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Immunosuppression following severe sepsis remains a significant human health concern,

as long-term morbidity and mortality rates of patients who have recovered from life-

threatening septic shock remain poor. Mouse models of severe sepsis indicate this

immunosuppression may be partly due to alterations in myeloid cell function; however,

the effect of severe sepsis on subsequent CD41 T-cell responses remains unclear. In the

present study, CD41 T cells from mice subjected to an experimental model of severe sepsis

(cecal ligation and puncture (CLP)) were analyzed in vitro. CD41CD62L1 T cells from CLP

mice exhibited reduced proliferative capacity and altered gene expression. Additionally,

CD41CD62L1 T cells from CLP mice exhibit dysregulated cytokine production after in vitro

skewing with exogenous cytokines, indicating a decreased capability of these cells to

commit to either the TH1 or TH2 lineage. Repressive histone methylation marks were also

evident at promoter regions for the TH1 cytokine IFN-c and the TH2 transcription factor

GATA-3 in naı̈ve CD41 T cells from CLP mice. These results provide evidence that CD41

T-cell subsets from post-septic mice exhibit defects in activation and effector function,

possibly due to chromatin remodeling proximal to genes involved in cytokine production

or gene transcription.
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Introduction

Recent clinical and experimental studies have indicated that the

long-term effects of severe inflammatory events often include

suppression of immune system functions. For example, the long-

term survival of patients after recovery from severe septic shock is

significantly reduced as compared to the unaffected age-matched

population, and this increased morbidity correlates with both

decreased overall health quality and increased prevalence of

infection with opportunistic pathogens [1, 2]. In addition to

clinical studies, mouse models provide additional evidence for

immunosuppression following severe sepsis. For example, DC

from post-septic mice have been shown to be deficient in their

ability to produce IL-12, a cytokine important for the promotion

of TH1 immune responses and the clearance of bacterial and viral

pathogens [3, 4]. Additionally, post-septic mice are susceptible to

infection with the opportunistic fungi Aspergillus fumigatus,

succumbing to airway challenge at conidia doses that are well

tolerated by sham surgery mice [5, 6]. Understanding the cellular

and molecular mechanisms underlying the long-term immuno-

suppression following severe sepsis is critical for the development

of treatments and therapies for patients in the years following

recovery from a severe inflammatory episode.

Previously published results by our laboratory and others have

indicated that the innate immune system suffers from multiple

deficiencies following severe sepsis. However, little is understood
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about the long-term effects of severe sepsis on the adaptive

immune system. During the acute phase of severe sepsis,

lymphocytes (including T and B cells) undergo significant apop-

tosis in lymphoid tissues, including the spleen and thymus

[7–10]. As previous studies have indicated that innate immune

cells suffer from long-term deficiencies in proinflammatory

cytokine production, it is possible that adaptive immune cells

may suffer similar deficiencies following severe sepsis.

Suppression of IL-12 production by DC following severe sepsis

may partially be due to epigenetic regulation of the Il12 gene

locus, specifically through modification of histone tails with

suppressive marks resulting in transcriptional inaccessibility. Of

particular interest is the increase in repressive histone modifica-

tions at the Il12 locus, including methylation of histone 3 at lysine

27 (H3K27) and loss of the activating methylation event at

histone 3 lysine 4 (H3K4) [3]. These epigenetic events are of

particular interest because they are often thought to be heritable

from parent to daughter cell [11]; in this way, epigenetic regu-

lation of proinflammatory genes following severe sepsis may be

passed on to daughter cells, perpetuating the immunosuppressed

phenotype for an extended period of time, long after recovery

from severe sepsis [12]. Epigenetic gene regulation is essential for

the maturation and activation of numerous immune cells, and it

plays a central role in lineage commitment in CD41 T cells

[13, 14].

The purpose of this study was to investigate the effects of

severe sepsis on the phenotype and function of CD41 T cells in a

mouse model. As previous studies have indicated that the

immune environment following sepsis is biased away from TH1

toward TH2 responses [15], our initial hypothesis was that post-

septic T cells would show a bias toward TH2 cytokine production.

To investigate this, CD41 T cells from post-septic mice were

isolated and assayed for ex vivo proliferation and cytokine

production, along with their ability to skew toward TH1 or TH2

cytokine production in response to in vitro stimuli. Results indi-

cate that CD41 T cells from post-septic mice have deficiencies in

proliferative capacity and proinflammatory cytokine production;

specifically, they appear to have difficulty in TH lineage

commitment, as assayed by cytokine production in vitro. These

deficiencies were associated with epigenetic modifications in

histone methylation at gene loci important for lineage commit-

ment in TH1 and TH2 T cells.

Results

CD41T cells are reduced in spleens of mice at 14 days
following cecal ligation and puncture

Previous studies have indicated that severe sepsis results in a

significant apoptotic event, resulting in a significant loss of

leukocytes in lymphoid and peripheral tissue during the acute

phase of inflammation. To investigate the effect of severe sepsis

on T-cell populations at time points post-sepsis, spleens of sham

surgery (sham) and cecal ligation and puncture (CLP) mice were

harvested at 14 days post-surgery and analyzed via flow

cytometry for the presence of CD41 T cells and various CD41

T-cell subsets. During the acute phase of this sepsis model, mice

subjected to CLP experience a high mortality rate, with an

average mortality of 40–60% per cohort by day 4 post-surgery,

with no mortality apparent in sham surgery mice. At the time of

analysis (day 14 post-surgery), surviving CLP mice no longer

display overt indications of inflammation.

Total percentages of lymphocytes are unchanged between

sham and CLP spleens at day 14 post-sepsis (Fig. 1A). However,

total numbers of lymphocytes are significantly reduced in CLP

spleens, largely due to a reduction in total viable cell counts

(Fig. 1B). The percentage of CD41 T cells in the spleens is

significantly reduced in CLP mice (Fig. 1C), and this reduction is

reflected in their total number (Fig. 1D). To analyze the relative

Figure 1. Percentages and total numbers of CD41 T cells and T-cell subsets in the spleen of post-septic mice. Spleens from sham surgery (‘‘sham’’)
or cecal ligation and puncture (‘‘CLP’’) mice were analyzed via flow cytometry for the presence of CD41 T cells and various CD41 T-cell subsets.
Total numbers of cells were obtained using a hemocytometer and trypan blue staining for the enumeration of viable cells. (A) Percentage and
(B) total numbers of viable lymphocytes were calculated using forward and size scatter profiles for gating on viable lymphocytes. (C) Percentage
and (D) total numbers of CD41 T cells were obtained from the viable cell gate using antibodies to CD3e and CD4. (E) Percentages and (F) total
numbers of CD44hi CD62L1 T cells, and (G) percentages and (H) total numbers of CD44lo CD62L1 T cells were obtained from the CD41 T-cell gate.
Data presented represent the mean7SEM, representative of two separate experiments, n 5 5–6 per group. �po0.05 versus sham.
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proportion of naı̈ve and activated T cells in the CD41 T-cell pool,

cells were further analyzed for the expression of CD44 and

CD62L, cell surface markers that can be used to delineate

subpopulations of CD41 T cells. No significant difference was

observed in the percentage of CD41 T cells that were both CD44hi

and CD62L1 in the spleens of CLP mice (Fig. 1E); however, total

numbers of these cells were reduced in CLP mice due to the

overall reduction in CD41 T-cell numbers in these mice (Fig. 1F).

In contrast, the percentage of CD41 T cells that were both CD44lo

and CD62L1 was significantly reduced in CLP spleens as

compared to sham mice (Fig. 1G). This reduction in CD41CD44lo

CD62L1 T cells was reflected in total numbers as well (Fig. 1H).

Expression of CD44 and CD62L can delineate naı̈ve versus

antigen-experienced T cells; however, these marks are not suffi-

cient to delineate recently activated T cells from memory T-cell

lineages. To determine whether the modulations in CD41CD62L1

T-cell populations was due to modulations in memory T cells,

CD62L1 T cells from sham and CLP spleens were analyzed for the

expression of the chemokine receptor CCR7 [16]. In both sham

(Fig. 2A) and CLP (Fig. 2B) mice, less than 1% of the CD62L1

T cells in the spleen were CCR71, indicating that the vast

majority of the CD62L1 T cells were not memory T cells. Repe-

ated analysis of multiple sham and CLP spleens at 14 days post-

sepsis shows no significant differences in percentages of CD41

CD62L1CD44hi CCR7 cells between sham and CLP mice (Fig. 1E;

27.1873.3% for sham versus 33.1872.7% for CLP, p40.05).

CD41CD62L1 T cells from CLP mice exhibit decreased
proliferative capacity in vitro

To analyze the proliferative capacity of T-cell subsets post-sepsis,

CD41CD62L� and CD62L1 T cells were purified from spleens of

sham and CLP mice at day 14 post-sepsis and were stimulated in

vitro with aCD3/aCD28. CD41CD62L� T cells from CLP mice

exhibited a slight decrease in proliferative capacity as compared

to sham mice; however, this difference was not significant

(p40.05) (Fig. 3A). In contrast, CD41CD62L1 T cells from CLP

mice showed a significant decrease in proliferative capacity as

compared to sham CD41CD62L1 T cells (Fig. 3B). Addition of

exogenous IL-2 did not affect the proliferation of CD41CD62L�

T cells from either sham or CLP mice, with no significant

differences observed between surgery groups or between aCD3/

aCD28 alone and aCD3/aCD28/IL-2 culture conditions (Fig. 3A).

In a similar fashion, addition of exogenous IL-2 did not affect the

proliferation of CD41CD62L1 T cells from either sham or CLP

mice, with CLP T cells exhibiting a significant decrease in

proliferation (Fig. 3B).

To determine whether the decrease in proliferation observed

in CD41CD62L1 T cells from CLP was due to activation-induced

cell death, sorted CD41CD62L1 T cells were stimulated in vitro

with aCD3/aCD28 for 24 h, and viability was assessed using vital

dye inclusion and flow cytometry. After 24 h of in vitro stimula-

tion, there was an apparent increase in the number of dead/dying

CD41 T cells in CLP cultures as compared to sham (Fig. 3C).

Analysis of multiple repeated cultures indicated a significant

decrease in the percentage of viable CD41CD62L1 T cells in CLP

cultures as compared to sham, following 24 h of in vitro poly-

clonal stimulus (Fig. 3D).

CD41CD62L1 T cells from CLP mice exhibit decreased
JNK and ERK1/2 phosphorylation

While the loss of viable lymphocytes following activation may

provide one explanation for the reduction in proliferative

capacity exhibited by CD41CD62L1 T cells from CLP mice,

it does not provide a mechanism for the decreased proliferative

capacity of the cells that remain viable. One possible alternative

mechanism for the decrease in proliferation may be decreased

intracellular signaling in CD41CD62L1 T cells from CLP mice.

To test this possibility, purified CD41CD62L1 T cells from sham

and CLP mice were stimulated in vitro with aCD3/aCD28, and

total cellular protein was harvested at varying time points

between 0 and 20 h for analysis of signal transduction protein

phosphorylation.

Following stimulation, CD41CD62L1 T cells from sham mice

exhibited a rapid increase in intracellular p-JNK, with the peak

observed concentration of p-JNK to total JNK observed

after 15 min of in vitro stimulation (Fig. 4A). In contrast, CD41

CD62L1 T cells from CLP mice exhibited a decreased concen-

tration of p-JNK to total JNK, with the maximum observed

difference between sham and CLP T cells at 15 min of in vitro

Figure 2. Surface marker profiles of splenic CD41CD62L1 T cells from
sham and CLP mice at 14 days following surgery. Spleens from
(A) sham and (B) CLP mice 14 days following surgery were analyzed
via flow cytometry for the presence of CD41CD62L1 T cells, and these
cells were analyzed for the surface expression of CD44 and CCR7. Flow
diagrams are representative of spleens from individual animals,
n 5 5–6 mice per group. Data are representative of two separate
experiments.
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stimulation (Fig. 4A). Observed concentrations of p-JNK rapidly

declined in both sham and CLP T cells after 1 h, and remained

similar at all time points observed, up to 20 h after the start of the

culture (Fig. 4A). Additionally, concentrations of p-ERK1/2 were

significantly decreased in CLP CD41CD62L1 T cells as compared

with sham, with the maximum observed difference between sham

and CLP T cells observed after 1 h of in vitro stimulation (Fig. 4B).

Unlike p-JNK, this deficiency in ERK1/2 phosphorylation was

observed at all time points, with concentrations of p-ERK1/2

between sham and CLP CD41CD62L1 T cells only becoming

equivalent after 20 h of stimulation (Fig. 4B). In addition, relative

levels of p-Akt, p-IkB-a and p-p38 MAPK were analyzed;

however, no significant differences in the concentrations

of these phosphoproteins were observed in sham versus CLP

CD41CD62L1 T cells at all time points analyzed (data not

shown).

Dysregulated mRNA expression in CD41CD62L1 T cells
from CLP mice

The apparent conflicting phenomena of poor proliferation/

inhibited TH skewing potential and increased pan-cytokine

expression directly ex vivo suggested that numerous disparate

gene pathways were affected in post-septic CD41CD62L1 T cells.

To investigate this possibility, mRNA from resting and activated

CD41CD62L1 T cells from sham and CLP mice was harvested and

analyzed via quantitative real-time PCR using superarray analysis

for multiple target genes involved in T-cell activation, signal

transduction, gene expression and effector function. A total of 84

mRNA targets were analyzed for each assay, and significance of

fold increase/decrease was calculated by comparing the values

Figure 3. CD41CD62L1 T cells from CLP mice exhibit decreased proliferative capacity in vitro in response to polyclonal stimulus. (A) CD41CD62L�

and (B) CD41CD62L1 T cells from sham and CLP mice were isolated from spleens 14 days following surgery utilizing bead antibodies and magnetic
columns (MACS), and were stimulated for 72 h in vitro with 1mg/mL plate-bound aCD3 and 3 mg/mL soluble aCD28 in 96-well flat-bottom plates.
Where indicated, cell culture media was supplemented with 10 U/mL recombinant IL-2. Data presented represent the mean7SEM, representative
of three separate experiments utilizing pooled spleens from 5 to 6 mice per group. (C) Representative flow diagrams of in vitro restimulated CD41

CD62L1 T cells from sham and CLP mice. Following stimulation with aCD3/aCD28, cells were analyzed for viability by flow cytometry using
antibodies to CD3e and CD4 (for gating), and LIVE/DEAD dye exclusion (Invitrogen). Non-viable cells are identified by bright staining with the LIVE/
DEAD dye. (D) Percentage of viable CD41 cells (LIVE/DEADlo) in cultures of restimulated CD41CD62L1 T cells from sham and CLP mice. Data
represent the mean7SEM of triplicate cultures using pooled spleens from 5 to 6 mice per group. �po0.05 versus sham.

Figure 4. Phosphorylation of signal transduction proteins in sham and
CLP CD41CD62L1 T cells following in vitro polyclonal stimulus. CD41

CD62L1 T cells from sham and CLP mice were isolated from spleens 14
days following surgery utilizing bead antibodies and magnetic
columns (MACS) and were cultured for the indicated time points
(0–20 h) in the presence of aCD3/aCD28. At the indicated time points,
total cellular protein was isolated using cell lysis reagents (Bio-Rad),
the protein lysate was clarified via centrifugation and analyzed for
the relative abundance of both total and phosphorylated (A) JNK and
(B) ERK1/2 using a multiplex bead assay technique (Luminex). y-axis
values represent the relative ratio of phosphoprotein to total protein in
each sample. Values represent the mean7SEM of triplicate cell
cultures for each time point, with cells isolated from the spleens of
3–6 mice per group. (�) 5 po0.05 versus sham at each individual time
point indicated.
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for each gene product with the mean and SD of gene expression

across the entire superarray.

Analysis of gene expression between sham and CLP CD41

CD62L1 T cells after 6 h of ex vivo rest in minimal media iden-

tified numerous genes that were both up- and downregulated in

post-septic T cells (Fig. 5A). Of particular interest was the

extreme downregulation of Cd4 and Cd28, which encode surface

receptors critical for CD41 T-cell activation (Fig. 5A). Additional

downregulated genes involved with T-cell receptor interactions

include Icos and Tnfrsf4, which encode the costimulatory recep-

tors ICOS and OX40, respectively (Fig. 5A). Overall, a majority of

the surface receptor genes that showed significant modulation

were downregulated, with only four of the total 12 showing

upregulation in CLP CD41CD62L1 T cells (Cd40, Igsf6, Tlr4 and

Tlr6) (Fig. 5A). In contrast, numerous genes involved with

cytokine and chemokine expression were upregulated in CLP

CD41CD62L1 T cells (Fig. 5A). These include genes encoding

both secreted proteins (Il15, Il18, Il27, Spp1) and receptors (Ccr2,

Il4ra). Of particular interest was the apparent downregulation of

Il2 and Ifng mRNA, which encode cytokines important for TH1

responses characteristic of sepsis (Fig. 5A). Genes downregulated

in CLP CD41CD62L1 T cells also include Ccr4, Il4ra and Il27ra,

which all encode cell surface receptors. (Fig. 5A).

Analysis of mRNA expression of transcription factor and signal

transduction proteins indicated numerous genes that were

downregulated in post-septic CD41CD62L1 T cells prior to acti-

vation. These include genes involved in both TH1 (Tbx21) and

TH2 (Gata3) responses, as well as transcription factors associated

with T-cell activation (Nfatc2, Nfatc2ip, Nfatc3) (Fig. 5A). Addi-

tionally, mRNA encoding signal transduction proteins (Jak1,

Mapk8) as well as negative regulators of cytokine signaling

(Socs5) were downregulated in CLP CD41CD62L1 T cells

(Fig. 5A). Of the gene transcription and signal transduction

mRNA analyzed, only Cebpb was found to be upregulated in CLP

CD41CD62L1 T cells (Fig. 5A).

Analysis of gene expression between sham and CLP CD41

CD62L1 T cells after 6 h of ex vivo stimulation (aCD3/aCD28)

identified numerous genes that were upregulated in post-septic

T cells (Fig. 5B). The vast majority of these upregulated genes

were involved with chemokine (Ccr2, Ccr3, Ccr5, Ccl5) and

cytokine (Il4, Il6, Ifng, Il12rb2, Il13ra1, Il15, Il17a, Il18, Il18bp,

Il27) responses (Fig. 5B). The increase in Il18bp mRNA was

Figure 5. mRNA expression in splenic sham and CLP CD41CD62L1 T cells during ex vivo rest and restimulation. CD41CD62L1 T cells from sham
and CLP mice were isolated from spleens 14 days following surgery utilizing bead antibodies and magnetic columns (MACS), and were either
(A) rested in minimal media or (B) restimulated with 1 mg/mL plate-bound aCD3 and 3mg/mL soluble aCD28 for 6 h directly ex vivo. Following either
rest or restimulation, total RNA from cell cultures was isolated utilizing a spin column method (Qiagen) and converted to cDNA following the
manufacturer’s protocol (SA Biosciences). Gene expression was then analyzed using a 96-well superarray containing primers for genes involved
with immune cell activation and effector function (TH1-TH2-TH3 superarray, SA Biosciences). Plates were analyzed using a ABI standard 7500 real-
time PCR system, and data were analyzed using the manufacturer’s web-based software suite. Data reported represent genes that were up- or
downregulated above the average amount for all genes, and p-values below 0.05 were considered statistically significant. mRNA that were not
significantly up- or downregulated are not shown. Values represent the mean of two separate experiments, n 5 3 replicate plates per experimental
condition.
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the most striking, with an over 100-fold increase in CLP

CD41CD62L1 T cells as compared to sham (Fig. 5B). Levels of

Cxcr3 and Tgfb3 mRNA were decreased in CLP CD41CD62L1

T cells as compared to sham, indicating certain chemokine and

cytokine genes that were negatively regulated in post-septic

T cells (Fig. 5B). Additionally, increases in Tbx21, Socs1 and

Socs3 were observed in CLP CD41CD62L1 T cells after stimula-

tion (Fig. 5B). In a similar fashion as unstimulated cells, CLP

CD41CD62L1 T cells exhibited lower levels of Cd4 and Cd28 as

compared to sham T cells (Fig. 5B). Additionally, levels of Gata3,

Nfatc2, Nfatc2ip and Nfatc3 remained decreased in CLP T cells

as compared to sham after stimulation, indicating no effect of

stimulus on the relative expression of these transcription factor

mRNA (Fig. 5B).

CD41CD62L1 T cells from CLP mice exhibit
dysregulated cytokine expression after in vitro skewing

To determine the effects of septic shock on the ability of surviving

CD41CD62L1 T cells to commit to either the TH1 or TH2 lineage,

cells were purified from spleens of sham and CLP mice at 14 days

post-surgery and skewed in vitro utilizing polyclonal stimulus

(aCD3/aCD28) and exogenous cytokine stimulus. After four days

of stimulus and three days of rest, cells were restimulated with

aCD3/aCD28 for 48 h, and resulting cytokine expression was

analyzed via multiplex bead assay. In response to TH1 skewing

stimulus (IL-121aIL-4), sham CD41CD62L1 T cells expressed

high levels of IL-2 and the TH1 cytokine IFN-g after restimulation,

characteristic of TH1 cells (Fig. 6A). In contrast, while CLP CD41

CD62L1 T cells made comparable levels of IL-2 in response to

restimulation, levels of IFN-g were significantly reduced as

compared to sham skewed cells (Fig. 6A). Neither sham nor

CLP CD41CD62L1 T cells produced the TH2 cytokine

IL-4 in response to restimulation in the TH1 skewing culture

condition.

In response to TH2 skewing stimulus (IL-41aIL-121aIFN-g),

CD41CD62L1 T cells from sham mice produced high levels of IL-2

and the TH2 cytokine IL-4 after restimulation, characteristic of

TH2 cells (Fig. 6B). In contrast to the TH1 cultures, CD41CD62L1

T cells from CLP mice produced similar levels of IL-4 as compared

to sham TH2 cultures (Fig. 6B). However, these cells also

produced high levels of the TH1 cytokine IFN-g in response to

restimulation (po0.05 as compared to sham TH2), which is

uncharacteristic of TH2 cultures (Fig. 6B). No significant differ-

ences were observed in levels of IL-2 produced between sham and

CLP TH2 cultures (Fig. 6B).

CD41CD62L1 T cells from CLP mice exhibit increased
H3K27 methylation at Ifng and Gata3 genes

Previous studies indicate that post-septic innate immune cells

exhibit increased repressive histone methylation marks at

promoter regions of proinflammatory cytokines, suggesting a

possible epigenetic mechanism for immunosuppression following

sepsis. To determine whether similar epigenetic modifications

may be playing a role in the dysregulated TH responses of post-

septic T cells, sham and CLP CD41CD62L1 T cells were analyzed

via ChIP assay for the relative amount of activating (histone 3

lysine 4 dimethylation, H3K4) and repressing (histone 3 lysine 27

dimethylation, H3K27) histone modifications at the promoter

regions of genes essential for TH lineage commitment. Cells were

analyzed directly ex vivo to ascertain their epigenetic status prior

to activating stimulus in vivo or in vitro.

Analysis of H3K4 dimethylation showed no significant differences

between CD41CD62L1 T cells from sham and CLP mice at either

TH1 or TH2 gene promoter regions (Fig. 7A). Relative levels of H3K4

Figure 6. Cytokine expression of splenic CD41CD62L1 T cells following in vitro skewing in the presence of exogenous cytokines. CD41CD62L1

T cells from sham and CLP mice were isolated from spleens 14 days following surgery utilizing bead antibodies and magnetic columns (MACS) and
were cultured for 4 days in the presence of polyclonal stimulus (aCD3/aCD28) and exogenous cytokines. (A) For TH1 skewing, cells were cultured in
the presence of rIL-12 (10 ng/mL) and aIL-4 (10 mg/mL). (B) For TH2 skewing, cells were cultured in the presence of rIL-4 (10 ng/mL) and aIL-12 and
a IFN-g (both at 10 mg/mL). Following skewing, cells were enumerated using a hemocytometer and vital dye, re-plated in equivalent numbers and
rested for 3 days in minimal media and were then restimulated with aCD3/aCD28 for an additional 48 h. Cell culture supernatants were harvested
and analyzed utilizing a multiplex cytometric bead assay (Luminex). Data presented represent the mean7SEM, representative of two separate
experiments, n 5 3 replicate wells for each cell type. �po0.05 versus sham.
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methylation at the IL-2 promoter were low in both sham and CLP

T cells, indicative of their non-activated state (Fig. 7A). No signifi-

cant differences were observed in H3K4 methylation at TH1 gene loci

Ifng (TH1-specific proinflammatory cytokine) or Tbet (TH1-specific

transcription factor). Additionally, no significant differences were

observed in H3K4 methylation at TH2 gene loci Il4 (TH2-specific

proinflammatory cytokine) or Gata3 (TH2-specific transcription

factor) (Fig. 7A). While there appears to be a decrease in H3K4

methylation at the Gata3 promoter in CLP CD41CD62L1 T cells, this

result is not statistically significant, due to the increased variation in

methylation values for sham CD41CD62L1 T cells (Fig. 7B).

In contrast to H3K4, analysis of H3K27 dimethylation showed

significant differences between CD41CD62L1 T cells from sham

and CLP mice. In a similar fashion to H3K4 methylation at the

Gata3 promoter region, H3K27 methylation was decreased at the

Il2 promoter in CD41CD62L1 T cells from CLP mice as compared to

sham; however, these results were not statistically significant

(Fig. 7B). A significant increase in H3K27 methylation was

observed at the Ifng promoter region of CD41CD62L1 T cells from

CLP mice as compared to sham, indicating repressive epigenetic

modification of this TH1 proinflammatory cytokine; however, no

significant differences were observed between sham and CLP T cells

at the Tbet promoter region (Fig. 7B). In a similar fashion to Tbet,

no significant differences were observed in H3K27 methylation

levels at the Il4 promoter region; however, a significant increase in

H3K27 methylation was observed at the Gata3 promoter region in

CLP T cells as compared to sham, approaching levels comparable to

H3K27 methylation at the Ifng promoter (Fig. 7B).

Discussion

There are numerous mechanisms that underlie the immune

suppression observed following polymicrobial sepsis, including

impaired activation of macrophages and DC, and suppressed

cytokine and chemokine production by numerous immune cell

types. These immune deficiencies manifest themselves in

decreased survival of both human patients in follow-up studies

and in secondary infections of mice following experimental

sepsis. Previous studies have investigated CD41 T-cell functions

following severe sepsis, often in the context of acute inflamma-

tion [17–19] and/or in concert with other post-septic accessory

cells, such as DC [20]. In this study, CD41 T cells from post-septic

mice were analyzed for their proliferative capability and

effector cytokine function following acute inflammation, and

these cells were studied in vitro in the absence of accessory

cells so as to asses defects in CD41 T-cell function that were

due to cell-intrinsic factors. These studies indicate that CD41

T cells from post-septic mice exhibit variations in proliferative

capability and gene regulation as compared to T cells from

sham surgery mice. These variations include decreased prolifera-

tion in vitro, correlating with decreased signal transduction via

protein phosphorylation and decreased expression of cell surface

receptor and gene transcription mRNA in the CD41CD62L1

T-cell subset. However, CD41 T cells from post-septic mice also

exhibited increased non-specific effector cytokine production in

vitro, along with impaired ability to produce TH-lineage specific

cytokines following in vitro skewing and reactivation. Finally,

analysis of histone modifications in CLP CD41CD62L1 T cells

indicates increases in H3K27 proximal to genes important for

CD41 T-cell polarization, suggesting an epigenetic-based

mechanism for the non-specific in vitro cytokine production by

these cells.

Previous reports in both mouse and human studies indicate

that severe sepsis results in the loss of peripheral T cells, due in

part to both cell-contact-dependent [9, 21, 22] and cell-contact-

independent [23] mechanisms. Consistent with these previously

published results, our data indicate a significant reduction in total

lymphocytes, including CD41 T cells and T-cell subsets, in the

spleens of CLP mice 14 days post-surgery. While this reduction

was significant for both percentages and total numbers of CD41

T-cell subsets, the effects were largely due to global reductions in

total numbers of splenic lymphocytes. However, variations in

percentages of CD44loCD62L1 T cells, which are thought to be

largely antigen-inexperienced or ‘‘naı̈ve’’ T cells, appear to be

independent of the reduction in percentage of total CD41 T cells

in the spleen. This is indicated by the lack of reduction in the

percentage of CD44hiCD62L1 T cells, which share a basic surface

phenotype with antigen-experienced or ‘‘memory’’ T cells. The

reduction in percentages of CD44loCD62L1 T cells in the spleen of

CLP mice may be a result of activation during sepsis, either

through antigen stimulation by bacterial components or as a

result of cytokine stimulus. However, it does not appear that this

activation results in an increase in CD41 T cells with a memory

phenotype, as both percentages and total numbers of CD44hi

CD62L1 T cells were not increased in CLP spleens. In addition,

CD41CD62L1 T cells from CLP mice did not show any increase in

surface CCR7 expression, providing further evidence that severe

sepsis did not result in an expansion of the CD41 memory T-cell

pool 14 days following sepsis.

Figure 7. Methylation of histones associated with promoter regions of
genes involved in TH lineage commitment. CD41CD62L1 T cells from
sham and CLP mice were isolated from spleens 14 days following
surgery utilizing bead antibodies and magnetic columns (MACS),
and were analyzed via ChIP assay using antibodies directed to
(A) methylation of lysine 4 on histone 3 (H3K4) or (B) methylation of
lysine 27 on histone 3 (H3K27) ChIP-enriched genomic DNA was
analyzed via quantitative real-time PCR for the promoter regions of
indicated genes and was compared with a pre-enriched sample
(‘‘input’’) to generate relative values. Data presented represent the
mean7SEM, representative of three separate experiments, n 5 3
replicates. �po0.05 versus sham.
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Previous reports utilizing CLP models in mice indicate that

post-septic lymphocytes exhibit a reduction in proliferative

capability in vitro [24]; however, proliferative responses in CD41

T-cell subsets can differ, as shown in studies analyzing CD41

CD25� and CD41CD251 subsets in WT and cytokine knockout

mice following CLP [25]. In this study, comparison of CD41 T-cell

subsets based on the surface expression of CD62L indicates a

reduction in proliferative capacity in post-septic T cells and that

this deficiency is confined to the CD62L1 T-cell subset. As IL-2 is a

potent proliferative signal for effector cells, it was hypothesized

that the reduction in proliferation by post-septic CD41CD62L1

T cells was due to a reduction in IL-2 production. Previous studies

have indicated that splenocytes from post-septic mice show

decreases in IL-2 production [15], providing evidence for this

hypothesis. However, addition of exogenous IL-2 to the culture

media did not rescue the proliferation of CD41CD62L1 T cells

from CLP mice, indicating that IL-2 is not involved with the

reduction in proliferative capacity in these cells.

The reduction in proliferation observed in CD41CD62L1

T cells following in vitro stimulation may be affected by the

viability of these cells after stimulation, as well as their ability to

transmit signals to the nucleus in response to TCR stimulation via

protein phosphorylation. In the former instance, activation-

induced cell death in previously activated T cells [26] may

explain the reduced proliferative capacity of CLP T cells. Analysis

of viability of in vitro restimulated CD41CD62L1 T cells indi-

cated a significant increase in cell death in CLP T-cell cultures as

compared to sham, suggesting that in vitro restimulation may be

initiating activation-induced cell death in these cells. Addition-

ally, intracellular signaling in CLP CD41CD62L1 T cells appears

impaired, as evidenced by decreased levels of phosphorylated

JNK and ERK1/2 following in vitro stimulation. As JNK signaling

proceeds directly downstream of TCR and CD28 [27], this may

suggest an early signal transduction defect governing the prolif-

eration defect observed. ERK1/2 has also been shown to be

involved with transmitting TCR signals to the nucleus though

interactions with upstream adaptor proteins such as Bam32, and

that inhibition of ERK signaling can inhibit T-cell proliferation

[28, 29]. These deficiencies in protein phosphorylation may

provide an explanation for the apparent inability of exogenous

IL-2 to rescule the proliferation of CLP T cells, as these adaptor

molecules work through TCR/CD28 mediated signaling.

Analysis of global gene regulation in CD41CD62L1 T cells

from sham and CLP mice indicates numerous genes with differing

expression patterns in T cells following sepsis. For example,

reductions in mRNA coding for the costimulatory ligands CD4,

CD28, CD40L, CTLA4 and ICOS suggests that post-septic CD41

CD62L1 T cells may have a reduced capacity for activation by

accessory cells, providing one possible mechanism for immuno-

suppression following severe sepsis. In addition, downregulation

of mRNA for numerous gene transcription and signal transduc-

tion proteins may also result in CD41 T-cell dysfunction post-

sepsis. For example, NFATc2 has been shown to positively regu-

late ICOS expression in murine T cells [30], which may explain

the link between decreased expression of both Nfatc2 and Icos in

post-septic CD41CD62L1 T cells. Additionally, studies with

Irf4�/�mice in experimental models of parasite infection indicate

a role for this gene in protecting CD41 T cells from apoptosis

[31]; therefore, reduced expression of Irf4 in post-septic CD41

CD62L1 T cells may play a role in the loss of these cells in the

spleen due to increased apoptosis. Of particular interest is the

upregulation of Cebpb in post-septic CD41CD62L1 T cells, as

C/EBP has been shown to promote IL-4 production in T cells

[32]. Increased C/EBP expression in post-septic T cells may

promote TH2 responses in these cells, which is a hallmark of

immune responses post-sepsis [33].

Surprisingly, CD41CD62L1 T cells from post-septic mice

exhibited increases in specific cytokine mRNA directly ex vivo,

including Il15, Il18, Il27 and Spp1, as lymphocytes from post-

septic mice and humans are not often considered to have

increased propensity for cytokine production. However, one

previous report indicates that splenocytes from CLP mice exhibit

increased production of both IL-15 and IL-18 in a secondary

infection model [34], indicating that these specific cytokine

responses may not be adversely affected by severe sepsis. Recent

studies have implicated IL-27 as an immunosuppressive cytokine

in certain conditions [35–37]; increased production of IL-27 prior

to activation may be one mechanism behind the decreased

proliferative capacity of CD41CD62L1 T cells. Additionally, IL-27

production has been shown to be increased in CLP mice, indi-

cating a role of IL-27 in the acute phase of sepsis [38]. The role of

the protein product of Spp1 (osteopontin) in T-cell responses is

less clear; certain studies indicate that it supports TH1 responses

[39], while others indicate that it is dispensable for immune

protection against viral infection [40]. Increased expression of

Spp1 directly ex vivo may be a consequence of the TH1-dominated

immune response during sepsis, or a compensatory response

based on an as-yet-unknown mechanism.

As CD41CD62L1 T cells exhibited decreased proliferative

capacity in vitro, it was hypothesized that these cells would also

show a trend toward decreased gene expression following in vitro

stimulus. Surprisingly, the opposite appears true, especially in

regards to chemokine/cytokine mRNA. Of the chemokine and

cytokine mRNA analyzed, 14 of 17 genes were upregulated.

Included in these were numerous secreted proteins (Ccl5, Ifng,

Il4, Il6, Il15, Il17a, Il18, Il27) as well as mRNA for chemokine

receptors (Ccr2, Ccr3, Ccr5) and cytokine receptors (Il12rb1,

Il13ra1). As mentioned previously, increases of TH2 cytokines

such as IL-4 are expected as a consequence of severe sepsis;

however, the increase in both TH1 and TH17 cytokines is

largely unexpected. Increases in systemic IFN-g and IL-17

have been noted in both humans and mice following significant

burn trauma [41, 42], and IFN-g is an important protective

cytokine during acute inflammation in sepsis [43]; however, the

conventional understanding of immune responses post-sepsis

involves a shift away from TH1 responses toward TH2 responses.

In this case, an increase in chemokines and cytokines from three

major effector T-cell lineages were observed, indicating a non-

specific increase in gene expression in post-septic CD41CD62L1

T cells.
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Interestingly, while certain patterns of expression for gene

transcription factors remained similar in stimulated versus

unstimulated CD41CD62L1 T cells from CLP mice (Cebpb, Gata3,

Nfatc2, Nfatc2ip, Nfatc3), others were lost (Crebpb, Irf4) or

upregulated (Tbx21). As with the cytokine and chemokine data,

upregulation of the TH1 transcription factor T-bet [44] was

unexpected, as post-septic immunity in both mice and humans is

thought to be dominated by TH2 responses. One possible

mechanism for the observed TH2 bias in previous studies is the

concurrent upregulation of Socs1 and Socs3 in activated CLP

CD41CD62L1 T cells, which encode the suppressor-of-cytokine-

signaling proteins 1 and 3, respectively. SOCS1 has been shown

to inhibit TH1 polarization through interruption of the IFN-g
signaling pathway [45], and SOCS3 can inhibit TH1 polarization

by inhibiting IL-12 signals in concert with STAT5a [46]. These

results suggest a possible feedback loop whereby CD41CD62L1

T cells from post-septic mice may produce increased TH1 cyto-

kines while lacking the ability to properly respond to them in an

autocrine fashion.

The unexpected observation that CD41CD62L1 T cells from

CLP mice exhibit increased production of both TH1 and TH2

cytokines (by mRNA) suggested that these cells had an impaired

ability to commit to either TH lineage. To test this hypothesis,

CD41CD62L1 T cells from sham and CLP mice were skewed in

vitro using recombinant cytokines and polyclonal stimulus, and

their ability to produce TH1 or TH2 cytokines upon restimulation

was analyzed. CLP CD41CD62L1 T cells produced less IFN-g in

TH1 culture conditions as compared to sham, indicating a defi-

ciency that was not overcome with exogenous cytokine stimulus.

In addition, CLP CD41CD62L1 T cells produced both IFN-g and

IL-4 following TH2 culture conditions, indicating an impaired

ability to commit to the TH2 effector lineage in post-septic cells.

Unlike the TH1 cultures, the CD41CD62L1 TH2 cultures from CLP

mice produced similar levels of IL-4 as sham T cells; however, the

concomitant production of IFN-g may be detrimental when these

mice attempt to mount a TH2 immune response in vivo.

As CLP CD41CD62L1 T cells exhibit dysfunctional gene

regulation in vitro, we next sought to investigate the epigenetic

regulation of select cytokines and transcription factors important

for TH1 and TH2 lineage commitment. Modifications of histone

tails proximal to gene promoters can have either a positive or

negative effect on gene expression and subsequent cell phenotype

and function, and epigenetic mechanisms tightly regulate the

lineage commitment program of CD41 T cells [14]. In this study,

methylation of histone 3 at lysine 4 (H3K4, activating [47]) and

methylation of histone 3 at lysine 27 (H3K27, repressing [48])

was analyzed at the promoters of IL-2, IFN-g and T-bet (TH1),

and IL-4 and GATA-3 (TH2) using a standard ChIP assay. Previous

reports indicate that sepsis can affect methylation patterns of

cytokine genes in immune cells, specifically in the promoter

region of the IL-12 gene in DC [3]; based on these results, we

hypothesized that similar mechanisms may underlie CD41 T-cell

dysfunction following CLP. No significant differences were

observed in H3K4 levels at gene promoters between sham or CLP

CD41CD62L1 T cells; in contrast, increased levels of H3K27 were

observed at the promoters of the TH1 cytokine IFN-g and the TH2

transcription factor GATA-3 in CLP CD41CD62L1 T cells.

This reciprocal silencing of genes important for both TH1 and

TH2 lineages may provide one mechanism for the impaired line-

age commitment observed in CLP CD41CD62L1 T cells in vitro.

Recent studies of histone methylation in CD41 T cells have

indicated that certain genes (such as Gata3) responsible for TH

lineage commitment are ‘‘plastic’’ and can contain both H3K4 and

H3K27 methylation marks prior to cell differentiation [49].

Therefore, increased repressive H3K27 methylation in post-septic

CD41CD62L1 T cells may negatively regulate TH lineage

commitment through modulation of basal methylation levels.

In this model, the increase in repressive histone methylation

would interfere with the ability of post-septic CD41 T cells to

stabilize the TH1 or TH2 locus in a transcriptionally activated

state, resulting in impaired lineage commitment in these cells.

This predicted phenotype is similar to the impaired lineage

commitment observed herein (via cytokine expression). Further

studies are planned to address these issues, including kinetic

analysis of histone methylation in sham and CLP CD41CD62L1

T cells following activation, as well as analysis of the expression

patterns of proteins involved in histone modifications (such as

methyltransferases and demethylases) in sham and CLP T cells.

Previously published reports that studied CD41 T-cell

responses during sepsis have focused primarily on either the

acute phase of septic shock [17, 18, 43] or on dysfunction

proximal in time to the initial insult [9, 50–52]. Little is under-

stood about CD41 T-cell dysfunction following severe sepsis and

its impact on sepsis-induced immunosuppression in both mice

and humans. In this study, CD41 T cells from CLP mice were

shown to have both functional and transcriptional defects that

were maintained up to 14 days following surgery, indicating that

sepsis-induced defects in gene regulation may be maintained in

peripheral T cells well after inflammation has subsided. CD41

T-cell subsets from CLP mice exhibited decreased proliferative

capacity, along with decreased survival and protein phosphor-

ylation after stimulation in vitro. In addition, these cells exhibited

modulations in the expression of surface receptor, cytokine and

gene transcription mRNA, an impaired ability to commit to the

TH1 or TH2 lineage, and increases in repressive histone modifi-

cations at gene promoters essential for both lineages. Our current

hypothesis is that these defects in gene expression and regulation

result in an impaired ability of post-septic CD41 T cells to mount

a directed TH response to subsequent inflammatory stimuli,

which, in parallel with deficiencies in APC function, results in

immunosuppression following severe sepsis.

Materials and methods

Mice

Female C57BL/6 mice (6–8 wk of age; Taconic Farms, German-

town, NY, USA) were housed under specific pathogen-free
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conditions at the Unit for Laboratory Animal Medicine of the

University of Michigan and treated in accordance with the

guidelines of the animal ethical committee.

CLP

CLP surgery was performed on mice as described previously [4].

For CLP, the cecum was punctured seven times with a 21-gauge

needle. The average mortality rate for mice subjected to CLP in

this study was 40–60% by day 4 after surgery.

Flow cytometry

At day 14 post-surgery, mice were sacrificed and spleens were

harvested. Single-cell suspensions were obtained by processing

the spleens through sterile 40-mm filters, and ammonium chloride

lysis buffer was used to eliminate erythrocytes. Cells were stained

with the following fluorescent antibodies and secondary reagents

(when applicable) in flow cytometry buffer (phosphate buffered

saline, 1% w/v bovine serum albumin, 0.05% w/v sodium azide):

FITC-CD3e (145-2C11, BD Biosciences, Franklin Lakes, NJ, USA),

PerCP-Cy5.5-CCR7 (4B12, Biolegend, San Diego, CA, USA), APC-

CD62L (MEL-14, BD Biosciences), Biotin-CD44 (IM7, Biolegend),

Pacific Blue-CD4 (RM4-5, Biolegend), Streptavidin-Pacific

Orange (Invitrogen, Carlsbad, CA, USA), and LIVE/DEAD violet

dye (Invitrogen). Cells were fixed in 4% paraformaldehyde

and analyzed on a LSR II (BD Biosciences). Flow cytometry

data were analyzed using FlowJo 8.8.6 (Tree Star, Ashland, OR,

USA).

CD41 T-cell isolation and cell culture

At day 14 post-surgery, mice were sacrificed and spleens were

harvested as mentioned previously. For purification of CD41

CD62L and CD41CD62L1 T cells, ferromagnetic beads were

utilized (Naı̈ve CD41 T-cell isolation kit, Miltenyi Biotech,

Auburn, CA, USA) according to the manufacturer’s instructions.

For cell culture and restimulation assays, cells were cultured in

RPMI 1640 (Mediatech, Herndon, VA, USA) supplemented with

10% FBS (Atlas Biologicals, Ft. Collina, CO, USA), penicillin/

streptomycin, L-glutamine, MEM-non-essential amino acids,

Na-pyruvate (Lonza, Basel, Switzerland) and 2-ME (Sigma-

Aldrich, St. Louis, MO, USA). Flat-bottom 96-well plates were

coated previously with 1 mg/mL aCD3 (BD Biosciences, San Jose,

CA, USA). For in vitro skewing, culture medium was supplanted

with the following recombinant cytokines when indicated:

10 U/mL IL-2 (Peprotech, Rocky Hill, NJ, USA), 10 ng/mL IL-4

or IL-12 (R&D Systems, Minneapolis, MN, USA). Additionally, the

following blocking antibodies were used when indicated: a-IL-4,

a-IL-12 and a-IFN-g, all at 10 mg/mL (eBioscience, San Diego, CA,

USA).

Thymidine proliferation assay

For analysis of in vitro proliferation, freshly isolated CD41CD62L

and CD41CD62L1 T cells from sham and CLP mice 14 days post-

surgery were stimulated with plate-bound a-CD3 and soluble

a-CD28 for 72 h. During the final 6 h, cells were labeled with

1mCi/well of 3H-thymidine. After 6 h of incubation with

radiolabeled thymidine, cells were harvested onto glass filters

and analyzed using a beta scintillation counter (Becton-Dick-

inson, Franklin Lakes, NJ, USA).

Multiplex cytokine/phosphoprotein analyisis

Concentrations of indicated cytokines in culture supernatants and

phosphoproteins in cell lysates were analyzed using a

Luminex Bio-Plex 200 system (Bio-Rad, Hercules, CA, USA)

according to the manufacturer’s protocol, as previously described

[3]. For phosphoprotein analysis, cell cultures were first lysed

using the manufacturer’s cell lysis solution (Bio-Rad), and

clarified lysates were analyzed in a similar fashion to

cytokine analysis using beads directed to both total and

phosphorylated JNK, ERK1/2, Akt, I-kBa and p38 MAPK. Plates

were washed and read using a Luminex Bio-Plex 200 system plate

reader. For cytokine analysis, murine stock cytokines of known

concentrations (provided with the kit) were used to generate

standard curves. The threshold of each cytokine was routinely

o5 pg/mL. For phosphoprotein analysis, ratios of the

relative levels of phospho- to total protein were used to generate

values.

Quantitative real-time PCR

CD41CD62L1 T cells from sham and CLP mice were isolated from

spleens 14 days post-surgery, and were either rested (cell culture

media) or stimulated (aCD3/aCD28) for 6 h in 96-well plates.

Following incubation, total RNA was extracted from these cells

utilizing RNeasy Mini spin columns (Qiagen, Valencia, CA, USA)

and cleaned using the RNeasy MinElute spin column kit

(Qiagen). Following isolation, mRNA was converted to cDNA

and analyzed on a T-cell gene superarray following the

manufacturer’s protocol (SA Biosciences, Fredrick, MD, USA)

using the supplier’s kits for genomic DNA cleanup and RT-PCR.

Superarray plates (TH1-TH2-TH3 superarray, PAMM-034, SA

Biosciences) were analyzed in an ABI 7500 standard qPCR light

cycler (Applied Biosystems, Foster City, CA, USA). Resulting data

were analyzed using the manufacturer’s web-based analysis suite

(RT2 Profiler PCR Array Data Analysis, SA Biosciences), which

identified statistical significance of variations in gene expression

between experimental groups. The full list of genes included in

the superarray analysis can be found at the following web

address: http://www.sabiosciences.com/rt_pcr_product/HTML/

PAMM-034A.html.
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ChIP

CD41CD62L1 T cells from sham and CLP mice were analyzed

directly ex vivo for histone modifications as previously described

[3]. Sonication was performed using a Branson Sonifier 450

(VWR, West Chester, PA, USA) under the following conditions:

four times for periods of 30 s each. Immunoprecipitation was

performed with the following antibodies: anti-H3K4me3

(ab8580; Abcam, Cambridge, MA, USA) and anti-H3K27me2

(07-452; Upstate Biotechnology), overnight at 41C with gentle

rotation. DNA was subjected to real-time PCR utilizing primers

for the promoter regions of the indicated cytokine or transcrip-

tion factor genes. Primers for promoter regions of IL-2 [53], IFN-g
[54], IL-4 [55] and GATA3 [56] were as previously described.

Primers for T-bet were as follows: 50-ACCAGGCTGGCCTCGAA-30

and 50-TGGCGCACGCCTTTAATC-30.

Statistical analysis

Significance was calculated utilizing repeated measures ANOVA

when necessary, followed by post hoc Bonferroni tests for

significance between experimental groups. For single-group analy-

sis, two-tailed Student’s t-tests were used to determine significance.

Analysis of significance for mRNA expression was performed by the

manufacturer’s web-based analysis suite, as previously mentioned.

In all cases, po0.05 were considered statistically significant. Data

analysis was performed with GraphPad Prism v5.0a for Macintosh

(GraphPad software, San Diego, CA, USA).
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