
WHOSE MODEL I S  ITt: 
BRIDGING THE GAP BETWEEN ENGINEERING 
AND STATISTICS 

s a statistician who occasionally consults with en- 
gineers, I find that we often get our wires crossed 
when discussing a project. We often use the same 
,words, but they can mean very different things. 

This situation is even worse than using jargon. When jargon 
is used, the listener knows what he or she doesn’t know and 
has the opportunity to  ask clarifymg questions. When com- 
mon words represent different concepts, each party believes 
they are clearly communicating, when the opposite is true. 
I have found that two terms that generate considerable con- 
fusion are “model” and “parameter.” 

For engineers a model is derived from physical principles to 
describe a phenomenon. For example, consider measuring 
the temperature within a fuel tank over time while a vehicle 
is driven. A physical model can be developed from the heat 
transfer equation’s2 that relates changes in temperature to 
changes in heat: 

where 
t is time with t 2 0; 
Q, is the heat in the system at time t ;  
m, is the mass of the fuel and tank at time t ;  
c p  is the coefficient of specific heat of the fuel; and 
2, is the temperature within the fuel tank at time t .  

Changes in heat in the fuel tank are from three primary 
sources: 

1. Convection heat from under the tank: Qct = UA(T, - 
2,) where U is the heat transfer coefficient for the fuel 
tank; A is the surface area of the bottom of the fuel 
tank; and T ,  is the temperature below the fuel tank, 
taken to  be constant. 

2. The heat in the fuel that is returned to the tank from 
the engine: QR, = mIicp ( T R  - 2,) where mR is the mass 
of the returned fuel, and T R  is the temperature of the 
returned fuel, assumed to be constant. If the engine 
does not return fuel, then QRt is zero. 

3. Heat from the fuel pump, if it is adjacent to the fuel 
tank: Qp.  

The change in heat within the fuel tank is: AQ, = Qn + Q R f  

+ Qp. 

Assume that the vehicle uses fuel at a constant rate. The 
mass of the fuel and the tank at  time t is m, = m, - gt 
where m, is the initial mass, and g is the constant rate of 
fuel consumption. Then the solution of the heat transfer 
equation is: 

P Lenk 1s Associate Professor of Statistics with The University ofMichigan Busi- 
ness School, Ann Arbor, MI.  

. where 2, is initial temperature, and 

(2) D = Q p  + c ~ ~ R T R  f UAT” 

B = cp + mR + UA; 

. The solution is a weighted average of the initial temperature 

. 2, and the asymptotic or equilibrium temperature DIB. The 

. weights are between zero and one, sum to one, and vary 
’ monotonically with time. Ifg, the rate of fuel usage, is small, 
’ then an approximation is: 

The physical model given in Equations 1 and 2 relates the 
dynamics of temperature to design parameters, such as sur- 
face area and heat transfer coefficient, and to operating con- 
ditions, such as initial temperature and the temperature un- 
der the fuel tank. The challenge for the design engineer is 
to select the design parameters to obtain desired tempera- 
ture profiles for a variety of field conditions or for test pro- 
tocols mandated by government agencies. 

. The model was derived under assumptions, such as constant 
fuel usage and temperature under the tank, that are cer- 

. tainly not true, and the solution depends on parameters that 
’ are measured with different levels of accuracy or may be 
’ unknown. The utility of the model depends on the model’s : sensitivity to these assumptions and parameter uncertainty. 

. In contrast to engineers, statisticians do not think in terms 

. of differential equations and Newtonian physics. In fact, 

. most graduate programs in statistics do not require a course 

. in differential equations or physics. How do statisticians 
* think? (“If they think at  all,” my engineering friends would 
’ all too readily add.) Specifying a statistical model begins 
’ with the goals of the study and understanding how the ob- 
. servations are collected. Consider the experiment where the 
. temperature within the tank is measured on n vehicles at  m 
. points in time. Most statistical models have the general 
. form: 

. where the components of the model are: 

. 

. 
‘ 

Yit the observed temperature at time t on the ith 

f i s  a known function with three arguments; 
Xi is a vector of observations or known constants for the 

0 is a vector of unknown statistical parameters; and 
E,, is “measurement error.” 

experimental run or vehicle; 

ith experimental unit; 
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Measurement error is not observed and is included to bal- ‘ 
This model forces f to be monotonically increasing as a func- 

ance the left-hand and right-hand sides of eq (4). Measure- : tion of time. The statistical parameters are 0,, the equilib- 
ment errors are assumed to have a specified distribution. . rium temperature, and 0,, the exponential rate a t  which the 
Most frequently, they are mutually independent and have a . temperature increases from its initial temperature to 8,. 
normal distribution with mean 0 and unknown variance. . This model is appropriate under the following conditions: 
Their inclusion in the model explicitly recognizes that the . The same vehicle or vehicles with nearly identical phys- 
observations will deviate from f. Statistical inference quan- . 
tifies the variation of the observations from f. . The test conditions on each run are nearly identical; 

The function f may be related to the physical model, but it ‘ 
Only the interior temperature of the fuel tank is mea- 

need not be. The vector of observations XI may include var- : 
iables such as ambient temperature or return fuel temper- . This model is used to predict the equilibrium temperate and 
ature if they are measured during the experiment. This vec- . the rate that it is reached for a given configuration and test- 
tor may also include physical parameters such as the . ing conditions. The statistician uses the form of 2, as a func- 
coefficient of specific heat. Statisticians frequently treat . tion of time to motivate eq (6) but is not interested in the 
physical parameters as data in statistical models. On the . fine detail of the physical model. 
other hand, the statistical parameters 0 often are not di- . 
rectly related to physical parameters. ’ After estimating the statistical model in eq (6), the statisti- 

’ cian and engineer have the following conversation. 
Statistical inference estimates the unknown statistical par- 
ameters 0. The statistician will report, “The estimated (sta- . Statistician: I have the results of the experiment and the 
tistical) parameters of the (statistical) model are ....” Mean- . estimated equilibrium temperature is 110 degrees. 
while, the engineer is thinlung, “Hold on. We selected the . Engineer: Great! That temperature is lower than we ex- 
(physical) parameters when we designed the fuel tank. Why . pected, but it is still too high. What happens to the equilib- 
would you estimate them?“ . rium temperature if we decreased the bottom area of the fuel 

. tank? 
The choice of the components of the statistical model de- ‘ Statistician: Well, we will not know that until we perform 
pends on information at the time of the experiment, the var- ’ additional experiments with the new fuel tanks. 
iables being measured during the experiment, the measure- Engineer: What? We just spent our budget! You said you had 
ment system, and the goal of the experiment. The simplest . a model for fuel tank temperatures. Why can’t we just use 
case of eq (4) states that the observed temperature for the . it to predict the temperatures for different parameters? 
ith experimental run at time t is due to a mean temperature . Statistician: Well, we didn’t run an experiment that varied 
at  time t and a random deviation from the mean: . the area of the fuel tank. There is no way we use our data 

. to predict the effect of area on the equilibrium temperature. 

. To answer the engineer’s question, the statistical model in 
It is not surprising that an engineer would be dismayed at ‘ eq (6) could be expanded to include physical parameters, 
calling eq (5) a model for fuel tank temperatures: it  is di- . such as bottom area, and observed variables or covariates, 
vorced from the underlying physics. This statistical model ’ such as road temperature: 
does not attempt to explain the temperature dynamics in the ’ 

be used to validate the engineering design or to test the ad- : 
equacy of the physical model. 

ical parameters are used in each test run; 

and 

sured. 

Y,, = 8, + EL[. (5) . 

fuel tank. It is designed for very limited purposes and can ’ 

0, + 0 z c P  + 03’4TLl 
C P  + 0 4  

y,, = 

Consider the experiment where one vehicle is repeatedly 
tested under nearly identical conditions. After each test run, 
the fuel tank is returned to its initial temperature, and the 
test is repeated n times on the same vehicle. Based on this 
experiment, the statistician could test the hypothesis that 
the mean temperature 0, a t  time t is equal to the theoretical 
temperature 2,. Of course, the sample average l l n  C:=, Y,, 
will be different from the theoretical values 2,. If the dis- 
crepancies were within the range that would be anticipated 
due to random sampling, the statistician would conclude 
that the data supports the physical model. 

The means {0,} in eq (5) are allowed to vary freely: 0,+, may 
be larger or smaller than 8,’ while the solution of the heat 
transfer equation is monotonically increasing in time. A 
more sophisticated statistical model could be motivated from 
the theoretical solution in eq (3): 

Y,, = 0, l l  - exp(-O,t)l + Y,, exp(-O,t) + E , ~  (6) 

(7)  

. The statistical parameters can be viewed as functions of 

. physical parameters. However, their estimated values may 
’ differ substantially from the physical parameters due to  a 
’ variety of reasons including sampling and measurement er- 
’ 

rors, missing sources of heat in the physical model, and vi- 
. olations of the assumptions of the physical model. Equation 
. (7)  is appropriate if vehicles with different fuel tank config- 
. urations were tested under different ambient temperatures. 
. Then the model could be used to predict the impact of chang- 
. ing design parameters such as fuel tank area or of operating 
. the vehicle in different temperatures. Of the three statistical 
. models eq (7) is closest in spirit to the theoretical model. 
’ 

Statistical models and experiments are used to answer lim- 
. ited questions and not to investigate fully the dynamics of 
. the heat transfer equation for all possible configurations. As 
. a last example, the engineer may be interested in the effects 
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of three different design factors on the temperature within 
the fuel tank after thirty minutes of operating the vehicle. 
The factors are the thickness for the fuel tank walls, the 
geometry of the fuel tank, and the type of return fuel line. 
Fuel tank walls have one of three widths. The tanks have 
two levels of geometry: tall and narrow versus short and 
wide. The return lines have two levels: insulated versus un- 
insulated. Vehicles with different configurations are oper- 
ated for thirty minutes before t ahng  the temperature within 
the tank. Ambient temperature is recorded and is used as a 
covariate. The traditional analysis of variance or response 
surface methods3 provide useful design information without 
recourse to physical models. 

The information being sought by this experiment is rela- 
tively crude: which combination of experimental factors re- 
sults in the lowest temperature over a range of ambient tem- 
peratures. In contrast, physical model attempts to describe 
temperature dynamics for every possible configuration and 
operating condition. Accurate physical models supercede sta- 
tistical models. However, most physical models are derived 
from assumptions that often are violated, and they use ap- 
proximations that may effect their accuracy. In addition, 
they usually contain parameters that are imperfectly mea- 
sured or are unknown. Statistical models are designed to 
provide “fast and dirty” answers to well posed and limited 
questions. Statistical models may be motivated by physical 
models, but, more often than not, they are not. 

If an engineer is asked for a model for fuel tank tempera- 
tures, he or she will immediately think, “heat transfer equa- 
tion.” The statistician does not have a fixed model. He or she 
cannot begin to formulate a model until knowing the goal of 
the experiment, the experimental design, the measurement 
system, the variables being measured, and the experimental 
protocol. The continuing challenge is to combine physical 
and statistical models to reduce development times and in- 
crease design effectiveness. A needed step in this direction 
is to understand each other’s models and parameters. 
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