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Summary. Background: Hemophilia A is an X-chromosome-

linked recessive bleeding disorder resulting from an F8 gene

abnormality. Although various gene therapies have been

attempted with the aim of eliminating the need for factor VIII

replacement therapy, obstacles to their clinical application

remain.Objectives:We evaluatedwhether embryonic stem (ES)

cells with a tetracycline-inducible system could secrete human

FVIII. Methods and results: We found that embryoid bodies

(EBs) developed under conditions promoting liver differentia-

tion efficiently secreted human FVIII after doxycycline induc-

tion. Moreover, use of a B-domain variant F8 cDNA (226aa/

N6) dramatically enhanced FVIII secretion. Sorting based on

green fluorescent protein (GFP)–brachyury (Bry) and c-kit

revealed that GFP–Bry+/c-kit+ cells during EB differentiation

with serum contain an endoderm progenitor population.When

GFP–Bry+/c-kit+ cells were cultured under the liver cell-

promoting conditions, these cells secretedFVIIImore efficiently

than other populations tested.Conclusion:Our findings suggest

the potential for future development of an effective ES cell-

based approach to treating hemophilia A.

Keywords: cell-based therapy, embryonic stemcells, factor VIII,

hemophilia A.

Introduction

Hemophilia A is an X-chromosome-linked recessive bleeding

disorder resulting from an inversion or mutation within the F8

gene, and is the most common of the congenital bleeding

disorders [1]. The clinical severity of hemophilia A correlates

closely with circulating levels of factor VIII (FVIII) protein.

Current standard therapy for hemophilia A patients is replace-

ment therapy with intravenous infusion of plasma-derived or

recombinant FVIII concentrates [2]. However, the half-life of

infused FVIII is short (10–12 h), and the cost of the frequent

infusions necessary to maintain adequate plasma levels of

FVIII is extremely high. Consequently, the development of a

novel therapy leading to constitutive supply of FVIII is much

desired in the next stage of the treatment of hemophilia. For

that reason, gene therapy for hemophilia has received a great

deal of attention [3]. Constant and sustained FVIII synthesis

mediated by gene therapy in patients would obviate the risk of

spontaneous bleeding without the need for repeated FVIII

infusions. Although the gene therapy approach has shown

promise in a mousemodel [4], some drawbacks, such as hepatic

damage or viral contamination in the non-motile sperm, have

been reported [5,6].

As another approach, orthotopic liver transplantation

(OLT) has also been attempted for the treatment of hemophilia

[7]. Moreover, recent studies have shown that transplantation

of hepatocytes [8] or sinusoidal endothelial cells [9] corrects the

hemophilia A phenotype in mice, suggesting that cell-based

therapy using primary cultured cells may be a useful approach

to treating hemophilia. However, a disadvantage of these

therapies is that there is a shortage of donors for trans-

plantation or cell isolation.

Given the limitations of all the aforementioned therapies, we

evaluated the potential of a cell-based therapy that makes use

of embryonic stem (ES) cells as the source of active human

FVIII. ES cells retain their totipotential capacity when
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maintained on mouse embryonic feeder (MEF) cells and are

able to spontaneously differentiate and generate various

lineages via the embryoid body (EB) stage. We hypothesized

that ES cell-based therapy would have unique characteristics

that would enable us to overcome the problems associated with

gene therapy or primary cultured cell transplantation. First, ES

cells can provide a cell source with unlimited expansion

capacity, thereby overcoming the shortage of donors for OLT

or primary cultured cell transplantation. Second, hepatic

damage or the contamination in the non-motile sperm fraction

by viral vectors would be avoided, as there is no virus present.

In this study, to induce the human F8 gene in ES cells, we

used an ES cell line (Ainv18) that enables the inducible

expression of the F8 gene under the control of a tet-inducible

promoter [10]. Although Ainv18 ES cells have been used

previously for functional analysis of the transcriptional factors

HoxB4 and Hex [10,11], we used them for synthesis of a

secretable protein. Together, these advantageous features could

make ES cell-based therapy an effective approach to the

treatment of hemophilia A. Our aim in the present study,

therefore, was to establish anES cell line capable of doxycycline

(Dox)-inducible F8 gene expression and to determine the most

suitable differentiation conditions for secretion of FVIII. We

show that ES cells can secrete FVIII with antigen and

coagulant activity, suggesting that ES cell-based therapy may

be a potentially useful approach to treating hemophilia A.

Materials and methods

Growth and differentiation of ES cells

ThecDNAconstruct harboring the full-lengthhumanwild-type

(WT)-F8 was described previously [12], as were the B-domain-

deleted (BDD)-F8 and 226aa/N6 cDNAs [13]. Ainv18 ES cells

(a kind gift from M. Kyba and G. Q. Daley) were transfected

with the WT-F8-plox, BDD-F8-plox or 226aa/N6-plox target-

ing plasmids by electroporation, yielding tet-WT-F8, tet-BDD-

F8 and tet-226aa/N6ES cells, afterwhich the transfectants were

selected with G418, as described previously [11]. Green fluores-

cent protein (GFP)–brachyury (Bry) Ainv18 ES cells (S. Irion

et al., unpublished data) were established by targeting GFP to

the Bry locus in Ainv18 ES cells [14].

ES cells were maintained on MEF cells and were passaged

twice on gelatin-coated dishes before EB formation, as

previously described [15]. To generate EBs, ES cells were

dissociated to a single cell suspension with 0.25% trypsin/

EDTA and cultured at various concentrations (1–8 · 103

cells mL)1) in 60-mm Petri-grade dishes in serum-containing

differentiation medium [Iscoves� modified Dulbecco�s
medium (IMDM) supplemented with penicillin–streptomycin,

2 mM glutamine (Gibco/BRL, Grand Island, NY, USA),

0.5 mM ascorbic acid (Sigma-Aldrich, St Louis, MO, USA),

0.45 mM monothioglycerol (MTG; Sigma-Aldrich), 15% fetal

bovine serum (FBS; Vitromex, Geilenkirchen, Germany),

5% protein-free hybridoma medium (Gibco/BRL) and

200 lg mL)1 transferrin (BoehringerMannheim, Indianapolis,

IN, USA)]. Cultures were maintained in a humidified chamber

in a 5% CO2/air mixture at 37 �C.
The experimental protocol is depicted schematically in

Fig. 1A. When EBs were cultured in differentiation medium

for 6 days, EBs differentiated into the mesodermal lineage,

which includes mainly hematopoietic and endothelial cell

populations (hematopoietic-like EBs). For liver differentiation,

EBs were cultured in differentiation medium for 3 days and

then transferred to serum replacement (SR) medium [IMDM

supplemented with 15% knockout SR (Gibco/BRL), penicil-

lin–streptomycin, 2 mM glutamine, 0.5 mM ascorbic acid,

0.45 mM MTG] and cultured for an additional 7 days. On

day 10, the EBs were harvested and replated in 12-well tissue

culture dishes coated with Matrigel (Becton Dickenson, San

Jose, CA, USA) in IMDM with 15% FBS and 1 lM
dexamethasone (Dex; Sigma-Aldrich), which led to the

development of liver-like EBs [15].

Undifferentiated ES cells were passaged twice on gelatin.

Hematopoietic-like EBs cultured with serum for 6 days were

replated on 12-well culture dishes coated with Matrigel in

IMDM with 15% FBS and 1 lM Dex for 2 days. Undifferen-

tiated ES cells, day 8 hematopoietic-like EBs and day 13 liver-

like EBs were stimulated with Dox for 2 days before assay. For

in vitro assay of FVIII, the culture media were replaced with

500 lL of serum-free IMDM medium containing 5 mg mL)1

bovine serumalbumin (Calbiochem, SanDiego, CA,USA) [16]

with or without human FVIII-free von Willebrand factor

(VWF; Haematologic Technologies, Essex Junction, VT,

USA). Twenty-four hours later, the supernatant and cell

samples were harvested for determination of FVIII activity

(FVIII:C) and FVIII antigen (FVIII:Ag) or protein levels.

Gene expression

For gene-specific reverse transcription polymerase chain reac-

tion (RT-PCR), total RNA was extracted using RNeasy mini-

kits and treated with RNase-free DNase (Qiagen, Valencia,

CA, USA). One microgram of total RNA was reverse-

transcribed into cDNA using a Superscript RT kit (Invitrogen,

Carlsbad, CA, USA) with random hexamers. PCR was carried

out using Taq polymerase (Takara Bio, Shiga, Japan) in PCR

buffer, 2.5 mM MgCl2, and 0.2 mM dNTPs. The primers for

human specific F8were 5¢-AGAGTTCCAAGCCTCCAACA-

3¢ (sense) and 5¢-TAGACCTGGGTTTTCCATCG-3¢ (anti-

sense). The cycling protocol entailed one cycle of 94 �C for

5 min, followed by 25–35 cycles of denaturation at 94 �C for

1 min, annealing at 60 �C for 30 s and elongation at 72 �C
for 1 min, and a final incubation at 72 �C for 7 min.

Oligonucleotides for Rex1, Gata1, Albumin1 (Alb), transthy-

retin (Ttr), tyrosine aminotransferase (Tat), a-fetoprotein (Afp),

Foxa2, Sox17, Cereberus, E-cadherin (E-cad), Hex and b-actin
have been previously described [15,17]. Quantitative real-time

RT-PCR analysis was performed with an Applied Biosystems

Prism 7700 Sequence Detection System using TaqMan�

universal PCR master mix according to the manufacturer�s
specifications (Applied Biosystems, Foster City, CA, USA).
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The TaqMan probes and primers for human F8 (assay

identification number Hs00240767) and mouse F8 (assay

identification number Mm00433174) were assay-on-demand

gene expression products (Applied Biosystems). The mouse b-
actin gene (assay identification number Mm00607939) was

used as an endogenous control.

FVIII assay

FVIII:C was measured in a one-stage activated partial

thromboplastin time (APTT) clotting assay in a coagulometer

(KC10A; Amelung, Lemgo, Germany) using human FVIII-

deficient plasma (George King Biomedical, Overland Park,

KS, USA). Activated partial thromboplastin and CaCl2 were

purchased from bioMerieux (Durham, NC, USA). FVIII:Ag

was quantified using human FVIII-specific enzyme-linked

immunosorbent assay (ELISA) kits (FVIII:C-EIA, Affinity

Biologicals, Ancaster, ON, Canada), according to the manu-

facturer�s instructions. These ELISA kits employ FVIII light

chain specific antibody, and is the same kits used for 226aa/N6

detection previously [13]. For measurement of both FVIII:C

and FVIII:Ag, a standard curve was generated using normal

human plasma (Coagtrol N; Sysmex, Kobe, Japan) in serial

doubling dilutions (1 : 10 to 1 : 1280) in 0.05 M imidazole

saline buffer. Each supernatant sample was applied to these

assays without dilution rather than 10· dilution. Therefore,

FVIII:C and FVIII:Ag levels of culture supernatant samples

should be considered as 1/10 of the raw data. We calculated

FVIII:Ag levels in normal human plasma as 1 nM. The

detection limits of the FVIII:C and FVIII:Ag assays were

10 mIU mL)1 and 10 pM, respectively. The attached cell

samples in each well were also harvested to determine the

amount of protein by a BCA protein assay (Pierce Biotech-

nology, Rockford, IL, USA). Although these types of data are

typically signified in terms of cell number, it is very difficult to

count cell numbers in liver-like EBs, due to formation of tight

aggregates. In order to adjust secretion levels from the equal

protein levels of EBs, FVIII:C and FVIII:Ag levels in the

supernatant of each well were adjusted by protein amount of

attached cells in the same well. Data are shown as �not detected�
when the raw data for FVIII:C and FVIII:Ag were under the

detection limit of the assays (10 mIU mL)1 and 10 pM,

respectively).

Cell sorting

Day 3.5 EBs were dissociated with trypsin–EDTA, stained

with anti-mouse c-kit-phycoerythrin (BD PharMingen, San

Diego, CA, USA) in IMDM supplemented with 5% FBS, and

sorted in a FACS Aria cell sorter (Becton Dickinson). After

sorting, the cells were reaggregated in SRmedium and cultured

using the liver differentiation protocol.

Results

Tet-WT-F8 ES cells secrete active human FVIII protein

Using the Ainv18 ES cell line, we established ES cells in which

the F8 gene was induced by the tetracycline analog Dox (tet-

WT-F8 ES cells). Tet-WT-F8 ES cells were cultured such that
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Fig. 1. Expressions ofWT-F8mRNAby doxycycline (Dox) stimulation in undifferentiated embryonic stem (ES) cells, hematopoietic-like embryoid bodies

(EBs) and liver-like EBs. (A) Schema of the experimental protocol. (B) Reverse transcription polymerase chain reaction (RT-PCR) analysis of variable
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(1 lg mL)1). The data presented are means of three independent experiments; the error bars represent the SEM. VWF, vonWillebrand factor; SR, serum

replacement.
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we were able to obtain three different cell types: undifferenti-

ated ES cells, enriched hematopoietic EBs (hematopoietic-like

EBs), and enriched liver EBs (liver-like EBs). RT-PCR analysis

revealed that tet-WT-F8 ES cells were well differentiated under

hematopoietic cell-promoting conditions (hematopoietic con-

ditions) or liver cell-promoting conditions (liver conditions;

Fig. 1B), which is consistent with earlier findings [15].Rex1 and

Gata1 are marker genes for undifferentiated ES cells and

hematopoietic cells, respectively. Alb, Ttr and Tat are marker

genes for liver cells. Recently, we further confirmed that liver-

like EBs also secreted albumin and transferrin (A. Kubo,

unpublished data). Addition of Dox (1 lg mL)1) to the culture

medium successfully upregulated F8 mRNA expression under

all three differentiation conditions (Fig. 1B). We also quanti-

tatively analyzed mRNA expression by real-time PCR

(Fig. 1C). Interestingly, F8 mRNA levels in undifferentiated

ES cells weremuch higher than those in hematopoietic-like EBs

and liver-like EBs. The reason for this is currently unclear.

However, we deduce that gene induction by Dox may be more

effective in undifferentiated ES cells than in the other differ-

entiated EBs because of the three-dimensional structure of EBs.

On the other hand, F8mRNA expression levels of the two cell

types were found to be identical. Mouse F8 mRNA was not

induced in liver-like EBs (data not shown). Among the

different cell types, FVIII:C and FVIII:Ag were detected only

in the supernatant from liver-like EBs; neither was detected

with undifferentiated ES cells or hematopoietic-like EBs

(Fig. 2A,B). Apparently, the differentiation conditions and

the resulting cell types are critical to the production and

secretion of FVIII, despite the mRNA levels induced by Dox.

In the presence of 2.5 lg mL)1 of VWF, Dox-induced levels of

both FVIII:C and FVIII:Ag were increased to about twice that

seen in the absence of VWF (data not shown). Accordingly,

VWF was added at a concentration of 2.5 lg mL)1 in

subsequent experiments. We also assessed the effect of Dox

concentrations on FVIII secretion. When liver-like EBs were

stimulated with various concentrations of Dox, the level of F8

mRNA increased in a dose-dependent manner with increasing
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Dox concentrations (Fig. 2C), and there were corresponding

increases in both FVIII:C and FVIII:Ag (Fig. 2D,E).

Tet-226aa/N6 ES cells secrete active FVIII more efficiently

than tet-WT-F8 ES cells

Earlier reports showed that BDD-F8 is more efficient than

WT-F8 for FVIII production, because higher mRNA levels are

achieved [18,19]. In addition, Miao et al.[13] bioengineered a

BDD-F8 variant with 226 amino acids of the native F8

B-domain that includes six asparagine-linked glycosylations

(226aa/N6). They showed that COS-1 or CHO cells transfected

with 226aa/N6 secrete active FVIII more efficiently than WT-

F8- or BDD-F8-expressing cells. To evaluate these three F8

types with respect to FVIII production and secretion, tet-WT-

F8 ES cells, tet-BDD-F8 ES cells and tet-226aa/N6 ES cells

were cultured under the liver conditions. Real-time PCR

analysis showed that BDD-F8 mRNA was expressed 2-fold

higher thanWT-F8, and 226aa/N6mRNA levels were between

those of WT-F8 and BDD-F8 (Fig. 3A). These results suggest

that the length of the B-domain may affect the transcriptional

levels of the F8 gene.

FVIII secretion in liver-like EBs from tet-BDD-F8 ES cells

was about 1.5-fold higher than in those from tet-WT-F8 ES

cells (Fig. 3B,C). Furthermore, FVIII secretion in liver-like

EBs from tet-226aa/N6 ES cells was about 6–10-fold higher

than in those from tet-WT-F8 ES cells (Fig. 3B,C). These

results demonstrated that the construct of 226aa/N6

efficiently produced higher levels of F8 regardless of

transcriptional levels.

Comparison of FVIII secretion in population sorting based

on the Bry/c-kit

Recently, Gouon-Evans et al. showed that activin can induce

definitive endoderm in the absence of serum and that the GFP–

Bry+/c-kit+ population was the definitive endoderm progen-

itor under this condition [20]. We tested whether the GFP–

Bry+/c-kit+ population cultured in the presence of serum also

contained endoderm progenitors, and which subpopulation

gave rise to FVIII-secreting cells. Tet-226aa/N6 ES cells were

differentiated for 3.5 days in the presence of serum, at which

time the GFP–Bry+ and c-kit+ populations had been induced

(Fig. 4A). On the basis of earlier studies [14,20], the GFP–

Bry+/c-kit) and GFP–Bry+/c-kit+ cell fractions were deemed

to be mesoderm and endoderm, respectively. After the

population was sorted and harvested for RNA isolation, RT-

PCR showed that Foxa2 and Sox17, which are normally

expressed in endoderm, were expressed primarily in GFP–

Bry+/c-kit+ cells (Fig. 4B). Cereberus and E-cad, which are

expressed in ES cell-derived endoderm [17], and Hex, which is

an important transcriptional factor for liver specification [21],

were also strongly expressed in the GFP–Bry+/c-kit+ fraction.

Taken together, these results suggest that GFP–Bry+/c-kit+

cells cultured in the presence of serum contained the definitive

endoderm population.

After sorting, each of the populations derived from tet-

226aa/N6 ES cells was reaggregated in SR medium and

cultured under the liver conditions. On day 15, EBs derived

from GFP–Bry+/c-kit+ cells expressed Afp and Alb mRNA

more strongly than either presorted or GFP–Bry+/c-kit) cells

(Fig. 4C). We then examined the cell populations responsible

for the FVIII secretion, and we found that EBs derived

from the GFP–Bry+/c-kit+ population were more active

for FVIII secretion than the presorted EBs following

induction with Dox (Fig. 4D,E). By contrast, GFP–Bry)
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and GFP–Bry+/c-kit) cells did not secrete FVIII at all, even

after induction with Dox.

Discussion

ES cells capable of secreting human FVIII may represent a

unique source for a future cell-based treatment protocol for

hemophilia. In the present study, we were able to establish

mouse ES cells secreting functional human FVIII with

coagulant activity. Tet-WT-F8 ES cells were established by

integrating full-length human F8 cDNA under the control of

the tet operator, which enabled F8 transcription to be induced

by Dox stimulation. We found that levels of FVIII secretion

depended on the conditions under which the ES cells were

differentiated, regardless of F8mRNA expression. Among the

conditions that we evaluated, those leading to development of

endoderm/liver EBs were the most suitable for efficient FVIII

secretion. Furthermore, the efficacy of FVIII secretion was

dramatically improved by using 226aa/N6 cDNA, a recently

described B-domain variant of F8 [13]. To our knowledge, this

is the first report of an ES/EB system that secretes detectable

levels of active human FVIII in vitro.

We found it noteworthy that FVIII was present in the

supernatant of liver-like EBs, but not in that of undifferentiated

EScells or hematopoietic-likeEBs, although the inductionofF8

mRNA was detected in all conditions. It has previously been

shown that the transcriptional activity of F8 is not a critical

determinant of plasma FVIII levels, and that mRNA levels are

not, themselves, sufficient to predict FVIII secretion [22]. The

primary FVIII translation product must be translocated into

the lumen of the endoplasmic reticulum (ER), where folding

and N-linked glycosylation occurs. Improperly folded FVIII

molecules are recognized by chaperones and are not released,

but are instead transferred into degradative pathways [23]. Our

results indicate that cells with this capacity only appear during

differentiation of liver-like EBs, making themmore suitable for

FVIII secretion thanundifferentiatedES cells or hematopoietic-

like EBs. Although liver-like EBs expressed hepatocyte-specific

marker gene such as Alb, Ttr and Tat, mouse F8 mRNA was

not induced. The reason for this is currently unclear, but liver-

like EBs may be still have an immature phenotype for

endogeneous F8 expression. Previous reports have demon-

strated that platelets are good targets for the lentivirus-mediated

gene therapy of FVIII production [24]. Our hematopoietic EBs

were previously showed to contain megakaryocytes, but not

platelets [11]. Thus, hematopoietic EBs probably fail to produce

FVIII because of the immature differentiation of platelets from

megakaryocytes.
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Fig. 4. GFP--Bry+/c-kit+ cells contain the definitive endoderm progenitors and efficiently secrete FVIII. (A) FACS profile for GFP–Bry and c-kit

among day 3.5 embryoid bodies cultured in serum-containing medium. (B) Reverse transcription polymerase chain reaction analysis demonstrating the

presence of endoderm-related genes in populations derived from presorted cells (pre) or cells sorted on the basis of GFP–Bry and c-kit. (C) Cells from

presorted populations or those sorted on the basis of GFP–Bry and c-kit were reaggregated for 1 day, and then cultured in serum replacement medium

and replated on day 10. Alb and Afp mRNA was expressed in GFP–Bry+/c-kit+ cells on day 15. (D, E) Levels of FVIII:C (D) and FVIII:Ag (E) in

medium conditioned by presorted cells and those sorted on the basis of GFP–Bry and c-kit, with or without doxycycline (Dox) (1 lg mL)1) induction.

The data presented are means of three independent experiments; the error bars represent the SEM. ND, not detected; FITC, fluorescein isothiocyanate;

PE, phycoerythrin; GFP, green fluorescent protein; Bry, brachyury.
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We also observed that the 226aa/N6 construct is an

extremely useful tool for FVIII production from ES cells. It

is known that expression of BDD-F8 results in a seventeen-fold

increase in mRNA levels over WT-F8, although it yields only a

1.3-fold increase in the amount of secreted protein [22]. As the

reason for imbalance between mRNA and protein levels,

BDD-F8 may have a defect in efficient transfer of the primary

translation product from the ER to the Golgi via interaction

with the 53-kDa ER–Golgi intermediate compartment protein

[25]. To overcome this problem, Miao et al. [13] created

another bioengineered construct, 226aa/N6. They showed that

transfecting COS-1 and CHO cells with 226aa/N6 resulted in a

4–11-fold increase in FVIII secretion, as compared to trans-

fection with BDD-F8. Consistent with those studies, we found

that BDD-F8 improved FVIII secretion only about 1.5-fold, as

compared to WT-F8, whereas tet-226aa/N6 ES cells showed a

ten-fold increase in FVIII secretion, as compared to tet-WT-F8

ES cells. Thus 226aa/N6 appears to provide a significant

advantage over BDD-F8 with respect to FVIII production

from ES cells, making it the optimal construct for FVIII

secretion.

In our data, the levels of FVIII:C seem to be higher than

those of FVIII:Ag, especially in tet-226aa/N6 ES cells. To

investigate this discrepancy, we also assessed FVIII:C by a

COAtest chromogenic assay (Chromogenix,Mölndal, Sweden)

with recombinant FVIII as a standard. In this experiment,

FVIII:C was detected at lower levels (about 40–50%) than that

evaluated by plasma standard (data not shown). These results

were in good accordance with previous reports that FVIII:C

level against a plasma standard was higher than that against a

recombinant FVIII standard by the chromogenic assay [26].

Thus, the discrepancy between FVIII:C and FVIII:Ag may

result from the overestimation of FVIII:C by the APTT

clotting assay with plasma standard.

Recently, Gouon-Evans et al. [20] demonstrated that

the GFP–Bry+/c-kit+ cell population contained definitive

endoderm progenitors when ES cells were differentiated in

serum-free medium with activin stimulation. Using serum

differentiation, we also found that the GFP–Bry+/c-kit+ cell

population contained endoderm progenitors and that cells with

the liver marker genes Alb and Afp appeared in this fraction.

We further showed that cells differentiated from endoderm

progenitor (GFP–Bry+/c-kit+) cells secreted FVIII more

efficiently on day 14 of differentiation than presorted cells.

By contrast, the sorted GFP–Bry) (ectoderm progenitor) and

GFP–Bry+/c-kit) (mesoderm progenitor) fractions secreted no

FVIII, even after induction with Dox. These findings suggest

that cells with the capacity for FVIII production are probably

present within endoderm-derived tissue such as liver.

When we consider applying these strategies for human

therapy, safety issues will be a big concern. An earlier study

showed that grafts containing the undifferentiated ES cells

rapidly form teratomas, even when only 0.2% of the cells

within the transplanted clusters are positive for the undiffer-

entiated marker SSEA-1 [27]. A recent study succeeded in

transplanting ES-derived cardiomyocytes without evidence of

teratoma formation in in vivo mouse models when selectable

markers were employed to eliminate undifferentiated ES cells

[28]. Thus, it will probably be necessary to develop a system

involving selection markers in our tet-226aa/N6 ES cells for

further in vivo studies.

In conclusion, we established ES cells secreting humanFVIII

with tetracycline regulation. The combination of endoderm

progenitors, liver condition and 226aa/N6 cDNA could

improve production to a significant level of human FVIII from

ES cells. Our in vitro findings will be the first step for ES cell-

based therapy as a potentially useful approach to the treatment

of hemophilia A. Further in vivo studies are anticipated.
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