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Summary. A two-space singular perturbation technique is employed to derive 
approximate governing equations for flow of a viscous heat-conducting fluid 
through a rigid porous solid. It is assumed that buoyancy forces are signifi- 
cant, and it is shown that standard approximations used in the study of flow 
through a porous medium are valid provided that G r <  1 ,  where Gr is a 
Grashof number calculated using a typical pore radius as the length scale. 
Results previously derived in the literature for flow through an isotropic 
random array of spherical particles are used to show how the permeability 
and conductivity tensors can be calculated for a problem of interest in 
planetary science. 
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1 Introduction 

Determining effective heat and mass transport properties for fluid flow and heat transfer in 
a porous medium is an important problem in the study of geothermal systems (Cheng 1978), 
soil consolidation (Biot 1955), climate changes in the Martian atmosphere (Fanale ef al.  
1982), and a number of other cases of interest in geophysics and planetary science. The most 
widely used approach for deriving approximate theories for the treatment of flow through a 
porous medium involves the use of a local averaging technique (Gray 1975; Gray & O’Neill 
1976; Whitaker 1977; Hassanizadeh & Gray 1979). Unfortunately, the equations obtained 
through use of the method are incomplete in the sense that direct measurements are needed 
to provide the values of various constants which enter into the analysis. Continuum 
mechanics theories of the type developed by Truesdell and others (Truesdell 1984) suffer 
from the same drawback, and the probability approach reviewed by Batchelor (1974) is 
difficult to apply in most cases. 

Measurement of effective transport properties is seldom easy, and in some cases is 
prohibitively difficult. Consequently, much effort has been devoted to  relating bulk 
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properties to the small-scale structure and character of the medium. A number of such 
studies have been carried out for the case of constant pressure and temperature gradients, 
and will be cited later in the text. For practical purposes it is necessary to relate such studies 
to the more general case in which the gradients of macroscopic properties are nonuniform. 
Since the macroscopic problem is usually characterized by a length scale large compared to 
the length scale of the inhomogeneities, a singular perturbation treatment based on the use 
of a two-space approach appears t o  be the most logical method for deriving the macroscopic 
equations and for determining effective bulk material properties. The two-space procedure 
is compatible with the averaging method, and can be understood as a technique for 
evaluating integrals appearing in the latter method by expressing them in terms of the 
solution of a small-scale problem. 

Investigations employing this method have been carried out in the study of slow flow of a 
viscous barotropic fluid through a porous medium (Keller 1980), of the equations of poro- 
elasticity (Burridge & Keller 1981 ; Sanchez-Palencia 1980), and, in an informal application 
of the method, of Fickian diffusion in a porous medium (Carbonell & Whitaker 1983). The 
purpose of the present study is to generalize this work by considering coupled heat and mass 
transfer for flows such that the buoyancy force in the hydrodynamic momentum equation 
is significant in driving the motion. A scale analysis of the hydrodynamic equations for this 
case indicates that the Grashof number calculated using a typical pore radius as a length 
scale serves as the Reynolds number for the small-scale flow. Examples are cited to  show 
that the Grashof number is small in all cases of practical interest, and this result is used in 
deriving the equations which govern the large-scale flow. 

In addition to deriving these equations, we establish general properties of the perme- 
ability and conductivity tensors. We also use the results mentioned in the previous paragraph 
for the uniform gradient case to  indicate how these tensors can be calculated for flow 
through an isotropic random array of spherical particles, which appears to be a reasonable 
model for determining transport properties of the Martian regolith in studies of the type 
carried out by Fanale et al. Application of the results derived here is reserved for future 
study. 

2 Formulation 

We consider flow of a viscous fluid through a rigid porous solid, and we use the Boussinesq 
approximation in treating the hydrodynamic equations. Let x = (x, y ,  z) denote the position 
vector, 6 the difference between the temperature in the solid and a reference temperature, 
T the temperature difference in the fluid, p the fluid pressure, u the fluid velocity, p the 
fluid density evaluated at the reference temperature, g the gravitational vector, V f  the 
volume occupied by the fluid, V, the volume occupied by the solid, and A the boundary 
between the fluid and the solid. Then, taking the z-axis as the vertical direction and ri as the 
unit normal to A pointing into the solid, the governing equations are 

v . u = o  (2.1) 

Du 1 
- + - V p  = vV2u - gk(1 - PT),  
Dt P 

DT 

Dt 
c f  -=  k f V 2 T ,  
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in V f ,  

ae 
at 

c, - = k,V28, (2.4) 

in V,, and 

u = O ,  k f i i .  V T = k , i i * V t l ,  T = 8 ,  (2.5) 

on A .  It is assumed that the kinematic viscosity u ,  the coefficient of thermal expansion 0, the 
specific heats at constant pressure per unit volume c f  and c,, and the thermal conductivities 
k f  and k ,  are constants, and that thermal expansion of the solid can be neglected. 

We now define a characteristic length scale h for the pores, a macroscopic length scale H ,  
a velocity scale U ,  and a temperature scale AT, with h < H .  Introducing the scaled variables 

x* = x / H ,  t* = vt/H2, p *  = [h2/(puUH)](p t pgz), 

u* = u/U, T ,  = TIAT, 0 = 8lAT, (2.6) 

and expressing the governing equations in terms of the scaled variables yields a dimensionless 
form of these equations in which 

E = h/H (2.7) 
appears as a small parameter. The characteristic pore radius is O(E)  when expressed in 
dimensionless form, and so, omitting asterisks, the dependent variables are functions of both 
x and 

y = X I € .  (2.8) 
To treat the equations for this case we use a two-space method in which x and y are regarded 
as independent variables. In the present study we assume that the pores form a periodic 
array, that all functions f ( x ,  y ,  t )  are periodic in y,  and that all surfaces A separating the 
fluid and solid in a periodic cell are closed. The slowly varying part o f f  can then be 
determined by averagingfover a periodic cell. 

In the two-space approach the gradient operator is given by 

v =  V,+E-lVy,  (2.9) 

v, * u i- EV, - u = 0 ,  (2.10) 

and the dimensionless equations of motion become 

au 1 

at E 
e2 - + + R u ~ ( v ~ u + E v , u ) +  - V , ~ + V , ~ = D ~ U + B I ; T ,  (2.1 1) 

2T 1 

a t  Of 
E’ - i- ER u s  ( V y T +  EV,T)= - D’T, 

together with the boundary conditions 

u = O ,  i i * ( V y T + e V , T ) = o l ~ ~ ( V y O + ~ V , e ) ,  T = 8 ,  

in which D2 is the Laplacian operator given by 

D2 = V $  + 2eVy - 0, + e2V$.  

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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In these equations the ratio of thermal conductivities 01 and the Prandtl numbers uf and us 
are defined by 

Q = ks/kf, Of = (VCf)/kf, 0 s  = (vc,)/ks, (2.16) 

and the Reynolds number R and buoyancy parameter B are defined as 

R = r/E, B = U T / U ,  (2.17) 

in which 

r = Uh/v, U1 = @gA Th2) /v ,  (2.18) 

denote a Reynolds number based on the pore length scale and a free convection velocity 
scale. 

Flow in a porous medium is driven by a combination of buoyancy and mechanical forces, 
for which the velocity scales are given by (2.18) and by U M ,  a mechanical velocity scale 
associated with an imposed pressure gradient or the motion of distant boundaries. In the 
forced convection case, described mathematically by UT < UM,  the appropriate choice for 
the velocity scale is U = UM , and the buoyancy force can be neglected in the treatment of 
the small-scale dynamics. Here we consider mixed free and forced convection, and 
accordingly we take U =  U,. Then B =  1, and the small-scale Reynolds number is given by 
r = Gr, where 

Gr = @ g A T h 3 ) / u 2 ,  (2.19) 

is a Grashof number based on the length scale of the pores. Previous studies of flow in a 
porous medium show that Darcy's law is applicable only for small values of the small-scale 
Reynolds number, and therefore we must determine the magnitude of the Grashof number 
for flows of practical interest. 

To provide examples of the magnitude of the Grashof number, we consider two cases of 
interest, the flow of carbon dioxide through the assemblage of small boulders which make 
up the Martian regolith, and the flow water through high-permeability sandstone in a 
terrestrial geological formation. Using currently accepted values for the physical properties 
of interest, we fmd that 

/3 = 0.004 K-', 

u =  7 cm2 s-', h = 0.1 cm, (2.20a) 

for the Martian case, and 

0 = 2 ~ l O - ~ K - ' ,  g=981 cm2 s-l, 

v =  0.01 cm2 s-', h = 0.001 cm, (2.20b) 

for flow through terrestrial sandstone, which yields 

g = 376 cm2 s-l, 

GrMars = (AT)/(3 x lo4 K), GrEarth = (AT)/(5 x lo5 K). (2.21) 

As indicated by (2.21), Gr e 1 in all cases of physical interest, and since E is also small, 
the governing equations can be solved by expanding the dependent variables in powers of 
both small parameters. Carrying out such an expansion and working to lowest order in Gr 
yields the same solutions as those obtained by assuming that Gr = O ( E ) .  Therefore, (2.10)- 
(2.14) w d  be treated for the case ce 1 with B =  1 and with R assumed to be an O(1) 
quantity. 
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We conclude this section by noting that in applications of the two-space method the 
dependence of the dependent variables on the slow space scale x is chosen to eliminate 
secularities in the dependence of these variables on the fast scale y. In continuum mechanics 
studies the relations which eliminate secularities can be obtained most efficiently by 
averaging the equations of motion over a domain in y-space. This method will be applied in 
the next section to derive the equations governing the large-scale motion. 

3 Analysis 

Expanding T i n  the form 

T = T ~ + E T I +  . . . ,  (3.1) 

and substituting into (2.12) shows that To is independent of y. Thus, turning to the 
continuity and momentum equations (2.10) and (2.1 1) and expanding the other dependent 
variables in the form (3.1), we obtain 

Po = Po(% t) ,  (3 .2) 

v, uo = 0, (3 -3) 

VyP1 = v;.o -(V,Po ~ TOG), ( 3  -4) 

vy - u1 + v, uo = 0. (3.5) 

and 

Because (3.3) and (3.4) are linear, the solution for V,pl and uo can be expressed in the 
form 

uo = - U(Y) ( V x p 0  - Tot), V,PI  = - (V,n) (V,p0 ~  TO^), (3 -6) 

in which n is a vector, U is a second-order tensor, and tensor notation (Bird et al. 1977, 
appendix A) is used in computing the y-gradient of n. Here n and U solve 

v, - u = o ,  
V,n= v;u t- I, 

where I is the unit tensor and where U vanishes on A and is periodic in y. 
In engineering applications the average velocity is usually defined as a superficial average 

rather than an interstitial mean. Therefore, we define superficial averages w and W of uo and 
U through the relations 

(3.9) 

where the integrals are taken over the fluid part of a periodic cell and where V,  is the total 
volume of the cell. The properties of W can be determined by dotting UT into (3.8), 
averaging, and expressing the result in component form. Use of the divergence theorem and 
the boundary and periodicity conditions yields 

Wrnk = [(vyujrn) * (Vyuik)] , (3.10) 

where the brackets denote the average. It can be seen by inspection that W is symmetric, 
and therefore a set of axes exists in which W is diagonal. Expressing (3.10) in this set 
of axes shows that the diagonal elements of W are positive, and so W is positive definite. 
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This result was stated without proof in a paper by Saffman (1971) concerning boundary 
conditions for flow in a porous medium. 

Averaging (3.5) and (3.6) and noting that the average of the first term in (3.5) vanishes 
because of the boundary and periodicity conditions, we obtain 

w = - W 

and 

v,. w = o .  (3.12) 

Equations (3.1 1) and (3.12) provide a generalized form of Darcy’s law, in which the perme- 
ability tensor W is a positive definite symmetric matrix. If the material is isotropic on the 
small scale, W is a positive scalar multiple of the unit tensor. 

It is convenient before treating the temperature equations to multiply (2.12) by uf  and to 
integrate the result over the fluid part of the volume of a periodic cell, to multiply (2.1 3) by 
&us and to integrate over the solid part of the cell, and to  add the two integrals. Dividing the 
result by E’ and using the second of the boundary conditions (2.14) yields 

( V,  p o  ~ To c), (3.1 1) 

+ E - ~  / r? - (V,T - aVJ3)dA 

To treat (2.12) and (2.13), we expand T and 8 in powers of E ,  and obtain 

To = T O ( X ,  t),  

and 

V $  T I  = 0 ,  

along with the boundary conditions 

I?. (V,,T,  -aV,,Ol)=(a- 1);- V x T o ,  

6 0  = To(x, t ) ,  

V $ B 1  = 0 ,  

T I  = e l  

(3.13) 

(3.14) 

(3.15) 

(3.16) 

on A .  The equations for T I  and 8 I are linear, and so these variables can be expressed in the 
form 

TI = G(Y) - VXTO -I- $(x, 0, 81 = H(Y) ’ VXTO -I- J/(% t),  (3.17) 

where G and H are vectors satisfying Laplace’s equation in their domains of definition, J/ is 
an arbitrary additive function, and G and H satisfy 

n ^ *  V y ( G - a H ) = ( a - l ) r ? ,  G = H ,  (3.18) 

on A and a periodicity condition. 
Properties of the second-order tensor 

(3.19) 

can be obtained as follows. Multiply the Laplace equations satisfied by G and H by G and 
aH, respectively, integrate the resulting equations over the volumes occupied by the fluid 
and solid in a periodic cell, and apply the boundary and periodicity conditions. Use of the 



Flow through a porous medium 281 

divergence theorem then shows that 

( a -  l ) s m k = { / v ( v y G m ) *  ( V y G k ) d v + a  [ ( V y H m ) .  ( v y H k ) d v } / v t ,  

which in turn implies that (a - 1)s is symmetric and positive definite if ar # 1. 
We now substitute (3.14) and (3.17) into (3.13), and we note that the contribution t o  

this expression involving the additive function J /  in (3.17) is proportional to the integral of 
n̂  over the closed area A ,  and therefore vanishes. Dividing (3.13) by Vt and letting 

@f = Vf/Vt, @s = vs/vt, (3.21) 

denote the volume fractions of the fluid and solid, we find that (3.13) becomes 

(3.20) 

(3.22) a To 
at 

(Of& + o!u,@,) ~ + UfR w V,To = V ,  * { (& + a&) I - (a - l)S} V ,  To. 

The conductivity tensor, given in (3.22) by the expression in curly brackets, is the 
difference between two symmetric positive definite tensors. This is consistent with a result 
derived using a probability model (Batchelor 1974) concerning the magnitude of the bulk 
conductivity for the isotropic case. On physical grounds we expect that the conductivity 
tensor is positive definite, but this has been proved only for the isotropic case, for which the 
conductivity tensor is a multiple of the unit tensor and for which a variational principle 
(Hashin & Strikman 1962) provides positive upper and lower bounds for this multiple. 

We now express the foregoing results in dimensional form. Let u and p denote the lowest 
order contributions to the average velocity and the pressure, T the lowest order contribution 
to the difference between the temperature and a reference temperature, and V and slat the 
dimensional gradient and time derivative, and define the dimensional permeability tensor N 
by 

h2 

PY 
N = -  W, (3.23) 

the effective specific heat c by 

c = C#f + C S A ,  

and the dimensional conductivity tensor K by 

K = (kf@f + k @ S )  I - (ks - kf)S, (3.25) 

where W and S are the dimensionless tensors defined previously. Then the approximations to 
the equations governing mass and heat transfer in a porous medium become 

u = - N *  {Vp+pg(l-@”$}, (3.26) 

v .  u = o ,  (3.27) 

and 

C - + C f U ’  V T =  V *  ( K V T ) .  (3.28) 

In the case of diffusion of a solute through fluid in the pores of an impermeable solid, the 
mass fraction 4 of the solute satisfies (3.28) with T replaced by 4 ,  c by unity, kf by the 
Fickian diffusion constant D, and k ,  by zero. 

As shown by Burridge & Keller (1 981), the two-space approach can also be applied when 

(3.24) 

a T  

a t  

11 



282 S. J. Jacobs 

the medium is not periodic on the small scale. However, detailed calculations of the perme- 
ability and conductivity tensors are available only for mass and heat transfer through a 
periodic isotropic array of spheres of equal radius. These calculations were carried out 
assuming constant macroscopic pressure and temperature gradients, but use of the two-space 
method casts the small-scale problem in a form for which results derived assuming constant 
macroscopic gradients can be used to determine the permeability and conductivity tensors. 

Numerical calculations (Sangani & Acrivos 1982; Zick & Homsy 1982) show that the 
permeability tensor N for flow through an isotropic spherical array reduces to a multiple 
n of the unit tensor, where 

n = 2 2  / ( 9 p ~ & r ) ,  (3.29) 

in which a is the radius of the spheres and is a constant which depends on the properties 
of the array. Sangani & Acrivos suggest use of the values r = 87, & = 0.62, for treating 
random closely packed arrays. The bulk thermal conductivity for heat transfer in an array of 
this type is a multiple k of the unit tensor, and has been calculated in a number of papers, 
most recently by Sangani & Acrivos (1983). Sangani & Acrivos provide values of the 
conductivity as a function of a for closely packed random arrays in their table 2 ,  and also 
confirm the accuracy of an asymptotic expression for the bulk conductivity valid for large 
values of a derived by Batchelor & O’Brien (1977). The numerical values for the effective 
conductivity can also be used to treat the case of Fickian diffusion by making the 
substitutions indicated in the sentence following (3.28). 

As indicated previously, we regard a random array of closely packed spheres as providing 
a reasonable model for study of transport in the Martian regolith, and consequently the 
theory derived above provides results which can be applied in the study of a problem of 
practical interest in planetary studies. 

4 Concluding remarks 

The purpose of theories of the present type is t o  derive a set of approximate equations 
describing mass and heat transfer in a heterogeneous medium in a manner which displays the 
parameter ranges for which the approximation is valid and which shows how bulk properties 
of the medium can be calculated by solving a suitably posed small-scale problem. The 
present calculation is fairly simple because the small-scale motion can be treated using a 
linear theory. Other examples of cases for which the two-space approach can be applied are 
the theory of thermoelasticity in a porous medium, which was studied using a phenomeno- 
logical theory by Morland (1978), and hydrothermal convection in mid-ocean ridges (Fehn 
& Cathles 1979). Non-linear problems such as the interaction between large- and small- 
scale oceanic eddies (Pedlosky 1984) or the effect of clouds on the general circulation of the 
atmosphere are more interesting but are far more difficult to treat. 
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