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S U M M A R Y

1. Rapidly advancing geographical information systems (GIS) technologies are forcing a
careful evaluation of the roles and biases of landscape and traditional site-based
perspectives on assessments of aquatic communities. Viewing the world at very different
scales can lead to seeming contradictions about the nature of specific ecological systems.
In the case of Michigan trout streams, landscape analyses suggest a predictable
community shaped by large-scale patterns in hydrology and geology. Most site-based
studies, however, suggest these communities are highly variable in structure over time,
and are strongly shaped by site-specific physical and biological dynamics. As the real
world is comprised of processes operating both at local and landscape scales, an
analytical framework for integrating these paradigms is desirable.
2. Decomposition of variances by factorial ANOVA into time, space and time–space
interaction terms can provide a conceptual and analytical model for integrating
processes operating at landscape and local scales. Using this approach, long-term data
sets were examined for three insects and two fishes common in Michigan trout streams.
Each taxon had a unique variance structure, and the observed variance structure was
highly dependent upon sample size.
3. Both spatially extensive designs with little sampling over time (typical of many GIS
studies) and temporally extensive designs with little or no spatial sampling (typical of
population and community studies), are biased in terms of their view of the relative
importance of local and landscape factors. The necessary, but in many cases costly,
solution is to develop and analyse data sets that are both spatially and temporally
extensive.

Introduction

Driven by rapidly developing geographical informa- scale analysis represents an exciting, if not altogether
new, paradigm for understanding aquatic ecosystems,tion systems (GIS) technologies (e.g. Goodchild, Parks

& Steyart, 1993; Sample, 1994; Poiani & Bedford, 1995; communities and populations. Integrating landscape-
based perspectives with years of site-based dataand see Johnson & Gage, this volume), landscape-
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134 M.J. Wiley et al.

gathering and theory, however, is for ecologists an climatic variables. These lend themselves easily to
GIS-based analyses. Michigan trout streams are cooled,important and substantial challenge. This is particu-

larly true when considering the utility of landscape and their flow stabilized, by large inputs of ground-
water associated with deep deposits of glacial driftanalysis in studies of population and community

dynamics, which have traditionally focused on small- (see Fig. 1a). Outwash deposits provide exceptionally
high hydraulic conductivities, which in conjunctionscale field experiments and data from a small set

(frequently a single locale) of representative ‘study with elevation head differences supplied by adjacent
moraines can provide high rates of groundwater inputsites’. The fundamental problem in this regard is that

ecologists studying local aquatic populations, and to fortuitously located channel segments. As the land-
scape is a complex mosaic of different kinds of glacialecologists employing GIS to examine ecological data

from a landscape perspective, necessarily view the deposits (Fig. 1c) the hydrology of Michigan streams
is spatially quite variable. The hydrographic propertiesworld at distinctly different spatial and temporal

scales. Differences in perspective and scale often lead of a particular stream reflects the relative contributions
of groundwater and runoff sources. For example, theto an emphasis on different types of functional mech-

anisms (e.g. abiotic v biotic); processes operating at Manistee River (Fig. 2a) drains large regions of highly
conductive, relatively flat, outwash plain. More thandifferent rates (e.g. decades and centuries v days

and weeks); and may require different modelling 90% of its annual discharge is delivered by ground-
water sources (Hendrickson & Doonan, 1972); flowtechniques (e.g. multivariate statistics v differential

equations). Most importantly, these divergent per- variation is minimal, and water temperatures are
cool (, 22 °C) during the summer allowing troutspectives can lead to divergent hypotheses and conclu-

sions about both the structure and function of populations to flourish. The Jordan River (Fig. 2b)
likewise receives a massive supply of groundwaterecological systems (Ricklefs, 1987; Frost et al., 1988;

Wooton, 1992; Root & Schneider, 1995). throughout the year. However, because this catchment
includes (besides outwash) large areas of morainalMost ecologists agree that in the real world both

local and large-scale (regional) mechanisms are tills with higher slopes, it generates somewhat more
runoff than the Manistee. Spring melt and storm flowsimportant (e.g. Schoener, 1983; Ricklefs, 1987; Pimm,

1991; Root & Schneider, 1995). But the question are higher as can be seen in the left-hand portion of
the Jordan’s flow duration curve. The Au Gres Riverremains: How do we structure a comprehensive ana-

lysis? This paper examines some potentially conflicting (Fig. 2c) is more similar to the majority of continental
rivers (Poff & Ward, 1989; Allan, 1995). Runoff is theconclusions about the nature of Michigan trout stream

communities, which arise when comparing the results predominant source of water to the channel and
summer temperatures are higher, usually exceedingof current landscape and site-based studies. A simple

decomposition of variance approach is described and the thermal tolerance limits of both brook and brown
trout. In Michigan, fish communities in this type ofemployed to illustrate how these contrasting views

might be reconciled. By way of example, two long- stream are dominated by cyprinids, catastomids and
centrachids (Hendrickson & Doonan, 1972; Seelbachterm data sets from Michigan streams are analysed

and the spatial and temporal components of variation & Wiley, 1996; unpublished data).
The hydrological processes that generate ground-are estimated for a representative group of trout-

stream taxa. Finally, based on this analysis, several water and runoff flow are shaped by landscape charac-
teristics in the catchment basin. The strength of thisimportant scale-related issues are discussed which

face workers engaged in both GIS-based, and more dependence is reflected in the fact that hydrologists
and river managers for some time have routinelytraditional, site-based studies of lotic community

structure. employed hydraulic geometry equations (Leopold &
Maddock, 1953) expanded with land use/land cover
and geological variables (Bent, 1971; Thomas &

Landscape and local constraints in Michigan
Benson, 1975; Holtschlag & Croskey, 1984; Osborne &

trout stream communities
Wiley, 1988) to predict hydrographic behaviour for
catchments lacking stream gages. Inclusion of GISHydrological and thermal characteristics of streams

are strongly influenced by large-scale geological and technologies in the development of these predictive
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Reconciling landscape and local views of aquatic communities 135

Fig. 2 (a–c) Example annual hydrographs and corresponding flow duration curves for three hydrologically distinct Michigan
rivers. Shading in hydrographs separates baseflow and runoff components. Note that the Y-axis is logged for the hydrographs, and
that both hydrographs and flow duration curves are standardized per unit catchment area. Redrawn from figures in Hendrickson
& Doonan (1972).

equations is quickly becoming routine. For example, without any information at the local site about habitat
or channel characteristics, it is still possible to producein conjunction with researchers at the Institute for

Fisheries Research (Michigan Department of Natural reasonably accurate models of trout population den-
sity using only landscape-scale variables (Table 2). InResources), we (Seelbach & Wiley, 1997) have

developed (and presently employ in state agency Michigan, where trout streams enjoy a higher level of
legal protection than warm water streams, simplymanagement settings) synthetic flow duration curve

models based on GIS analysis of mapped landscape determining whether or not a site will support trout
can have important regulatory implications. Land-characteristics (Fig. 1, Table 1) at USGS gaging sites.

The inclusion of GIS-evaluated catchment character- scape variables can be used to estimate the probability
that a site will support trout and therefore warrantistics in hydraulic geometry relations significantly

improves the precision of estimating models, and special environmental protections. Logistic regression
(Retherford & Choe, 1993; Johnson & Gage, this vol-allows Michigan fisheries scientists to predict with

considerable accuracy the hydrographic character of ume) is particularly well suited for this type of land-
scape analysis and is being used in Michigan toungaged river sites throughout the state.

Because the shape of the flow duration curve reflects develop a trout stream classification system applicable
by a GIS-linked computer system to any site in thethe relative importance of groundwater sources for a

site, it also provides information about temperature lower peninsula (Table 3).
From a landscape-scale perspective, then, these troutregime and associated biological communities. Even
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Table 1 Relative fits (R2 values) for Synthetic Flow Duration Curve Models of streamflow in Michigan’s lower peninsula. The
form of these MLR models is:
Qex 5 a * Catchment areab1 * landscape_factor1b2 * landscape_factor2b3 * ... landscape_factorNbN–1

Landscape factor variables are derived from GIS analyses of statewide digital map covers and include: mean annual precipitation,
average catchment slope, % urban landcover, % agricultural land cover, % forested land cover, % catchment in peaty soils, %
catchment in lakes,ponds and non-forested wetlands, % catchment in glacial outwash

Exceedance frequency (%) R2 for groundwater streams R2 for runoff streams

05 0.96 0.99
10 0.97 0.98
25 0.97 0.96
50 0.97 0.93
75 0.94 0.91
90 0.93 0.91
95 0.92 0.90

Qex is the daily average discharge in cms with an exceedance frequency ex, i.e. the discharge Qex is equalled or exceeded ex
percentage of the time over a 10 1 yr sample.

Table 2 Multiple regression analysis of ln total trout density (brook, brown and rainbow trout combined) predicted from
landscape variables generated by GIS analyses. Data from 65 gaged sampling stations (Seelbach & Wiley, 1997)

ANOVA table

Source Sum of squares d.f. Mean square F-ratio

Regression 213.761 5 42.8 31.3**
Residual 80.5707 59 1.36561

Variable Coefficient SE of coefficient t-ratio

Constant 42.7904 16.41 2.61*
ln temperature (°C) –8.13521 5.105 –1.59*
ln lentic1 –0.170835 0.0645 –2.65*
ln SCS RCN2 –2.87184 1.514 –1.90*
ln coarse outwash3 4.75151 1.392 3.41**
ln lanes index4 –1.94691 0.4367 –4.46**

1Proportion of catchment in lakes, ponds and non-forested wetlands.
2Average (U.S). Soil Conservation Service (SCS) average runoff curve number (RCN) for the catchment. The RCN is a key hydrological
parameter in the SCS synthetic unit hydrograph model (SCS, 1986); it reflects soil and land use related contributions to the generation
of surface runoff.
3Proportion of catchment with ice contact sand and gravel geology; based on GIS summaries of a digital version of the quaternary
map of Farrand & Bell (1984).
4Standard deviation of the loge of flow duration curve percentiles (Lane & Lei, 1950).
**Statistically significant at alpha , 0.01; *statistically significant at alpha , 0.05.
R2 5 0.726 R2 (adjusted) 5 0.703.
SE of regression 5 1.169 with 65–6 5 59 d.f..

stream communities appear to owe their existence streams is one of strong biotic interactions, and high
endogenous (site-specific) annual variability. Forprimarily to the favourable alignment of a few large-

scale hydrogeological factors. In this view, landscape example, local regimes of predation, competition and
pathogens appear to influence strongly both algal andcomposition appears to be the primary constraint

shaping stream community structure, and landscape macroinvertebrate populations (Wiley, 1980; Wiley &
Kohler, 1981; Hart, 1983, 1985, 1987, 1992; Kohler, 1984,analysis is therefore an essential tool for stream eco-

logists. 1992; Kohler & McPeek, 1989; Hart & Robinson, 1990;
Kohler & Wiley, 1992; Creed, 1994). Recent work onAt the same time, the view emerging from years of

more traditional site-based studies in Michigan trout epizootics in these streams demonstrates that major
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Reconciling landscape and local views of aquatic communities 137

Fig. 3 Population time-series data from
Hunt Creek illustrating a
microsporidian-induced collapse of
Glossosoma nigrior, and covarying brook
trout population.

Table 3 Logistic regression analysis of probability of finding trout (brook, brown or rainbow) at 56 gaged sites in Michigan’s lower
peninsula. Data from 65 gaged sampling stations (Michigan Rivers Inventory database; Seelbach & Wiley, 1997). Dependent
variable was binary presence or absence data. Predictor variables as defined in Table 2. Predictive equation is of the form:
Probability 5 1/(1 1 e–z); where z 5 α 1 β1X1 1 β2X2 1 ..βnXn

Wald statistic Probability level
Variable β Exp(β) SE (d.f.) [β 5 0]

ln lanes index –4.9136 0.0073 1.9245 6.5189(1) 0.0170
ln SCS RCN –6.1862 0.0021 2.8830 4.6042(1) 0.0319
Constant 22.6967 12.1268 3.5029(1) 0.0613

Percentage
predicted

Observed Predicted Absent Present correctly

Absent 49 2 96.08
Present 3 11 78.57
Overall 92.31

changes in food web composition and structure occur primary factors regulating populations in Michigan
trout streams (Ellis & Gowing, 1957; Shetter &over 3–10-yr periods in many Michigan trout streams,

driven by episodic outbreaks of microsporidian patho- Alexander, 1964; McFadden, Alexander & Shetter,
1967; Latta, 1969; Hildebrand, 1969; Laarman, 1969;gens (Kohler & Wiley, 1992). For example, disease-

induced collapses of Glossosoma nigrior, a dominant Alexander, 1977a,b, 1979; Stauffer, 1979; Gowing &
Alexander, 1980; Fausch & White, 1981, 1986;herbivore in these systems, have had strong direct and

indirect effects on the rest of the community. Algal Alexander & Hansen, 1983; Fausch, 1984, 1988;
Seelbach, 1987, 1993; Ziegler, 1988; Alexander &populations increase, as do previously suppressed

competitors which require the same algal food supply Nuhfer, 1993; Nuhfer, Clark & Alexander, 1994; Clark &
Nuhfer, 1995). Large temporal variations in population(Kohler & Wiley, 1997). Higher in the food web, brook

trout populations also show some evidence of being sizes of brook and brown trout are routinely observed
in longer data sets available from these streams (e.g.indirectly affected by these pathogen outbreaks

(Fig. 3). Figure 4). The most intensively studied Michigan trout
populations (20 1 yrs of data) vary in density by aLikewise for fish populations, local (site-specific)

processes have been viewed for several decades as factor of 3 to . 12 (Nuhfer & Alexander, 1993; Clark
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location, time, and site–time interaction components
using standard two-way ANOVA techniques (Lewis,
1978; Magnuson, Benson & Kratz, 1990; Matthews,
1990; Kratz et al., 1995). The resultant partitioning of
variances identifies three sources of variation which
roughly correspond to three common ecological para-
digms (Fig. 5).

Variance due to geographical locale (site treatment
in an ANOVA) is spatial. It represents variation (time
averaged) found between sites at different points in
the landscape. Data required to estimate this variance
must be spatially extensive; GIS and related map
analysis techniques are the appropriate analytical

Fig. 4 Long-term variability in coexisting brook and brown tools, and landscape ecology (in the broad sense)
trout populations. Data courtesy R. Clark and A. Nufher,

is the corresponding ecological paradigm. TypicalInstitute for Fisheries Research, Michigan Department of
driving (causal) variables responsible for spatial vari-Natural Resources.

ation include soils, geology, climate, land cover proper-
ties, and other readily mapped, large-scale variables.& Nuhfer, 1995); driven by a variety of site-specific

mechanisms including annual variability in local hab- Variance due to differences between years (year
treatment in an ANOVA) represents annual variationitat quality, climatic variation, competition and pre-

dation, habitat alteration and fishing pressure. Strong, averaged across locales. Annual variance in this con-
text has been called ‘coherent’ time variationendogenous community dynamics driven by site-

specific (and often biologically controlled) processes, (Magnuson, Benson & Kratz, 1990; Kratz et al., 1995)
in that it represents variation in time that occursthen, seem the rule when these trout stream communit-

ies are examined from a local (site-based) perspective. simultaneously across all spatial units of the analysis.
In the present study the term ‘regional-time’ is pre-
ferred to emphasize that this component of the vari-

Decomposition of variance: an analytical
ance represents regionally synchronous variation and

framework
therefore must have regional-scale causal mechanisms.
Possible causal mechanisms might include climaticYears of site-based analyses suggest that the biological

communities of Michigan trout streams are highly variation, anthropogenic alteration of the landscape
or exploitation, large-scale epizootics, or invasionsvariable over time, exhibiting site-specific dynamics

often driven by endogenous community processes, by exotic species. Analytical techniques lean heavily
towards numerical simulations, linear modelling andsuch as predation, competition and disease. However,

landscape analyses indicate that the same communities time series analysis.
A third component of variation is given by theare relatively predictable assemblages shaped by the

large-scale structure of the landscape. Which view is interaction term in a two-way (site 3 time) ANOVA
design. This term represents variation in time that iscorrect? Are these trout stream communities structured

by relatively static hydrogeological patterns in the not synchronous across the set of site locations, i.e.
site-specific variation in time. Kratz et al. (1995) referlandscape? Or are they locally controlled and struc-

tured by internal dynamic processes? Our view reflects to this as ‘incoherent’ temporal variance. It can be
suggested that this ‘site-specific–time’ variation isthe scale of our analysis. Clearly, the correct answer

is that Michigan trout streams are both physically essentially the focus of community ecologists as it
includes the dynamics of the local community. Causaland biotically structured. However, an appropriate

analytical framework is necessary to engage a compre- processes leading to incongruent variation at a site
may be physical (e.g. point source effects) or biologicalhensive analysis.

A useful analytical approach in which both perspect- (endogenous community dynamics arising from com-
petition, predation or disease) but must be local (site-ives can be integrated is to partition the total variance

in the abundance of a particular species into site specific rather than regional) in effect, or at least locally
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Reconciling landscape and local views of aquatic communities 139

Fig. 5 Decomposition of variances by
factoral ANOVA. Site treatment, year
treatment, and their interaction term
partition variation into three major
categories which reflect distinct
ecological scales and driving variables.

mediated in some distinctive fashion. Variables of monitoring sites on the North Branch, Main Branch
and South Branch of the Au Sable River (Fig. 6).interest include population characteristics, resource
Annual population estimates were based on the Baileylevels and local disturbance regimes. Analytical
modification of the Petersen mark-and-recaptureapproaches often employed include simulation and
method (Bailey, 1951; Ricker, 1975) using 240 V directdifferential equation models, linear programming
current electrofishing gear. The 95% error bounds ofmodels, and in contemporary community ecology
the estimates were generally small (, 10% of thethere has been a distinct emphasis on in situ experi-
estimated population). Because mark–recapture estim-mental manipulations (e.g. Hart & Robinson, 1990;
ates were used, sampling variance does not appear asKohler, 1992).
a separate term in the ANOVA for fishes, but anyA final component of variation is the error term,
effects attributable to it are included in the variationwhich includes any residual variance associated with
associated with interaction term (i.e. site-specific–timemeasurement error or other unaccounted processes.
variance). Computationally, the site–time interactionThe relative magnitudes of these four variance com-
term was estimated as the difference between the totalponents can strongly influence both the structure and
variation and that variation explained by site and yearinterpretation of spatially extensive data sets. The
effects (SStotal – (SSyr 1 SSsite)).variance structure of a population is of more than

Invertebrate data were collected from five long-termstatistical interest, because it implies something about
study sites in the Thunder Bay, Cheboygan, Kalamazoothe relative importance of various ecological processes
and several smaller Lake Michigan coastal basins asoperating at distinctive spatial and temporal scales. A
a part of an ongoing study of trout, food-web dynamicsdecomposition of variances therefore can provide a
(Fig. 6, Kohler & Wiley, 1992, 1997). Quarterly or moreuseful framework for placing analyses with limited
frequently, insect population estimates were based onspatial or temporal extent into an appropriate larger-
replicated (n 5 5–10) rock cluster samples. Becausescale context.
samples were replicated on each date, residual (sam-
pling) error was separately estimated by the ANOVA

Methods and is not included in the interaction term as was the
case for the fish analyses.Population variance structures in Michigan trout

In both the fish and insect analyses, variances werestreams
partitioned using standard factorial ANOVA tech-

To illustrate this approach population data were ana- niques. Variation (sums of squared deviations) associ-
lysed for several invertebrate and fish species in the ated with each of the three components of interest
Michigan trout streams discussed above. The fish data (SSyr, SSsite, SSyr*site) was expressed as a proportion of
come from long-term data sets developed by the the sum of the three components (SStotal – SSerror for

the insects; SStotal for the fish). The proportional distri-Institute for Fisheries Research at four permanent
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140 M.J. Wiley et al.

Fig. 6 Variance structure based on two-
way ANOVAs for five common trout
stream taxa. n 5 35 yrs for trout; n 5 9
yrs for aquatic insects. See Table 4.
There was a unique variance signature
for each taxon in the analysis which
reflects the relative contribution of each
of the variance components.

bution of this variation over the components of interest or less of the total variance whereas among the insects
examined site-specific temporal variation was substan-is referred to in the discussion below as the ‘variance

structure’ of the data. It is of interest because, as tially larger. Glossosoma nigrior and Goera stylata were
the most influenced by site-specific–time variation.argued above, each variance component can be associ-

ated with mechanisms operating at distinct temporal This is consistent with the known ecology of both of
these species, as Glossosoma is strongly regulated byand spatial scales. As the ANOVA was used to parti-

tion sources of variance (i.e. to estimate the various microsporidian parasites (see above) and Goera stylata
is strongly suppressed by periodic competition withsums of squares), a factorial design is required to

generate the year–site interaction term. We are not in Glossosoma (Kohler & Wiley, 1997). Regional–time vari-
ation (coherent variance) was particularly high forthis context testing hypotheses about the statistical

significance of treatment factors. Nested designs (e.g. both brook trout and Baetis spp. This suggests that
these taxa may be strongly influenced by region-widerepeated measures) may be used to test hypothesis

about site differences in similar data sets, but cannot climatic or hydrological variation, possibly mediated
proximally by changes in groundwater loading. Spatialbe used in this context because they assume interaction

effects are zero. variance (site location) was most important to brown
trout and Goera stylata. These two taxa appear to have
more specific habitat requirements in the sense that

Results
site-specific features strongly and consistently influ-
ence population size.The variance composition for each taxon examined

was distinctive, although several interesting patterns ANOVAs were also performed for a series of sub-
samples with arbitrary start dates, and of seriallyemerged (Fig. 6, Table 4). The two trout species were

similar in that site-specific dynamics constituted 25% increasing sample length, in order to examine how
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Reconciling landscape and local views of aquatic communities 141

Table 4 Design summaries from factorial ANOVA’s of representative taxa from Michigan trout stream communities. d.f. 5 degrees
of freedom. ANOVA results in Fig. 6

Total observations No. of sites No. of yrs Sample dates per yr per site
Taxa (total d.f.) (d.f.) (d.f.) (d.f. sampling error)

Glossosoma nigrior 114 (112) 5 (4) 9 (8) 2–6 (68)
(Trichoptera: Glossosomatidae)
Goera stylata 108 (106) 5 (4) 9 (8) 2–6 (62)
(Trichoptera: Goeridae)
Baetis spp. 89 (87) 5 (4) 9 (8) 2–6 (43)
(Ephemeroptera: Baetidae)
Salvelinus fontinalis 124 (122) 4 (3) 35 (34) 1 (no estimate)
(brook trout)
Salmo trutta 124 (122) 4 (3) 35 (34) 1 (no estimate)
(brown trout)

the estimated variance structure of the individual taxa species. From this analysis emerge several important,
practical issues related to the problem of evaluatingchanged with increasing temporal extent of sampling
the relative roles of local and landscape mechanisms(Fig. 7). Again the result for each taxa was distinctive,
in shaping observed communities:but, in all cases the estimated variance structure was
1 Variance structure is a species-specific property.highly dependent on the length of the period sampled.
Each taxon examined had a distinctive overall varianceTrout species required a sample of 10 (brook trout) to
structure when the whole data series was analysed.20 (brown trout) yrs duration to stabilize the variance
Furthermore, in every species, variance structure (i.e.estimates. Insect variances required approximately
the apparent proportional contributions of the variance5 yrs of data to stabilize.
components) varied with sample size in a uniqueIn samples of short duration the contribution of
and characteristic fashion. Similar results have beenspatial variance was always strongly overestimated
reported whenever the individual members of a com-(see Fig. 7). Conceptually, this can be thought of as
munity have been examined (riffle fishes: Matthews,being due to a failure to estimate reasonably the true
1990; zooplankton: Kratz, Frost & Magnuson, 1987). Itmean value for the time treatment and its interaction
can be argued that the observed variance structurewith spatial variance. A substantial sample of the time
reflects the relative contributions of ecological mechan-series is needed to stabilize estimates of the temporal
isms operating on that population at distinctive spatialmean and variance, and therefore to partition correctly
and temporal scales and therefore contains usefulthe observed variance between space and time com-
information about the ecology of the taxon. Forponents. An extreme example of this spatial bias will
example, Glossosoma nigrior populations are frequentlyoccur when a spatially extensive sample is taken with
regulated by local pathogens (in this case Cougourdella:no replication over time. All variance will necessarily
Sporozoa). Its variance structure reflects this fact,appear to be spatial (i.e. variance between sites), even
indicating that endogenous components predominateif spatial constraints really account for only a small
and spatial variance within this set of sites is relativelyportion of the true variation (as in the case of Glosso-
unimportant. Further, differences between the variancesoma nigrior).
structures of brook and brown trout from the same
set of locations, suggest inherent ecological differences

Discussion which might have useful management implications.
The species-specific nature of variance structures isImplications for study design and interpretation

noteworthy also because it implies that no character-
Long-term data sets from a number of Michigan trout istic variance structure exists for the trout stream
streams were used to examine the sources of variation community as a whole. As key trout stream species

appear to respond independently to ecologicalin abundance of several key invertebrate and fish
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Fig. 7 Variance structure estimated by ANOVA changes with the length of time the population is sampled until the sample is large
enough to stabilize estimates of the temporal and spatial means.

processes occurring at different scales of time and single-season (or year) survey data sets, using GIS,
techniques is not uncommon because of the highspace, human-induced stresses on the landscape eco-

system can affect members of this local community costs of gathering spatially extensive data. Variance
in dependent variables of interest, however, whichdifferentially. This is consistent with the observation

that community composition in streams is often more might be statistically explained by landscape character
data from a GIS, may be erroneously estimated andsensitive to environmental change than are functional

or community-level variables (Karr, 1991). attributed to site location or site attributes. High R2

values for a regression cannot guarantee that spatial2 Estimates of spatial variance can be inflated by
undersampling in time and this may lead to erroneous variance is correctly identified (hence the oft-repeated

warning that correlation-based models imply associ-attribution of explanatory power to landscape (spatial)
mechanisms. Over-fitting of models to account for ation and not causation). Monte Carlo re-sampling of

the brown trout data illustrates this problem nicelywhat falsely appears to be spatial variation is a real
danger in this respect. For example, the analysis of (Fig. 8). The variance estimates achieved with , 10 yrs
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Reconciling landscape and local views of aquatic communities 143

brown trout in the same set of streams suggesting
community interactions may be more important to
their population dynamics. The best-fit regression
model for brown trout (based on mappable landscape
variables) explained 65% of the total variation in their
density across fifty gaged sampling sites. This is
roughly consistent with the spatial variance estimate
from the long-term data sets discussed earlier in
this paper, which indicated that about half the total
variance was spatial (Fig. 6).

Regression modelling of brook trout proved more
Fig. 8 Apparent spatial variation in a series of subsamples of difficult. Using only landscape variables, the best-fit
varying length with arbitrarily chosen starting dates. Data are model had an R2 of 0.302 (Table 5). This, however, is
for brown trout at four sites in the Au Sable River system. consistent with this species’ estimated spatial variance
Note that data sets less than 10 yrs in length give poor

component in the previous analysis of only 23%predictions of the long-term (20 1 yrs) average values.
(Table 9). Competition with brown trout is a widely
recognized influence on the population dynamics ofof sampling may or may not accurately estimate the

true extent of spatial variation in the field. brook trout (see above). When appropriate terms for
brown trout were included in the regression modelRequiring the explicit identification of ecologically

reasonable mechanisms in model construction pro- the fit improved substantially (R2 5 57%). In this case
a quadratic term is appropriate because in an extensivevides some safeguard against erroneously attributing

temporal variance to spatial variables. But ultimately, spatial sample both species are restricted to the same
set of cold water streams (and therefore positivelythe only sure defence against erroneous estimates of

spatial variance is an adequate long-term temporal correlated at low densities), but brown trout tend to
suppress brook trout at high densities, which leads tosample. In the present analyses fish populations

required at least 15–20 yrs (roughly ten or more the negative term in the quadratic. The proportion of
the total variance related to effects of brown troutgenerations) of data to stabilize estimates of the vari-

ance structure. Insects generally required a shorter alone was small (13%) as was the site-specific–time
component (endogenous variance) in the earlier ana-sample of 5–7 yrs, but as they have faster and shorter

life cycles, this still amounts to ten or more generations lysis (27%, Table 4). The remaining unexplained vari-
ance roughly equals the remaining regional–timefor a bi-voltine Glossosoma and Baetis.

3 Variance structure affects the analytical relevance of component (43% and 50%, respectively). Thus, it
appears that differences in ability to predict populationlandscape variables. Taxa for which time (regional and

site-specific) variance components are small, should size from the landscape level are generally consistent
with observed differences in the estimated variancebe more easily predicted from landscape variables

than those with high endogenous or regional temporal structure of the two trout species.
4 Variance structure affects ability to generalize dir-variances. As the variance structure of individual

species can be quite different, we might expect to find ectly from site-specific results to large-scale pattern.
Community ecologists strive to elucidate the under-substantial variation in the explanatory power of

spatial analyses when applied to members of the same lying mechanisms driving population interactions and
community dynamics. Field experiments at arbitrarilycommunity.

This study attempted to examine this premise by chosen study sites are commonly employed to help
evaluate the roles of endogenous mechanisms, suchmodelling brook and brown trout population densities

in Michigan’s lower peninsula from mapped landscape as competition and predation (Schoener, 1983; Connell,
1983). Unfortunately, generalizations from the resultsvariables using a large independent data set and GIS

(Seelbach and Wiley, 1996). Brown trout had a stronger of studies at specific sites are problematic when spatial
variance is high (Wiens et al., 1986; Pimm, 1991; Levin,spatial variance component than did brook trout in

the analysis above (Table 5). Conversely, site-specific 1992). Hypothesis testing about community processes
in spatially extensive data sets can be problematic fortime variance was larger for brook trout than for
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Fig. 9 Spatial variation can obscure
patterns in community dynamics in
spatially extensive data sets. (a) Raw
data plots of Glossosoma v the density
of two important groups of competitors
(Baetis and Neophylax) showing no
apparent relationship. (b) Plots of the
same variables, with data standardized
to site means in order to control for
inter-site differences. Note the negative
effects of Glossosoma on both taxa.

Table 5 Comparison of relationship between landscape variables and variance structure for Michigan brook trout and brown trout
populations. Landscape variables used in multiple linear regression (MLR) models included: catchment size, groundwater index
values, land use and hydrological parameters. Biological variable (brook trout model only) was brown trout density (a well
documented competitor and predator of brook trout). Analysis based on unpublished data (R. Clark, P. Seelbach, M. Wiley and
T. Zorn, Michigan Rivers Inventory: Institute for Fisheries Research [MNDR] and University of Michigan)

Taxa % sources of variation estimated by R2 (as percentage) from Multiple Linear Regression
decomposition analysis1 models (n 5 50) with:

Local time
Spatial Regional time (site 3 yr) Landscape Biological Landscape 1

(site effect) (yr effect) interaction variables only variable only biological

Brown trout 50 30 20 65.3 – –
Brook trout 23 50 27 30.2 12.5 56.92

1See Table 4.
2Compare with sum of spatial and site dynamics variance for brook trout.

the same reasons, unless inherent spatial variability that from site by site analyses that microsporidian
collapses were followed by statistically significantcan be evaluated. For example, detecting effects of

competition between Glossosoma nigrior and other graz- increases in these taxa at every one of the included sites
(Kohler & Wiley, 1997). Concluding that competitiveing insects in spatially extensive survey data is difficult

even when a priori the effect is known to occur. effects were not significant based on such an analysis
(i.e. no significant correlation in Figs 9a and 9b) wouldWhen data from seven different streams for which

extensive time-series data are analysed together, there be quite erroneous. In this case, the inter-site spatial
variance is large enough to obscure temporal varianceis little apparent correlation between Glossosoma and

potential competitors (Fig. 9). This is despite the fact attributable to Glossosoma. If the densities for the
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competitors are normalized to their long-term site between time and space effects. It is easy to imagine
a more realistic but complicated design in whichmeans, however, the effect of Glossosoma can be seen.

Normalization by some statistical means (e.g. stand- spatial scale is represented by more than one treatment
(e.g. site and major basin within a larger region). Suchardizing Z transformation, use of paired t-tests, or

two-way ANOVA with a spatial treatment) focuses an analytical design would require two time-by-space
interaction terms (one for each level in the spatialthe analysis on the appropriate component of the

observed variance (in this case site-specific–time). hierarchy) raising the possibility of higher-order inter-
actions and requiring a much messier analysis andUnderstanding the variance structure of the popula-

tions studied is critical to a correct interpretation of substantially larger data sets. Ecologists are just begin-
ning to explore how to develop appropriate modelsspatially extensive data.
to handle spatially and temporally complex data sets.

The large data requirement for a successful decom-
ANOVA as a conceptual framework

position of variances into time and space components
can also be a major obstacle to using this approach.ANOVA-based decomposition of variances has pro-

vided a useful conceptual framework for integrating Scale is an unavoidable issue when sampling in either
space or time. Population variance structures observedspatial and temporal data in Michigan trout streams

and elsewhere (Lewis, 1978; Magnuson et al., 1990; in Michigan trout streams suggest that the apparent
magnitude of temporal and spatial variance dependsMatthews, 1990; Kratz et al., 1995). An examination

of variance structure in several representative taxa upon the length (time scale) of the sample series
examined. While the issue was not examined here, itillustrates potential biases associated with both spa-

tially extensive but temporally narrow (typical GIS) seems reasonable to expect that the spatial extent of
the sample should also influence the observed variancestudy designs, and with temporally extensive but

spatially narrow (typical community ecology) study structure. The observed variance structure may always
have some dependence on the spatial and temporaldesigns. For those interested in studying biotic mech-

anisms, substantial spatial (inter-site) variance limits extent of the sample. On the other hand, it is interesting
to note that spatial variance tended to be more import-the abilitiy to generalize from results obtained at

specific sites. When data are available from multiple ant for the trout than for the insects examined. This
is despite the fact that the fish data set was from asites, analysis should therefore include some control

for spatial variation (e.g. paired t-test, site treatment much smaller geographical region compared with the
insect data set. In extreme cases, outcomes are obvious.in ANOVA, standardization to means, etc.). In GIS-

based analyses it is important to remember that tem- A spatially extensive sample taken on a single date
will represent all inter-sample variance as being spatialporal variances can erroneously appear as spatial

variation. Overfitting of models (i.e. entering a large (i.e. reflecting time-independent inter-site differences).
Conversely, a long time series from a single site willnumber of independent variables to maximize the R2

value) to these kind of data will almost certainly lead necessarily represent all variation as being temporal
and site specific.to an incorrect representation of ecological mechanism.

The ANOVA approach employed does not, however, Data series of ten or more generations seem to be
required to estimate accurately means and variances inneatly categorize all ecologically relevant sources of

variation. For instance, source-sink dynamics do not spatially structured data from Michigan trout streams.
easily fit into the ANOVA paradigm. Confluence
effects on fish diversity in rivers contribute to spatial

Conclusions
variance (time-averaged, between site variability).
However, their local effect is the result of interactions For the last several decades ecologists have relied

heavily on experimental approaches to isolate andwith larger regional-scale processes, in this case the
species pool available from the confluent branch (see identify specific ecological mechanisms. However, at

the landscape level it is clear that important ecologicalOsborne & Wiley, 1992; Osborne et al., 1992). The two-
way ANOVA design employed in the present study processes involve physical and temporal scales which

preclude direct experimental manipulation. GIS tech-also oversimplifies the hierarchical nature of spatial
units in order to achieve a single interaction term nologies are opening the door to spatially extensive
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Fig. 1 Example GIS analysis of potential for groundwater loading to stream channels in Michigan’s lower peninsula. Estimates
based on raster modelling of Darcy’s law: groundwater velocity 5 hydraulic conductivity (m day–1) 3 hydraulic slope. (a) Digital
elevation map (USGS; resampled at 1 km2 resolution) used to derive topographic slope map (b) Topographic slope map (m/m), (c)
Quaternary Geology map (Farrand & Bell, 1982) used to derive (d) hydraulic conductivity map (m day–1) (e) Michigan Rivers
Inventory (Seelbach & Wiley, 1997) Ground Water Index (GWI). This index approximates groundwater flow velocity (m day–1) for
each square kilometre raster. Rasters with high values are expected to have high rates of groundwater to supply to surface
streams, wetlands and lakes. The index was produced by multiplying map (b) raster values by map (d) raster values. The GWI
values are being used in several classification and modelling projects by fisheries ecologists in the Michigan Department of
Natural Resources.


