by other measurement techniques. 

For a two-layered AB structure in which two layers of 
compositions A and B are put together, the reflectivity at 
the surface is approximated by 
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R k sin2[ (27Tq4 cos @I) (e-f&] 
= 1 

(e-eA,>2 

+k2 
sin2[ (2rzz cos Q/z> (e--6$] 

w-fm2 

+ interference terms, (10) 
where k, and k2 are constant. The first and second terms 
are the reflectivities of layers A and B, respectively. When 
both A and B are very thick, the first two terms give two 
maxima. One occurs at the Bragg angle of layer A, & and 
the other at the Bragg angle of layer B, 0:. Thus, the lattice 
spacing of B can be accurately determined if that of A is 
known. However, when layer A is very thick and layer B is 
very thin, the maximum due to the second term is compa- 
rable to the magnitudes of the tails of the rest terms at 6);. 
The overall maximum due to B and the tails will thus shift 
toward the first maximum at I?$$. Determination of the lat- 
tice spacing directly from this peak will thus lead to an 
error. This is the origin of the Fewster and Curling effect. l5 

When the two-layered AB structure is grown on a thick 
substrate of composition A, with B embedded in A, it be- 
comes an ABA structure. The reflectivity at the surface is 
approximated by * 

q; (~-~)e-~~nr4(,~~“nmz8_1)+~~2. (11) 

We can see that when v&z increases by a multiple of 277, 
the reflectivity remains the same. This means that similar 
interference structures near s”z can be obtained by chang- 
ing the thickness of B by a multiple of (di i ---d-T ’ ) - ’ or 
changing d, by a multiple of di/zg. These changes corre- 
spond to the motion of successive Pendellosung fringes 
across the Bragg peak of A. This is the origin of the un- 
certainties mentioned in Ref. 5; 

It is worth noting that the reflectivities from side A and 
side B of the AB structure are identical when both A and B 
are very thin. This may give rise to another degree of un- 
certainty in the characterization of multilayered hetero- 
structures. 

B. Dynamical simulation 

Although the kinematic approximation provides direct 
insight into the interference phenomena, it lacks in accu- 
racy in detailed fitting of experimental rocking curves. The 
dynamical theory must be used especially when the thick- 
ness of the multilayered structure approaches the x-ray 
extinction length. One can solve the full dynamical equa- 
tion given in Eq. ( 1) analytically and obtain the following 
recursion relation:8~‘o~‘6 

where 

(X0-P 1;71--1) ,,zz@-L-y 
s=(x,-q+ &g) * 

(12) 

(13) 

GaAs 

I 

1o-s * 320 32.2 32.4 32.6 32.8 33.0 33.2 

0 (degree) 

FIG. 1. Measured and calculated (004) rocking curvea of a pseudomor- 
phic GaAs/InGaAs heterostructure. 

For a layer of infinite thickness, X, reduces to 

xm =rl--ign(Re[q] ) lm, (14) 

where Re[q] is the real part of 7. 

IV. DETERMINATION OF LAYER COMPOSITION, 
THICKNESS AND CRITICAL LAYER THICKNESS 

Figure 1 shows measured (solid) and simulated 
(dashed) (004) x-ray rocking curves of a coherently 
strained InGaAs/GaAs heterostructure. The structure of 
the sample is shown in the inset. The rocking curve clearly 
shows the Bragg peaks from the GaAs and InGaAs layers 
and distinct Pendellijsung oscillations from the cap layer 
modulated by slower oscillations from the InGaAs layer. 
With the aid of computer analysis, we can accurately ex- 
tract the out-of-plane lattice constant of the InGaAs layer 
and the thickness of both layers without subjecting them to 
the ambiguity due to order multiplicity mentioned previ- 
ously. With an additional asymmetric diffraction measure- 
ment, e.g., the ( 115) diffraction, the in-plane lattice con- 
stant of the InGaAs layer can also be determined. 

Shown in Figs. 2(a) and 2(b) are the measured par- 
allel and. perpendicular lattice constants of the InGaAs 
layers of various compositions and thicknesses. The paral- 
lel lattice constants are measured along the (li0) direction 
by (175) and (il5) asymmetric reflections. As can be 
seen, when the layer reaches a certain thickness, the par- 
allel lattice constant increases and the perpendicular lattice 
constant decreases. These changes are due to the gradual 
strain relief process. If we define the thickness at which we 
see the onset of relaxation of the parallel lattice constant as 
the critical thickness, we obtain a plot of critical thickness 
versus indium composition as shown in Fig. 3. Also shown 
in Fig. 3 are the estimated critical thicknesses by the Mat- 
thews and Blakeslee force balance model17 which is given 

by hc=(~)(~)[h(~)+l], (15) 
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FIG. 2. Measured (a) parallel and (b) perpendicular lattice constants of 
InGaAs layers embedded in GaAs. 

where Poisson’s ratio V, lattice constant a, and misfit strain 
fare functions of the indium composition, m=4 for a sin- 
gle epitaxial layer or an embedded layer with only the 
epilayer-substrate interface containing misfit dislocations 
(single-kink model) and m = 2 for an embedded layer with 
dislocations introduced at both the epilayer-cap and 
epilayer-substrate interfaces (double-kink model). It is not 
clear which model should be used for an embedded 

--- Double-kink 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 
In Composition, x 

PIG. 3. Measured critical thicknesses of buried InGaAs layers as a func- 
tion of indium composition. 

32.6 327 320 32.9 33.0 33.1 332 

0 (dwree) 

PIG. 4. Measured (004) rocking curves for buried In,Gai-AAs layers 
with various thicknesses. The broadened peaks and absence of Pendellij- 
sung fringes in curves (b) to (e) indicate the existence of strain 
relaxation. 

strained layer. In fact, Chang’* has studied misfit disloca- 
tions in Ineo7Gae,~As/GaAs multiquantum well (MQW) 
structures by cross-sectional transmission electron micro- 
scope (TEM) micrographs. The results showed that dislo- 
cations occurred only at the epilayer-substrate interface. 
No matter where the misfit dislocations occur, both the 
single- and double-kink models failed to explain the mea- 
sured critical thickness. The underestimation of the critical 
thickness in the force balance model might be due to the 
neglect of friction forces, surface stress, and stacking fault 
energy. Our measurements might also slightly overestimate 
the critical thickness since the initial dislocation generation 
may not lead to measurable strain relaxation.r9 

Misfit dislocations due to strain relaxation have dra- 
matic effects on the x-ray diffraction pattern. As shown in 
Fig. 4, when the strain is coherent, the Bragg peaks are 
sharp and the interference pattern clearly shows the Pen- 
delliisung oscillations [curve (a)]. When strain starts to 
relax, the Bragg peaks are significantly broadened [curves 
(b)-(e)]. The Pendellosung fringes also disappear. The 
broadening of Bragg peaks might be attributed to the fol- 
lowing reasons. Fist, the generation of misfit dislocations 
results in nonuniform distribution of the residual strain.” 
Therefore, the lattice constants are different in different 
regions. The total envelope of the strained-layer peak is 
thus broadened. The broadening of x-ray peaks may also be 
related to the presence of anisotropic tilting of lattice 
planes along dislocations. 2o The nonuniform distribution of 
lattice constants and the tilting of lattice planes can destroy 
the phase coherency of the diffracted waves, resulting in 
the disappearance of the interference pattern. The disap- 
pearance of Pendellosung fringes thus can be used as a 
sensitive probe of strain relaxation. In Fig. 3, the critical 
thicknesses for ~~0.2 are determined from lattice con- 
stants and Pendellijsung patterns, while that for x=0.25 is 
determined from Pendellosung patterns solely. Interface 
roughness can also damp the oscillations. However, the 
concurrence of the disappearance of oscillations and strain 
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VI. CONCLUSION 

We have used the double-crystal x-ray rocking curve 
technique to determine the structural parameters of thin 
In,Gar-& layers embedded in GaAs. In this work we 
have measured and analyzed the x-ray data over a wide 
scan angle to cover the Bragg peaks of both GaAs and 
In,Gai-As. This allows for the simultaneous determina- 
tion of buried layer thickness and lattice constants without 
subjecting them to the ambiguity due to order multiplicity. 

0.0 1 11111111 1 tt11lll. The measurement results were analyzed by the dynamical 

102 18 lo4 diffraction theory. The critical thickness for an InGaAs 

Thickness (Angstrom) 
layer embedded in GaAs obtained from x-ray data is mea- 
sured to be larger than that predicted by the force balance 
model. Analysis of the strain tensor suggests that the elas- 

FIG 5. Measured values of y as a function of epitaxial layer thickness. tic theory can be applied to an epitaxial layer only when 
Here r=(g -$)/(a’,--a;i ). the strain is completely coherent. 

relaxation in our measurements indicates that strain relax- ACKNOWLEDGMENTS 
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APPENDIX 
ponents are given by: 

a;-- d 
E,=Eyy==q = - d , 

(16) 

&=El =-q /a, *.=c11 
212 ’ 

where the superscripts e and s represent the epitaxial layer 
and the substrate, respectively, and the subscript o repre- 
sent the native lattice constant. For the coherent strain 
case, E,= f, while for the partial strain relief case, a’ in 
Eq. (16) should be replaced by ai . If we define 
~=((a! --az)/(az--ai >, then we expect p to be equal to 
l/a when the strain is coherent. The value of ,u as a func- 
tion of epitaxial layer thickness for various In compositions 
is shown in Fig. 5. As expected, when the layer is pseudo- 
morphic, p-O.91 which is equal to the theoretical value of 
l/o. However, when the strain starts to relax due to in- 
creased thickness, ,u deviates from l/a significantly, indi- 
cating that the elastic theory alone is insufficient to inter- 
pret the measured data. 

These results have very important implications for the 
measurements of epitaxial layer composition by x-ray dif- 
fraction. In usual practice, one obtains the native lattice 
constant a: of the epitaxial layer from measured at and a[ 
according the elastic theory. Then the epitaxial layer com- 
position is obtained from ai by assuming that Vegard’s law 
is valid (for HI-V compounds). However, Fig. 5 suggests 
that a: can be accurately measured only under these ex- 
treme conditions: (1) when the strain is completely coher- 
ent in which case the elastic theory can be applied; (2) 
when the strain is completely relaxed and &=a: =ag is 
valid. 

In the literature, both the Darwin-Prins” and the 
Taupin-Takagi12’13 equations have been used to simulate 
the measured x-ray rocking curves. Analytic solutions have 
been obtained by Perkins et aL21 for the former and by 
Halliwell et al.’ and Hill et al. I6 for the latter. In this Ap- 
pendix, we show that the difference equations of Darwin 
and Prins can be converted into the differential equations 
of Taupin and Takagi under the assumption that the crys- 
tal is a continuous medium. 

We first consider the Darwin’s difference equations as 
given by James.” We assume that the crystal consists of a 
series of parallel lattice planes with the adjacent planes 
separated at a distance a apart. We denote each plane by a 
serial number r, starting with the surface plane. To and So 
represent the amplitude of the incident and the reflected 
x-ray beams at the surface, respectively, and T, and S, 
represent the amplitude of the incident and the reflected 
beams, respectively, at a point just above the rth plane. The 
glancing angle between the incident beam and the atomic 
planes is 0. The waves reflected by the atoms in each plane 
are assumed to be in phase so that S, is a plane wave whose 
angle is also 6’ relative to the atomic planes. 

Let - iqH and - iqh represent the reflection coefficients 
from the upper side and lower side of a single plane of 
atoms, respectively. They may be, but not necessarily, the 
same. Let ( 1 -iq,,) represent the transmission coefficient 
through a plane of atoms. qc,H,& can be expressed as 

qo=- 

qH,.‘?= - c 

CAlI 
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where N is the number of unit groups of atoms in unit in the text. Equation (A8) and (A9) are the Taupin- 
volume K Other symbols have the same meaning as men- Takagi differential equations. Let Y=S/T, then we can 
tioned in the text. combine (A8) and (A9) and obtain 

The waves at the rth and the (r+ 1) th planes are re- 
lated by 

dY 
dz=-i~H{C~~Y2+[(l+b)~0+alY+Cbll?H). 

(AlO) (A3) 

(A4) 

where 

27-ra 
<=n (sin 8-sin 6,). (A5) 

For the symmetrical reflection, we can put yo= - yH 
=sin eB and a=2(8-0B)sin 20B. For asymmetric dif- 
fraction, y. and yH must be replaced by the direction co- 
sines of the incident and reflected beams with respect to the 
surface normal, respectively. 

For convenience, we redefine z such that it is zero at 
the bottom of the layer and has positive value toward the 
surface. We also further define the following new complex 
variables: 

Equations (A3 ) and (A4) are the Darwin-Prins difference 
equations. Equation (A3) says that S, is composed of the 
part of T, reflected from the rth plane and the part of S,, 1 
transmitted through the rth plane. Equation (A4) is inter- 
preted similarly. The second term on the right-hand side of 
Eq. (A4) corresponds to multiple reflections. 

(All) 

Substituting (Al > and (A2) into (A3) and (A4) and 
rearranging the equations, we get 

(A=) 

S r+l -ST 
a =i & ( CFHT,+ 1 + Foe-‘%& 

T r+l -TT, ^ 
----‘---= -i & ( Foe-‘CT,, 1 -j- CFH-‘%,) 

a 

1 
+a (l-e-‘c)T,+l. (A7) 

Now we will assume that the crystal is a continuous 
medium and, therefore, the following statements are valid: 

( 1) The planar spacing a is very small (a-0). 
(2) The difference between S, and S,, 1 for all T is so 

small that we can represent the series (So,SI,...,S,,S,+l,...) 
by a continuous function S(z), where z is the distance from 
the surface into the crystal. Similarly, we can represent the 
series (T,,T, ,..., Tr,Tr+, ,... ) by a continuous function 
T(z). 

(3) The functions S(z) and T(z) are differentiable at 
all z in the crystal. Replacing ra by z, we can rewrite Eqs. 
(A6) and (A7) as 

iil ds(z) 
--TyH dz -=C$#(Z) +$J$(z) -a&j’(z), (A8) 

iA dT(z) &T(Z) +C$$S(Z) --aoT(z), -,YO-&--= (A9) 

where ao= -2yo(sin e-sin 0,) and aH=2yH(sin 8 
-Sin 6B). yc, yH , and &,&jj have their meaning as defined 

(l+b)40+a q=- 

then Eq. (AlO) becomes 

(Al3) 

dX 
-iz=X2-2-qX+ 1. (Al4) 
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