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INTRODUCTION AND HISTORICAL BACKGROUND

In the 50 years or so since carbonic anhydrase (CA) was identified as an erythro-
cyte enzyme activity distinct from hemoglobin,! our understanding has under-
taken several dramatic turns as described so well in papers by Davenport,? Ed-
sall,> and others in this volume. For those of us interested in the origins and
evolution of what we now realize is a multigene family, several discoveries serve
to warn us about drawing our latest conclusions about the extent of this family in
too dogmatic a fashion. Thus in the early 1970s, it seemed clear from the apparent
absence of more than one CA isozyme in the erythrocytes of a marsupial, the red
kangaroo, chicken, and other avian species that the gene duplication that gave
rise to both the high-activity, sulfonamide-sensitive CA isozyme, CA II, and the
low-activity, sulfonamide-sensitive isozyme, CA 1, occurred about 100 million
years ago, shortly before the radiation of the placental mammals.* Most debate at
this time centered around the similar rates of evolution of CA Tand CA 1. Despite
its evolutionary conservatism, the role of CA I was by no means clear; the
observation that erythrocyte CA I is about 90% inhibited by prevailing concentra-
tions of chloride ions,’ and that a homozygous deficiency of erythrocyte CATina
Greek family is apparently asymptomatic® only added to this paradox.

This view of CA evolution changed radically in the late 1970s following two
major discoveries. Firstly, Holmes’*® suggested that skeletal muscle contained a
third form of carbonic anhydrase that could be described as low activity and
sulfonamide resistant. This finding was confirmed by others,?! and it transpired
that this muscle CA, termed CA IlI, had in fact been purified much earlier by
Scopes!! and Noltmann’s group.'? A further twist was provided by Carter et al."
who showed that a form of CA with properties indistinguishable from skeletal
muscle CA 11l was expressed in the livers of male rats, thus explaining earlier
reports by Garg' and King et al.”® of a sulfonamide-resistant CA in male rat
livers. The second finding was that turtle red blood cells contained two forms of

= This work was supported by NIH grant GM 24681 (R.E.T.) and an NSF predoctoral
fetlowship (J.C.).
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CA with properties generally similar to the CA I and CA II isozymes of mam-
mals.'¢ Sequencing studies of the low-activity, sulfonamide-sensitive CA showed
that it was clearly a CA I-like isozyme!”'® (see also below). About this time, a low-
activity, sulfonamide-resistant CA was purified from chicken skeletai muscle and
partial sequence studies demonstrated that it was a CA Ill-like isozyme.!7"®
These studies caused successive revisions to the earlier evolutionary trees.*1"-20

As a result of these developments during the last 7 years, together with our
deepening understanding of the way genes evolve provided by studies at the DNA
level, we are now prepared to recognize the existence of pseudogenes, interven-
ing sequences and gene conversion,?! and in addition to expect multigene families
to be commonplace rather than exceptions. We should not, therefore, in light of
the missed clues regarding CA III, be quick to dismiss the possibility that the
recently described carbonic anhydrases in ovine parotid gland,? bovine lung
membranes,”? mammalian kidney membrane,?* and mitochondria® are indeed
separate isozymes. Results presented in this volume on mouse CA II genomic
sequences by Venta ef al.?6 suggest that there might be several CA II-like genes,
but whether they are functional remains to be seen.

CLASSIFYING THE CARBONIC ANHYDRASES

As partial amino acid and gene sequence data on these new carbonic anhydrases
become available, it will be increasingly important to classify them as CA I-, CA
II-, or CA IIl-like isozymes or to recognize them as representatives of new iso-
zyme classes. In the case of carbonic anhydrases from primitive vertebrates or
invertebrates, we may be examining species that diverged before the gene dupli-
cations that resulted in the different CA gene lineages. This classification can be
achieved by constructing evolutionary trees; however, this requires the use of
computer algorithms.

A simpler method was described in an earlier review!® whereby the new se-
quence is aligned with all of the mammalian CA isozyme sequences and compared
only to those residues that are unique to a particular isozyme but invariant. Thus
all mammalian CA Is have Asp at residue 8, all CA IIs have Gly and all CA 1lIs
have Ala. At present, these unique, invariant residues comprise 20 for CA 1
(based on human, chimpanzee, orangutan, rhesus macaque, rabbit, ox, and
horse), 23 for CA II (based on human, rhesus macaque, cebus monkey, rabbit, ox,
sheep, and horse) and 32 for CA 1II (based on human, gorilla, and ox). These
residues are shown in TABLE 1. In TABLE 2, we show how some recently deter-
mined partial and complete amino acid sequences match these unique invariant
residues. Clearly the skeletal muscle CAs from horse (H. F. Deutsch, personal
communication) and chicken are CA IlI-like, and the mouse CA sequence in-
ferred from the cDNA sequence derived from anemic spleen mRNA? is CA I1-
like. The data on the wallaby?® and chicken erythrocyte high-activity CA iso-
zymes® are too limited to be classified by this method, but when evolutionary
trees are constructed (see below), they are indeed CA Il-like.

We can anticipate that the number of unique invariant residues for CA I and
CA II will drop as more mammalian CA isozymes are sequenced. The mouse CA
IT sequence has, for instance, decreased the number of such unique invariant CA
1I residues from 23 to 16. However, in the case of CA III (so few of which have
been characterized in more than one species), inclusion of the horse CA Il
sequence actually increases the number of such sites from 32 to 40. The amended
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TABLE 2. Judging Homologous Relationships of New Carbonic Anhydrases by
Matches with Residues Unique and Invariant in CA Isozymes I, II, and II1¢

Source and

Putative Isozyme  Residues CAI CAIl CAIll
Chicken ““III"” 112 0/8 1/7 11/16
Horse “III” 227 1/16 1/20 26/27
Mouse ““II” 259 1/20  [16/23 0/32
Chicken “II"™ 112 1/11 6/12 2/22
Wallaby ““II” 53 0/1 1/4 0/7
Turtle I 233 10/15 5/18 1/27

@ Sequences are from the following sources: Chicken ““III”’ (D. Hewett-Emmett, unpub-
lished); Horse “‘III”’ (H. F. Deutsch, personal communication); Mouse “‘II;”’?” Chicken
“II”” (C. M. Yoshihara and J. B. Dodgson, personal communication and this volume;® and
D. Hewett-Emmett, cited in ref. 19); Wallaby *‘I1;’2 Turtle *‘1.”"1%

table (incorporating the mouse CA II and horse CA III data) that we recommend
for future use is shown in TABLE 3. There are now 18 unique conserved CA 1
residues in mammals, 15 CA II residues, and 40 CA III residues.

If the lung membrane CA turns out to represent CA IV, we might anticipate
that a comparison of its sequence with these unique invariant residues will show
relatively few matches, and those that do match may be scattered fairly evenly
between CA 1, CA II, and CA III. If the mitochondrial CA% turns out to be
different from CA II, but still CA IlI-like, we might anticipate it sharing some
unique invariant residues with CA II and rather fewer with CA I or CA III.

Clearly this method is useful for giving a rapid preliminary glimpse of the
evolutionary relationship of newly characterized CAs, but the construction of
evolutionary trees is preferred where sequence data are limited.

THE ACTIVE SITE OF THE CARBONIC ANHYDRASES

The determination of the 3-D structures of CA I and CA I1,% and the subsequent
refinement of the x-ray diffraction data described at this meeting by Kannan et
al.> have shown that the two structures are very similar. Since CA III is almost
equally as divergent from CA I and CA II as they are from each other, it seems
very likely that the 3-D structure and active site of CA III will be generally very
similar to those of CA I and CA 1I. From the x-ray work and from the active-site
studies in a number of laboratories,'”1%3 it has been possible to identify 30 active-
site residues. The amino acid present at these sites in the better-characterized CA
I, CA 11, and CA IIl isozymes is shown in TABLE 4. Sixteen of the 30 residues are
invariant in all three isozymes, while certain of the other sites fall into the cate-
gory of unique invaniant residues described earlier. Particularly interesting is
residue 200, which is His in CA I but Thr in all CA II and CA III sequences. At the
entrance to the active site, a cluster of five residues are found to be unique and
invariant in CA HI (Lys-64, Thr-65, Arg-67, Val-69, and Arg-91). These include
the three basic residues that may relate to the weak acid phosphatase activity of
CA 111,22 and its low esterase activity.”193233 In addition, Val-69 represents the
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substitution of an aliphatic residue in the hydrophilic side of the active site, while
Arg-91 represents the substitution of a hydrophilic residue in the hydrophobic side
of the active site. These substitutions may account for the lowered sulfonamide
binding of CA II1.%-'%:3 Of these five residues, only Val-69 has been fully charac-
terized in chicken CA III, but there are strong indications that 67 and 91 are Arg
or Lys based on tryptic cleavage at these sites (D. Hewett-Emmett, unpublished
data).

Residues 67 and 69 are also unique and invariant in CA II (Asn and Glu,
respectively), and until the horse CA I sequence was determined,’* were also
unique and invariant in CA I (His and Asn, respectively). It is worth noting that
the replacements in horse (Gln-67, Lys-69) may be responsible for the markedly
lower C502 hydratase activity of the horse isozyme relative to other mammalian
CAlIs3

BUILDING AND ROOTING EVOLUTIONARY TREES

Building evolutionary trees from amino acid and nucleic acid sequence data has
been carried out with increasing sophistication over the 16 years or so since Fitch
and Margoliash® made their pioneering efforts. An attractive approach is the
maximum parsimony method, which is based on the assumptions that evolution is
mainly a process of divergence rather than convergence (parallelism), and that
evolution has taken the most economical course.’” This method does not, how-
ever, require the assumption that evolutionary rates are equal in all lineages. In
recent years, certain complications have become apparent with the realization
that gene conversion (correction of one gene sequence by its neighbor) and the
expansion and contraction of gene copy number within clusters of similar genes
may not be uncommon events.?! Until we obtain strong evidence to indicate
otherwise, we will assume that these complications are not occurring.

The computer algorithms used in the maximum parsimony approach are well
described elsewhere?” and they have already been used in studying the carbonic
anhydrase isozymes.*!720 The computer algorithms provide only the network of
lowest nucleotide replacement length; to convert this network into a tree with a
time dimension, a ‘‘root’’ must be subjectively placed on one of the branches.
This problem is illustrated in FIGURE 1. In the case of the carbonic anhydrase
isozymes, we are presently dealing with three isozyme lineages and have no
“‘primitive’’ carbonic anhydrase with which to root the tree. It was for this pur-
pose that we chose to characterize spinach carbonic anhydrase. However, as

CAI CAl

FIGURE 1. Four alternative trees gen- @ can
erated from a single network (center).
Placing the “‘root’’ on the three CA link- —call
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described below, it is apparently not suitable for rooting the tree as it has diverged
so radically from the animal carbonic anhydrases that it is difficult to align.
Therefore, we will assume in the absence of any other strong evidence for any
one of the three dicotomous arrangements in FIGURE 1, that the gene duplications
that led to the CA I, II, and III lineages occurred very close together in time and

that the tricotomy is correct.
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FIGURE 2. Biological phylogenetic tree constructed using the available complete and par-
tial CA sequences listed in TABLE 5. It has a nucleotide replacement length of 742. Changes
at the active-site residues shown in TABLE 4 are displayed on the branches. X = single
nucleotide substitution; ® = double mutation; ? = exact location of these substitutions are
ambiguous owing to the partial sequences (branches with broken lines). The box represents
the ancestral node at which the gene duplications occurred. Sequences in this box are those
of the active-site of the ancestral CA; those on the left are invariant; those on the right are
subsequently substituted in some lineages. Time-scale is based on the fossil record.’
Dashed lines are sequences less than 70% complete.

Two sequence data sets were used. One represented the complete alignment
of 261 amino acids comprising complete and partial sequences of eight CA Is, ten
CA IIs, and five CA Ills (TABLE 5). This data set was used to construct and test
many trees of which two are shown in FIGURES 2 and 3. The second data set
comprised the 177 sequence positions for which the human, horse, and ox CA IIIs
were completely characterized. Also included were the five CA Is and six CA 1Is
completely sequenced for these 177 positions. These residues are boxed in TABLE
5. Two of the trees constructed from these data are shown in FIGURES 4 and 5.

Using the complete sequence data set, we show a ‘‘biological’’ tree (FIGURE 2)
that has species arrangements that are consistent between the isozymes and that
are in accord with current ideas of mammalian evolution. The substitutions shown
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FIGURE 3. Phylogenetic tree of joint lowest nucleotide repiacement fength (733). Symbois
are as in FIGURE 2.
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FIGURE 4. Biological phylogenetic tree constructed using the limited sequence data set
boxed in TABLE 5. This tree has a nucleotide replacement length of 376. In this tree,
branches are drawn to scale. @ represents the mammalian divergence. Scale to the left
shows the relative evolutionary rates of the three isozymes between the gene duplications
and the mammalian divergence. Scale to the right shows the relative evolutionary rates of
the different isozymes within the mammals. Species underlined are those whose position in
the tree differs in Figure 5. Different augments nucleotide substitution rates (unweighted
average) are expressed as percentage of the rate for CA 1.
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on the branches are those at the 30 active-site residues. This particular tree
required 742 nucleotide substitutions. Another of the many trees examined was
generated by the branch-swapping algorithm*” and had the joint lowest nucleotide
replacement score (733) found. It differs from the biological tree in the arrange-
ment of the horse and ox CA I and the mouse CA II. Our purpose in constructing
the trees was not to test the species relationships themselves, which in the case of
the placental mammalian radiations may well prove an impossible task, but to
draw general conclusions about the way in which the isozymes have evolved with
respect to the active-site and other regions of the isozymes. In this regard, the
alternative trees do lead to the same conclusions: in the mammals, the active-site
residues of CA II have been evolving the least, followed by CA III and CA L
Particularly notable in CA I are the similarities of the active-site residues of turtle
CA 1 to those of the ancestral amniote CA I, in contrast to horse CA I, which has
accepted several radical substitutions (e.g., GIn-67 and Lys-69) that, as noted

"BEST" TREE (372 NR) HUMAN
CHIMP
RHESUS
cal
ox o 100%
@ 100% L-— HORSE
HUMAN
RABBIT
ox o 120%
A 3
S G SHEE . 150%
T e HT% HORSE
G 9T% R MOUSE
HUMAN
cAIm ox o 90%
o 13I%

HORSE

[E— n " . . i n
[+ 0 20 30 40 50 60 7O
AUGMENTED NUCLECTIDE SUBSTITUYIONS

FIGURE 5. Phylogenetic tree of lowest nucleotide replacement length (369) using the lim-
ited sequence data set. Branches are drawn to scale. In this tree, the mammalian divergence
is ambiguous owing to the position of mouse CA II. If this is an orthologous gene (i.e.,
represents the true mouse CA II and not a different but close relative), then the true
mammalian radiation cannot be compared since comparable mouse data for CA I and CA I
are not available. Thus rates before (0 —@) and after (@) the node make the fairest compari-
sons. Once again augmented rates (unweighted average) are expressed as percentage of the
rate for CA 1. Species underlined are those whose position differs from FIGURE 4.

earlier, may account for its low CO, hydratase activity.?* Since the gene duplica-
tions, the only major active-site change in the CA II lineage is the substitution of
Asn for His at residue 67. This change presumably resulted in the unmasking of
His-64 as discussed by Tashian et al.?

The limited sequence data set (177 amino acids and species boxed in TABLE 5)
allows us to make more precise estimates of the evolutionary rates of the three
isozymes. Once again, trees were constructed and the two that are comparable to
those in FIGURES 2 and 3 are shown in FIGURES 4 and 5. This time, the branches of
the trees are drawn to scale, the length of each branch being proportional to the
augmented number of nucleotide substitutions occurring on it. These two trees
and six others (not shown) differ only in the position of the ox, horse, and mouse
sequences. The trees range in length from 369 to 382 nucleotide substitutions. The
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rates of nucleotide substitution before and after the mammalian radiation show
the same general pattern whichever of the eight trees is chosen. Notably, before
the mammalian radiation, the substitution rate is CA III1 > CA I > CA 11. After the
mammalian radiation, the substitution rate is reversed, i.e., CAIIl < CAI <CA
I1. This pattern holds true whether the method of calculation involves averaging
all branches radiating from the ancestral node equally (unweighted) or by
weighted averaging of all the branches.

The pattern emerges, therefore, of an ancestral CA with an active site similar
to that found in the CA Il isozymes of all species. Subsequent to the gene duplica-
tions, both the CA I and CA III lineages fixed important substitutions in their
active sites that are presumably responsible for their different properties. Since
the mammalian radiation, CA 1 and, to a lesser extent CA III, have continued to
fix substitutions in their active sites. Considering the molecule as a whole, how-
ever, a different pattern emerges. After the gene duplications, the CA III lineage
in particular evolved quite rapidly. More recently, however, since the mammalian
radiation, CA III has been the most conserved, and CA 1I the least conserved, of
the three CA isozymes.

EXTERNAL CONSERVED REGIONS

One particularly intriguing aspect of the carbonic anhydrase isozymes is their true
physiological role and the puzzling need for so many different isozymes. The
relatively similar evolutionary conservatism of CA 1, CA I1, and CA III discussed
earlier leaves little doubt that all three are being selected for and do play important
physiological roles; but in the case of CA I and CA I11, it remains to be determined
what they are. In light of the fact, described earlier, that while the active site of
CA 1I has remained relatively unchanged, and presumably represents a close
approximation of the active site of the ancestral CA, the remainder of CA II has in
fact been evolving more rapidly than CA I and considerably more rapidly than CA
II1. One possible explanation is that CA I and CA I1I interact with other molecules
and that external (nonactive-site) regions are under selection. The mammalian CA
isozyme sequences documented in TABLE 5 were therefore analyzed to seek
candidates for such conserved regions, and two were found. Residues 18-37 of
CA 1 are considerably more conserved in evolution than the homologous regions
of CA Hl and CA III (TABLE 6). The only variation occurs at Asn-27 (Lys in
rabbit), Val-31 (Ile in ox and rabbit) and Thr-35 (Ser in rabbit). In CA II, variation
occurs at seven of these 20 residues and in CA III at eight residues. Residue 31 is
the site of the polymorphic allelic variation in human CA III (Ile « Val), and this
may represent selectively neutral variation.* Residues 231-250 of CA III are
remarkably conserved compared to the homologous residues in CA I and CA 11
(TABLE 7). The only variation is at Arg-243 (Ser in human}, while CA 1 varies at 11
of the 20 residues and CA II at nine residues.

One common feature of these two regions is that they are external, and they
wind around active-site regions containing residues specific to CA I and CA III.
Thus, residues 18-37 (conserved in CA 1) are close to His-200, which is thought
to be responsible for some of the different kinetic properties of CA I. Residues
231-250 (conserved in CA III) wind around the region containing Lys-64 and
behind residues 18—37. Whether or not the conservation of these regions proves to
be connected to interactions of CA I and CA III with other molecules remains to
be determined.” An alternative explanation for such conserved regions is that
selection is operating at the DNA or mRNA level.
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SPINACH CARBONIC ANHYDRASE

During the discussion of the evolutionary trees, it was assumed that CA I, CA 11,
and CA III resulted from two gene duplications occurring close together in time.
However, the determination of the structure of a carbonic anhydrase in a lineage
that diverged before these gene duplications could provide some evidence about
these events and enable us to ‘“‘root’’ the trees. Spinach carbonic anhydrase might
provide such information. It was purified according to the method of Kandel e?
al.,’® and one of the fragments obtained by chemically cleaving the enzyme at
methionine residues with cyanogen bromide was sequenced. The sequence ob-
tained showed no clear homology with the CA 1, CA I, or CA III isozymes;
however, it was decided to test this more rigorously by aligning this 20-residue
segment of sequence (with two unidentified residues) with human CA I by sliding
it along the 260-residue sequence and determining the number of sequence
matches for each of these 241 comparisons. The result is shown in TABLE 8. The
best match was five identities, and this occurred three times as shown in TABLE 9.
Of these alignments, only that between spinach residues 1-15 and human CA I
residues 77-91 shows significant evidence of homology (p = 0.1%) using the
Moore and Goodman test.* Clearly, more sequence data on spinach CA need to
be determined to align it correctly with the vertebrate CA isozyme sequences, but
it appears to be too distantly related to be useful in “‘rooting’’ the trees. Perhaps
carbonic anhydrase from a primitive chordate (e.g. tunicate) or an invertebrate
(e.g., sea urchin or Drosophila) might prove more suitable for this purpose.

SUMMARY

1. Work on membrane-bound and subcellular forms of CA at the protein
level, and the possibility of multiple forms of the mouse CA II gene at the
DNA level, indicate that CA may represent an extensive multigene family.

2. A method for classifying newly sequenced CA molecules, or genes encod-
ing them, is discussed. ’

3. Phylogenetic trees based on the existing sequence data are presented and
discussed in terms of gene evolution.

TABLE 8. Matches of the 241 Different 20 Residue Segments of Human CA 1
with a 20 Residue Spinach CA Sequence?

Number of Number of
Matching 20 Residue
Amino Acids Segments

0 72

1 102

2 39

3 19

4 6

5 3

6 or higher 0

2 This sequence is from a fragment derived from cyanogen bromide cleavage of spinach
CA purified according to Kandel ez al.’® It is shown in TABLE 9.
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4. The active-site residues of CA I have been more conserved in evolution
than those of CA 1 or CA III.

5. After the gene duplications, CA HI and CA 1 initially evolved more rapidly
than CA IL.

6. Since the mammalian radiation, the CA Il molecule as a whole has been
accepting substitutions more frequently than CA I, which in turn is evolv-
ing more rapidly than CA 111.

7. These findings can be explained if external regions of CA I and CA III
have been conserved in evolution owing to interactions with other mole-
cules. Two such regions appear to be residues 18-37 in CA I and 231-250
in CA Il

8. Spinach CA was purified and a small amount of sequence data collected.
The difficulty in aligning it with animal CAs suggests that a plant CA may
not be suitable to shed light on the active site and character of the ances-
tral eukaryote CA.
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