THE UNIVERSITY OF MICHIGAN

Technical Report 22

AN IMPLEMENTATION OF THE QUEUE
ANALYZER SYSTEM (QAS) ON THE IBM 360/67

L. S. Randall
I. S. Uppal
G. A. McClain
J. F. Blinn

CONCOMP: Research in Conversational Use of Computers
F. H. Westervelt, Project Director
ORA Project 07449

supported by:
ADVANCED RESEARCH PROJECTS AGENCY

DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

May 1970

ABSTRACT

This report details and documents QAS, a conversational
programming system composed of an aggregation of programs and
data structures resident in the IBM 360/67 which accepts graphical
| descripﬁons of Markovian queueing networks via data-phone from a
remote graphical system resident in a DEC 339, and which returns
solutions to these networks to the remote system according to

requested specifications.

ii

TABLE OF CONTENTS

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

1.

2.

6.
7.

Introduction

Supervisory and Support Routines
Generation Phase Routines
Compilation Phase Routines
Result Phase Routines
Documentation Phase Routines

Conclusions

References

Appendix A

Appendix B

iii

Page
ii

iv

52

81
126
134
140
142
144

150

Figure

10
11

12

13

14

15

16

17

LIST OF FIGURES

Empty Network Structure
Network Structure Containing a Single Server

Network Structure Containing a Server and
an Unconnected Simple Connection

Result of Inserting a Parameter:

Result of a Connect Command

Network Structure Containing a Random Branch
Result of Changing a Generation Parameter

7~ slot Format

Type Structure for Queue

Type Structure for Server

Type Structure for Source-Exit

Fragment of Working Network Structure at
Beginning of Connection Absorption

Fragment of Working Network Structure,
Preparatory to Generating Spontaneous Events

Additional Structure Generated by Spontaneous
Event Routines

Fragment of Working Network Structure at
Completion of Connection Absorption

Typical Result of Absorption of All Connections

.Results Area

iv

Page
67
69

71
73
74
76
7
91
94
95
96

111
112
113

114
119
121

LIST OF TABLES

Table Page
1 Patchup Requests 8
2 QAS Phase Codes 11
3 QAS Control Phase Commands. 13
4 DAMMIT Error Codes 16-17
5 Systems Engineering- Laboratory Six-Bit -
Character Code- 40
6 Generation Phase :Rc')utines,. 53
7 Generation Phase Command- Spec1flc Routine
Descrlptlons : | 55
8 Generatmn Phase- Error Codé.s 56.
9 Typé Number Assignments 65
iO‘ . Element Type Numbers | o1
11 Type-Evaluation Routines - 92
12 Pointer and Ring Head Codes 93
13 Documentation Phase‘Com'vmands_ 135
14 Commands Accepted ‘by} QAS 148
15 Commands Accepted by‘SELMA 149 |

I. Introduction

The purpose of this report is to document implementation of the
Queue Analyzer System (QAS), the theory and the rationale of which
appear in the reports "A System for the Solution of Simple Stochastic
Networks" by K. B. Irani and V. L. Wallace [1] and "Network Models
for the Conversational Design of Stochastic Service Systems' by
V. L. Wallace and K. B. Irani [5].

Briefly, QAS is an aggregation of programs and data structures
resident in the IBM 360/67 which accept information concerning the
constructio_n of simple stochastic networks sent via data-phone from a
remote system called SELMA [2] resident in a DEC 339 and which
return solutions to these networks to SELMA in a "conversational"
manner,

QAS consists of five sets of routines: supervisory and support
routines, generation phase routines, compilation phase routines, result
phase routines, and documentation phase routines. The supervisory
and support routines include: (1) those routines which interact with
SELMA to interpret commands received from the DEC 339 and dispatch
them to the proper phase routine, to request information from the
DEC 339, etc. and (2) those routines which are used in general by all
the various phases to manage free core for the various data structures
to perform set manipulations on certain data structure, to provide error
checking and debugging facilities, etc. The generaticr phase routines

create the data structures representing the stochastic service networks

1

which are described by commands received from SELMA. The
compilation phase routines are divided into two groups. The first

of these groups operates upon the data structures created by the
generation phase routines and reduces (i.e., compiles) these structures
to a form more suitable for use by the second group. The second of
these groups, operating on the outcome of the compilation, compﬁtes

a vector of the steady state probabilities for all the states which the
stochastic network may assume. This group also creates a data
structure representing the multi-dimensional cartesian product state
space for the model, along with information which allows mapping

from this state space into a linear index for referencing the steady
state probability vector. The result phase routines compute and format
requested results for display as graphs or printed tables by the remote
system, SELMA. Finally routines in the documentation phase save

and retrieve QAS data structures and corresponding SELMA display
structures for partially or completely solved networks,

QAS has primarily been written in IBM system /360 Assembler
Language (Level-G), except for a few FORTRAN routines for printing
results. It has been designed to run under MTS [4], (Michigan
Terminal System), which together with UMMPS (University of Michigan
Multi-Programming System) provides a time-sharing operating system
for an IBM 360/67-2. QAS uses a number of routines provided by
the operating systen, and these are listed in Appendix B with their

functional descriptions.

In the sections which follow, descriptions of various routuines as
well as the operations performed by them are described. Section II
describes the supervisory and support routines. The generation phase
routines, the compilation phase roufines, the results phase routines
and the documentation phase routines are described in Sections III,

IV, V, and VI, respectively. Finally in Section VII, the results of

this work and future modifications are discussed.

II. Supervisory and Support Routines

A. QAS Supervisor

| Since under the current accounting scheme used by the MTS
[4] system a user gets charged for the virtual (not just the actual)
memory used, an overlay technique, using disc files as back up store,
was used initially te:deerease the virtual memory-elapsed:time nte-
gral. The QAS s.ﬁpervisor was, of course; the principal robt or ba-
sic overlay and remained loaded throughout the hook-up time. The
rest of QAS was logically segmented in-tb four phases - generation, com-
pilation, results; and documentation.' Fhese phase@zconsteitutéd the rest of
the overlays and were grouped inte the next-to—roof level. Thisstructure
is pictorially depicted below as an upside-down tree with the super-

visor asithe root and the control paths as branches.

, Data
—=3 Structures

Level 0

Results Documentation
Phase Phase

Generation Compilation
Phase | Phase

Level 1
All storage necessary for the QAS data structures was attached
to the supervisor, and was dyn'am‘ié'ally manipulated (i.e., acquired,

released, and expanded) by the supervisor.

The MTS [4] routines LOAD and UNLOAD were used to load and
unload level 1 overlays. This process of loading and unloading overlapped
however, and seemed to involve overhead:significant enough to offset.
the advantages of keeping the virtual storage requirements to a
minimum. Moreover, the delay during loading significantly reduced
the response time of QAS. As a result; .another version of QAS,
which kept all portions of the system resident in the virtual memory,
all the time, had to be developed. The rest of thisdiscussion centers
around the version without the overlap feature.

Execution of the Queue Analyzer System is invoked by initiating

execution of the QAS supervisor through the MTS [4] command
$RUN QAS GUSER = ... SERCOM = ... SPRINT =... 6 =, ,,
where the logical I /O unit references are as follows:
GUSER: where input records are to be found
SPRING: where output records are to be placed

SERCOM: where area (core) dumps are to be placed (if

requested).

6: where requested results are to be printed
In the default case the logical I/O units referenced are, of course,

the SINK and the SOURCE (i.e., SELMA),

When the command $RUN QAS is given, the supervisor starts
by sending a prompting command to logical I/O unit SPRINT and
then attempting to read a logical record consisting of one command
from logical I/O unit GUSER. (To avoid line contention problems
no command may bé sent to QAS until the prompting command has
been received.)

When a command is received by the QAS supervisor, it is
dispatched to the proper routine for processing. After all operations
implied by the command have been carried out, an output buffer is
checked to determine whether any output records were produced by
these operations. If indeed some records were generated, one of
these records is sent to logical I/O unit SPRINT. If no output ree-
ords were produced, the prompting command is sent again, The su-
pervisor then awaits a record from GUSER. Thus, the supervisor
alternately sends'and theh receives one logical record. Note that
this procedure m‘ay not be' violated. Note one further restriction—
no command which results in the generation of output by QAS may be
sent to QAS‘ until all records in the output' buffer have been trans-
mitted. |

During the execution of the current command, if any routine
finds an error condition, the QAS supervisor routine PATCHUP is
called. PATCHUP responds by sending the following logical record

to logical I/O unit SPRINT:

1. A code indicating that "patchup node' has been entered.
2. A "patchup request'" - a command which PATCHUP feels

will correct the error, sans certain parameters.

The patchup request is generated by the routine which éalls
PATCHUP and is passed as a parameter, Table 1 lists all the patchup
requests and their interpretations. | |

Another important function served by the supervisor is the
management of all the storage required for QAS data structures (here-
after simply referred to as "areas''); all area manipulations are
done by the supervisor or through the routines provided by the super-
visor. The four major areas of interest are:

1. Network Area

The network area corresponds to the storage necessary for the
creation of the data structure representing the stochastic service
network during the generation phase. Since the compiler operates
destructively on the network area, a copy of the network area must be

retained to allow subsequent modification of the model.

2. Working Network Area

The working network area, initially, is simply a copy of the network
area, and it contains the structure upon which the compiler operates
during the compilation phase. Data structures corresponding to the
state space and transition intensity matrix of the matrix of the model

are generated in this area. The analysis subroutines also use this area

Table 1

Patchup Requests

Request

(Hexadecimal)

01, 03, 80, 60, 00, EN, EPN
01, 03, CN, CPN, 00, 00
01, 02, NAME, PN

04, 00

04, 02

Interpretation

Port EPN of Element EN is

unconnected.

Port CPN of connection CN is
unconnected.

PNth parameter for the element/
connection, whose NAME is
specified is eithermmissing or
messed up.

File specified in documentation
command SAVE, does not exist or
is not available.

File specified in documentation

~command RETRIVE, does not

exist or is not available.

to solve for the vector of steady state probabilities.

3. Results Area

The analysis subroutines in the compilation phase (i.e., those in
the second group) create the results area through appropriate calls
to the supervisory subroutines. The results a'rea then contains the
vector of the steady state probabilities for all the states of the model
and a data structure representing the multi-dimensional cartesian product
state space for the model. The results area is also used by the result

phase routines to compute the results requested by SELMA.

4, Working Probability Area

This is just a scratch vector used by the analysis routines during
the iteration cycle.

Note thé.t after compilation, the only pertinent information resides
in the results area, and both the working network area and the working
probability area are released. Also the results in the results area are
constrained to correspond to the network describéd by the network area.
Thus, if there are any subsequent changes in the modél, the previous
results area is destroyed and lost unless there was an explicit request
from SELMA to save the previous model and the results area corresponding
to it on some file, By checking the status of the results area (existent
or nonexistent) the supervisor can check whether the most up-to-date
model, as described by the network area, has already been compiled

or not,

10

The general format for all the traffic between QAS and SELMA

is as follows:

- ~" —/

Parameters

where
D is a delimiting code of one byte (X' FF') indicating the
~ beginning of the command,

D is a delimiting code of one byte (X'FF') indicating the end
of the command

) 2 is a code of one byte indicating which phase (i.e., network
generation phase, compilation phase, etc.) the command
applies to,

C is a code of one byte indicating the actual command within

the phase and

the parameters, if any, are those pieces of information which are
necessary to the execution of the command.

During both the patchup mode and the normal mode, commands to
QAS are dispatched in the following manner by the command'dispatcher
of the supervisor: The second byte of the command string, P, is
examined and the phase to which the command applies is determined
according to Table 2, Then depending upon the phase of the command,

the following action is taken.

11

Table 2

QAS Phase Codes

Phase Command Phase Code Byte, P
(Hexadecimal)
Control Phase 00
Network Generation Phase 01
Compilation Phase ; 02
Result Phase 03

Documentation Phase 04

12

Control Phase Commands:
The remainder of the command (the third byte C) is scanned and

proper action as determined by Table 3 is carried out.

Network Generation Phase Commands:

If the command dispatched previously was from the generation
phase, control is transferred to the generation phase interpreter, a
routine named GENERATE. Otherwise, the results area is destroyed
if it exists, the network generation area is created if it does not exist,

and then control is transferred to GENERATE.

Compilation Phase Commands:

Before dispatching a command for this phase, the supervisor
always inserts into the command stream a generatioh phase command
im’plying a network check, and dispatches it., If the network check is
successful, the compilation command is dispatched; otherwise patchup
mode is entered and the compilation command is lost. After checking
the network, the working network area is created and control is trans-

ferred to the compilation phase routine COMPSOLYV.

Result Phase Commands:

The status of the results area is checked to determine whether
the current network has already been compiled. If the results area
exists, control is transferred to the result phase interpreter, RESULTS.
Otherwise a compilation phase command with the following default para-

meters is dispatched before transferring control to RESULTS.

13

Table 3
QAS Control Phase Commands

Command Format: FF00XXFF

-
C
Command Byte, C (Hexadecimal) Interpretation
00 Prompting command from SELMA—
Send next logical record
01 QAS is to enter patchup mode
02 ~ Call SYSTEM
03 Call ERROR
04 Call MTS
05 Initialize QAS for a new network
06 Clear the output buffer

Commands sent by QAS to SELMA
Command (Hexadecimal) Interpretation
FFO000FT Prompting command-send next
logical record
FF0001. ..FF QAS has entered patchup mode

FFO0002FF Logical end of file

14

Maximum number of iterations = 250,
Convergence criterion (i.e., the maximum absolute difference
between corresponding elements of successive iterates that must

be met before iterations are halted) = 0. 0001.

Documentation phase commands:

Control is simply transferred to the documentation phase inter-
preter,

A number of routines (actually, entries to the supervisor) may be
used by the various phase programs for the management of output
buffers and area. These routines, descriptions of which follow below,
are DAMMIT, PATCHUP, MOVEIN, TAKEOT, SAVE, ACQUIR,

RELESE, STATUS, and QASWRITE,

15

DAMMIT
| DAMMIT is called if any non-recoverable error is found by any
routine., Errors of this nature should be found only during the debug-
ging phase of developing the system and, hence, DAMMIT should never
be called once the system is operational. Passed to DAMMIT is a sin-
gle parameter, an error code, the possible values of which appear in
Table 4. When called, DAMMIT produces a 17-word hexadecimal
dump, the first 16 words of which represent the contents of the gen-
eral registers at the occurrence of the error and the last word of
which represents the error code. At this point QAS enters patchup
mode and requests SELMA to initiate a command to call ERROR.
Calling Sequence: *

GPR 15: Address of DAMMIT

GPR 1: Address of one-word parameter list.
Parameter List:

Word 1: Location of fulkword hexadecimal error code.

*The listed general-purpose registers are loaded with the information
indicated, general-purpose register 13 is loaded with the address of a
save area, the routine is entered via a BASR 14,15, and if a return is
to be made, it is made via a BR 14. All general purpose registers
may be assumed to be restored upon return unless otherwise indicated.

Error Code
(Hexadecimal)

000000A0
000000B0
00000100
00000200
00000400
00000500
00000600
00000700
00000800
000Q0A00
00000B00
00000C00
00000D00
00002000
00002100
00004000
00004100
00005000
00005100
00010000
00110000
00120000
00130000
00140000
00150000
00160000
00170000

16

Table 4

DAMMIT Error Codes

Detecting Routine

@CROSSI

@CIRCDOT

@GET
@QFREE
@FNAME
MOVEIN, TAKEOT
GENERATE
DISPATCH
QAS

QAS
PATCHUP
QASWRITE
COMPSOLV
PUTPRVEC
SETPRIOR
DOCUMENT
DOCUMENT
RESULTS
PLOT

Set manipulation routines

CREAT
CONNCT
ASSPAR
DISCON
DSTRY

- ALTER
Network generation phase

routines

17

Table 4 (Continued)

DAMMIT Error Codes

Error Code Detecting Routine
(Hexadecimal)
00210000 ABSORB
00220000 SPON
00230000 ABSORB
00240000 ABSORB
00250000 SPON
01000000 @ELTYPE
02000000 @TEST
11000000
through } ANUMCV
18000000

18

PATCHUP

PATCHUP is called to enter patchup mode.
Calling sequence:

GPR 15: Address of PATCHUP

GPR 1: Address of two-word parameter list.
Parameter list:

Word 1: Location of full word containing length of

patchup request (command prototype).

Word 2: Location of patchup request.

MOVEIN
MOVEIN obtains a block of storage for a given area and then
copies the indicated area file into the storage obtained.
Calling sequence:
GPR 15: Address of MOVEIN
GPR 1: Address of three-word parameter list.
Parameter list:
Word 1: Integer name of area.
Word 2: Integer number of logical records contained in area
file. (Each logical record is 240 bytes long.)
Word 3: Location of first character of file or device name
from which area file is to be obtained. Name must

be terminated by a blank, but has no alignment

19

requirements.
MOVEIN returns the location of the storage obtained (and hence

the location of the given area) in general purpose register 0.

TAKEOT

TAKEOT empties a given file and copies a given area in storage
into that file in logical records of 240 bytes. If thevfile’name givends
the name of a file that does not exist, the file will be created only if
the name is that of a temporary file name. The storage associated
with the area is released.
Calling sequence:

GPR 15: Address of TAKEOT

GPR 1: Address of two-word parameter list.
Parameter list:

Word 1: Integer name of area.

Word 2: Location of first character of file or device name.

Name must be terminated by a blank.

SAVE
SAVE performs the same operations and has the same calling
sequence as TAKEOT except that the storage associated with the

area is not released.

20

ACQUIR

ACQUIR obtains a block of storage for a given area and inserts
a pointer to it in the proper entry of the area table. (This is essen-
tially an initialization operation for the given area.)
Calling sequence:

GPR 15: Address of ACQUIR

GPR 0: Integer name of area.

GPR 1: Size of area in units of 240 bytes.

Upon return from ACQUIR general purpose register 0 contains

the location of the storage obtained.

RELESE

RELESE releases the storage associated with a given area.
(This is essentially a destroy.operation for the given area.)
Calling sequence:

GPR 15: Address of RELESE

GPR 0: Integer name of area.

STATUS
STATUS aéquires the location and the size of a given area. It
1is through this routine that the supervisor transfers addresses of

areas to the phase programs.

21

Calling sequence:

GPR 15: Address of STATUS

GPR 1: Integer name of area.

Upon return from STATUS genei‘al purpose register 0 contains
the size of the area in units of 240 bytes (if the area exists) and gen-
eral purpose register 1 contains:

(a) the location of the area if it exists in virtual memory,

(b) hexadecimal 'FFFFFFFF' if the area does not exist.

QASWRITE

QASWRITE inserts an output record in the output biffer. Only
the records which are to be interpreted by SELMA (i.e., commands
for SELMA) are stuffed in the buffer. Routines which print results on
the teletype bypass this routine completely. | Also each record must not
exceed 120 bytes. As noted earlier, since no command which results
in the generation of output by QAS may be sent to QAS untilall records
in the output buffer, due to previous command, have been transmitted,
a non-cyclic buffer, whose size is dynamically increased by 4096 bytes

anytime there is no room to insert additional records, is maintained.

Calling sequence:
GPR 15: Address of QASWRITE
GPR 1: Location of record

GPR 0: Size of the record in bytes.

22

B. Free Block Manager

The Free Block Manager is a collection of routines which take
care of the bookkeeping involved in using and freéing piecés of
storage within the various areas. Besides providing this garbage
collection facility, the free block manager also performs such functions
as relocating areas and dynamically increasing the size of the areas.
It uses sophisticated algorithms to acquire and free pieces of storages
to avoid excessive splintering of storage in a given area.

The Free Block Manager keeps track of all free (that is, currently
unused) core in a given area by inserting all free biééks‘of storage
within the area into a number of cafegOry rings. To this end, an area
is a large named vectdr,'" thé first word of which contains the length
of the area in bytes and the ri‘ex_t eight words of which form the heads
of eight ,ca;tégory‘rings ‘whose 'membefs are free blocks in eight ranges
of Size. The form.atsi used by free blocks in the various category

rings are shown below:

23

Blocks consisting of three or more words:

Size is number 00 -+» next member of ring
of words in
this scope. 00} SIZE

00 | SIZE

¥ head of ring

rv
o
=
I

0 7 31

Blocks consisting of two words:

08 -+ next member of ring
08 - head of ring
0 78 31

Blocks consisting of one word:

04 ¥ next member of ring

0 78 31

24

Note that all pointersusedin the category rings and, for that mat-
ter, in all structures created in an area are twenty-four bit displace-
ments relative to the address of the first word, or base, of the area.
This convention allows complete relocatability of the areas.

Because of their special formats, blocks of one and two words
are segregated from all othér blocks and kept in the first category
ring. The size ranges for the first seven category rings are speci-
fied in words 10 through 16 of the area, respectively. The left half-
word of a given word designates the lower limit on the size of blocks
in the given ring and the right half-word designates the upper size
limit. Note that the size ranges do not overlap. The eighth, or last,
category ring contains miscellaneous blocks, i.e., all those blocks
whose sizes do not fall withinithe range of the first seven category

rings. Currently, the size ranges of the various category rings are

as follows:

Category Lower Limit Upper Limit
1 1 word 2 words-
2 3 words 5 words
3 . 6 words 10 words
4 11 Wordé 20 words
5 21 words 40 words
6 41 words 80 words
7 81 words 160 words

8 , miscellaneous

25

Word 17 of the area contains the size of the most commonly used
block. This information is used to avoid unnecessary splintering of
the storage in a given area.

In certain instances it is desirable to acquire a rather large
block of storage within an area and then to further subdivide this block
as if it were an area itself with the capability of freeing the large block
at a later time without having to free each subblock within it first.
Hence, this facility has been incorporated into the Free Block Manager.

The area itself is referred to as the major area and the block within

it to be treated as an area is called the minor area. When the minor

area is acquired, the category information of the major area is saved
and replaced in the area by new category information concerning the
minor area. Upon releasing the minor area, the major area infor-
mation is restared.

The Free Block Manager has the following entries: SETUP,
SETMINOR, GMAJOR, GMINOR, @GET, @FREE, and ERFREE.

Descriptions of these entries follow below.

SETUP

SETUP is used to initialize the category rings of a major area.
All category rings are made empty except for: the miseellaneous
category ring which contains one block composed of all the storage
in the area not used by the category ring heads and their related

information.

26

Calling sequence:
GPR 15: Address of SETUP
GPR 1: Address of four-word parameter list. -

Parameter list:

Word 1: Location of major area.

Word 2: Location of full word containing size of area in words.

Word 3: If nonzero, size in words of most commonly used
block.

Word 4: If nonzero, size in 240-byte units of additional stor-

age to be acquired if current storage is used up.
If word 4 of the parameter list is zero or negative and the routine
@GET is unable to find requested space, the QAS error routine

DAMMIT is called with error code X'00000100'.

SETMINOR

SETMINOR is used to establish a particular block as a minor
area. The major area category ring heads are saved and then re-
placed by new heads, all of which have empty rings except for the
miscellaneous category which contains the minor area. Normal op-
eration of the Free Block Mané.ger now segments the minor area.
The original category heads may be restored by a call to GMAJOR.

Note that only one minor area may be set up at a time.

27

Calling sequence:
GPR 15: Address of SETMINOR
GPR 0: Size of minor area in words.
GPR 1: Pointer to minor area with respect to base of
major area.

GPR 12: Location (base) of major area.

GMAJOR

GMAUJOR is used to restore the category ring heads of a major
area and at the same time to save the current category ring heads
which correspond to some minor area contained within the major
area.
Calling sequence:

GPR 15: Address of GMAJOR

GPR 12: Location (base) of major area.

GMINOR

GMINOR is used to return to the category ring heads of an
existing minor area. (A typical example of its use is where a
minor area if set up initially by a call to SETMINOR, the major
area category ring heads are réstored by a call to GMAJOR, and

the user wants to return to using the minor area.)

28

Calling sequence:
GPR 15: Address of GMINOR

GPR 12: Location (base).of major area.

@GET

The purpose of @GET is to find a free block of storage of a
specified size. Initially @GGET loeks for a block of the exact size
desired. If it is unsuccessful in its search, GGET looks for a
block such that the remainder after splitting off the desired block
has a size equal to that of the most commonly used block. If it
is still unsuccessful in its search, @GET looks for a block of any
size larger than the one specified and frees the remainder after the
split. If a block of size greater than or equal to the one requested
is not available, the area is moved into va 1arger area. .Additional
storage to be acquired is determined by word 4 of the parameter
list for SETUP. If no additional stdr‘age can be acquired, DAMMIT
is called with error code X'00000100'. I the-storage in.a:

minor area is exhausted, recovery routine EXPMINOR is called.

Calling sequence:
GPR 15; Address of‘@GET
GPR 0: Size in words of block to be acquired.
GPR 12: Location (base) of major area from which blockis to

be acquired (even if block is to be acquired from minor

area within it)

29

Upon return GPR 1 contains a pointer (relative to the base of
the major area) to the block acquired and GPR 12 contains the base
of the major area. (Note that the value of GPR 12 may change from

entry to return if the area is expanded.)

@FREE

@FREE is used to return an unused block of storage to the ap-
propriate category ring. If either or both of the blocks adjacent
(in storage) to the freed block is free, the blocks are concatenated.
This tends to reduce any possible splintering of free storage.
Calling sequence:

GPR 15: Address of @FREE.

GPR 0: Size in words of block to be freed.

GPR 1: Pointer to block to be freed.

GPR 12: Base of major area in which block resides.

ERFREE

ERFREE is used as&iswitch«tadeteninine whatvaction: ion
should be taken in the event that a block which does not exist in a
given area is freed in that area. Normally, DAMMIT is called by
@FREE with error code X'00000200' if this condition arises, but if

ERFREE has been previously called, this error condition results

30

in no operation, i.e., nothing is freed and return is made to the calling
program by @FREE.
Calling sequence:

GPR15: Address of ERFREE.

31

C. Minor Area Manager

As noted earlier, provisions have been incorporated into the free
block manager to allow the acquisition of a rather large block of
storage within an area, and then to allow the acquisition and release
of sub-blocks within this block. The primary motive for including
this feature is to prevent excessive calls to @QFREE. Thus, a rather
large block of storage can be obtained within an area, the facilities
of the free block manager can be used to manage it, and when it is no
longer needed, it can be freed by just one call to @QFREE. This
facility is used by the routine ABSORB, in the compiler, to set up‘
rings of spontaneous events. (This is explained later in the section on
the compiler.) Since the storage requirement for a minor area (as
used by ABSORB) is a function of the stochastic network to be solved,
rather than use an ad-hoc measure for size of the minor area, the
minor area may be expanded dynamically., Note that since a minor
area is contained within a major area (all pointers are relative to the
base of major area) and since it is used only for ring structures
representing spontaneous events, it need not consist of a single conti-
guous block. Furthermore, the minor area is used each time a new
connection is absorbed, with the result that the storage requirement of
the minor aréa normally keeps on increasing with the absorption of
connections, Thus, one block of storage is acquired to be set up as

the minor area initially, and then more blocks of the same size are

32

acquired and attached to the minor area, as needed. After the
absorption of one connection (the structure in the minor area is

no longer useful), the blocks forming the minor area are not released
but rather are reused for the absorption of the next connection, At

the end of compilation, all of the blocks in the minor area are released
at once. A table of all blocks in the minor area is kept to facilitate
this. Each entry in the table contains a 24-bit pointer to one of the

blocks and an 8-bit. flag indicating the status of the block, as shownibelow.

| IFlag ’ —t> pointer to block
0 78 31
Flag Meéning
X'00' Corresponding block was obtained

previously, but now contains redundant
information and can be reused.

X'FF' Block in use, don't touch it.

A zero entry (both flag and pointer) in the table indicates that
the block corresponding to this entry was hever acquired. Since all
blocks are assumed to have the same size, their sizes are not
inserted in the table. All of the above functions are carried out by the

routine EXPMINOR.

33

EXPMINOR

EXPMINOR is used both to set up the first block of a minor area
for the absorption of a new connection, and as a recovery routine for
@GET to add additional blocks to the minor area when its current
storage is exhausted. The content of GPR 0 at the time of a call to
EXPMINOR indicates whether the call is a recovery call from @GET or
not. The action taken by EXPMINOR is as follows:

For a call to set up the first block in a minor area:

All flags in the block table for the minor area are set to zero.
This implies that all the blocks acquired so far (if any) can be reused.
Then the table is scanned to determine whether any block has been
acquired. If none has yet been acquired, a block is obtained from the
major area, SETMINOR is called to set it up as a minor area, and an
entry indicating that this has been done is created in the table. If a
block which can be reused is available, it is so used and the flag in
the corresponding entry in the table is changed to X'FF'. Finally

a normal return is made to the calling program,

For a call to expand a minor area:

If @GET is unable to acquire requested storage in a minor area,
itcalls EXPMINOR in the following (unconventional) manner: @GET
restores all general purpose registers and uses a simple branch
instruction, instead of branch and link, so that when EXPMINOR gets
control, GPR 14 still contains the original return address (for the

call to @GET). EXPMINOR then adds another block to the minor

34

area and returns to the start of @GET, again via a simple branch

instruction. Using simple branch instructions makes this procedure

 completely transparent, and @GET proceeds to acquire storage as if

the previous blocks were never exhausted. The entries in the block
table for the minor area are, of course, updated accordingly. Note
that a maximum of ten blocks can be used to set up the minor area.

(This restriction is imposed by the size of the block table.)

Calling sequence:
GPR 15: Address of EXPMINOR
»GPR 0: 1) contains 0 if the first block in a minor area is
to be set up.
2) contains 1 if the minor area is to be expanded.

GPR 12: Base address of the major area.

RESETMIN

RESETMIN clears both the flags and the pointers in the block
table and is called at the end of each compilation. It also prints a
comment indicating the total amount of storage used in the minor area

during the last compilation,

Calling Seqﬁence:
GPR 15: Address of RESETMIN
GPR 14: Return address

GPR 12: Base address of the major area.

35

D. Symbol Table Service Routines
The symbol table service routines are a set of five routines which

are used to set up, to manipulate, and to interrogate a network
“symbol table resident in the network area. Each symbol, i.e.,each
element and each connection, in the network diagram is assigned a
unique name by SELMA. Element names are assigned from X'01' to
X'TF', inclusive, and connection names are assigned from X'81"' to
X'FF', inclusive. (Note that element name X'00' and connection

name X'80' are illegal.) In order to permit rapid, easy access to that
part of the network structure which corresponds to a given symbol,

a symbol table containing a pointer entry for each symbol is created.
(The exact significance of where this pointer points will be considered
later.) Physically, the symbol table consists of 256 consecutive
words, each of which is accessed by using the symbol name as an
index (note that two of these Words will never be accessed) and each

of which contain a 24-bit pointer relative to the base of the network
area. A pointer of zero indicates that no symbol has been assigned
the name corresponding to the location of the pointer. The five rou-
tines which comprise this groupsare: GSYMTAB, @FINDPTR, @ENTER,

@DELETE, and @FNAME.

36

@SYMTAB

@SYMTAB is used to initialize the network symbol table and
the network structure itself. @YMTAB must be the first routine
called after the call to SETUP (in the Free BlockiManager) for the
network area. @YMTAB acquires a block of 261 words displaced
80 bytes from the base of the network area to be used for the sym-
bol table and the initial network structure, which it then sets up as

shown below:

Pointer to Network Block N
Unconnected Element Port Rings Re)
Unconnected Connection Port Rings Rc
g L
0
Symbol Table
(256 words) <
q 0
Network Element Ring E :
Block Connection Ring C ‘)
\W—"—J
4 bytes

The significance of the first three words and the last two words of this
structure will be considered later. All of the entries in the symbol ta-
ble are set to zero since initially, of course, there are no symbols in

the network structure.

37

Calling sequence:
GPR 15: Address of GSYMTAB

GPR 12: Base of network area,

@FINDPTR |

Given a symbol name (as defined above) @FINDPTR fetches
its associated pointer from the symbol table. (The calling program
must check the returned value to insure that it is nonzero.)
Calling sequence:

GPR 15: Address of @FINDPTR.

GPR 0: Name of symbol.

GPR 12: Base of network area.

Upon -return GPR 1 contains the pointer associated with the

symbol name.

@ENTER

@ENTER is used to enter in the proper slot of the symbol table
the pointer associated With a given symbol name.
Calling sequence:

GPR 15: Address of GENTER

GPR 0: Name of symbol.

GPR 1: Pointer associated with symbol name.

GPR 12: Base of network area.

38

@ELETE

@DELETE is used to remove (zero out) from the symbol table
the pointer associated with a given symbol name,
Calling sequence:

GPR 15: Address of @ELETE

GPR 0: Name of symbol.

GPR 12: Base of network area.

@FRAME

@FNAME searches the symbol table for the pointer given and
returns the corresponding symbol name. If no such entry exists in
the symbol table, DAMMIT is called with error code X'00000400'.
Calling sequence:

GPR 15: Address of @FNAME.

GPR 1: Pointer

GPR 12: Base of network area

Upon return GPR 0 contains the symbol name associated with

the given pointer,

39

E. SEL Six-Bit Coded Numerical Constant Assembler

A routine, called ANUMCYV, is available for use in assembling
SEL six-bit coded numerical constants. The SEL (Systems Engineering
Laboratory) six-bit code, which is described in Table 5, is used
for virtually all communications between SELMA and QAS.

ANUMCY is supplied with a string of SEL six-bit coded charac-
teristics (packed one character per byte with leading zeros) which
represents some numerical constant of either integer or floating
point mode, and with the number of characters iﬁ the string. ANUMCYV

then assembles this constant, returning its value and its mode.

Valid input formats to this assembler are:
For integer constants -

For floating point constants -

[+][xx. .. xx][.][xx...xx] E[+] [yy]

Each field within brackets is optional under the following restrictions:
(1) The string must contain at least one, but no more than
nine, significant digits (the x's), where leading zeros
are treated as significant.
(2) A floating point number must contain one or more of the
following ".'", "E", or the sign preceding the exponent.
(3) If a number is indicated to be floating point by the presence

of an "E" or an exponent sign, then the number

First Digit
(Octal)

First Digit
(Hexadecimal)

Lo DN = O

40

Table 5
Systems Engineering Laboratory Six-Bit Character Code

Second Digit (Octal)

0 1 2 3 4 5 6 7
ojl 0 1 2 3 4 5 6 7
1 8 9 A B C D E F
2 G H I J K L M N
3 0 P Q R S T U A%
4 |lw X Y z *x / 4+ -
5 () [] < = > 4
6 - . y ; ? : '
7 " $ # “ & cr I sp null
Second Digit (Hexadecimal)
0 1 2 3 4 5 6 7 8 9 A B C D E
0O 1 2 4 5 6 7T 8 9 A B C D E
G H I J K L M N O P Q@Q R S T U
WX Y z * / + - () [] <= >
R o § # & cer U sp

41

must have at least one but no more than two exponent
digits (the y's).
The following violations of these restrictions result in DAMMIT

being called with the indicated hexadecimal error codes:

Error Code Condition

11000000 Nothing follows initial sign.

12000000 Too many significant digits (more than nine).

13000000 More than one ", "

14000000 Nothing follows "E" (if present).

15000000 Nothing follows exponent sign (if present).

16000000 Illegal character (Legal characters include
digits, "+", "-", "." and "E", but these

must fall in the proper fields. Note that
blanks are not legal.)

17000000 Too many exponent digits (more than two).
1800C000 No significant digits.

Calling sequence:
GPR 15: Address of ANUMCYV
GPR 0: Number of characters in string.

GPR 1. Address of first character in string.

* Upon return GPR 0 contains the assembled constant and GPR 1
contains its mode, where X'00000000' implies integer mode and

X'00000004' implies floating point mode.

42

F. Subroutine for Set Manipulation

A subroutine is available which has entries to perform certain
set operations: namely, cartesian product, intersection, difference,
a special operation which yields both intersection and difference, a
second special operation for subtracting a vector from a set, and a
third special operation for adding a vector to a set. The entry points
which correspond to these operations are PRDT, INTR, DIFF,
DIFINR, SUBVECT, and ADDVECT, respectively.

The sets (or vector, where applicable) used as operands for
these operations are left unchanged and storage for the resultant
structure is obtained through @GET.

A gdet, as used in these operations, is represented in storage
as a ring. Each element of the ring specifies an n-dimensional "rec-
tangular' subset of the points in the set. This is done by specifying
a low and a high limit for each dimension, effectively specifying the
range of ‘values assumed by each dimension in the subset. Thus, in
general, a set would appear as shown in the diagram on the next page.

Each ring element consists of consecutive bytes of storage as-
signed left-to-right, top-to-bottom in the abeve-mentioned diagram.
Furthermore, the following limitations are placed on values associa-
ted with a set:

(1) The dimension of the set and each limit value are stored

as one-byte binary numbers. Hence,

43

Dimension of set

Head (1 word)

—_— -
(1 byte) ‘
Word-full word aligned
\ N ~
4]4] 00
Low | High Low | High
1st |1st 1st | 1st
\ Low | High Low | High
2nd | 2nd 2nd | 2nd
Lower Upper limit
limit of of first
first . dimension
dimension .
|
| Low | High
nth |nth |nth | nth

Byte Byte

00 - w
Low | High

1st |1st

Low | High

2nd | 2nd

Low |High

nth | nth

44

1 dimension of the set < 255
0 < limit value < 255,
(2) The ring head is one full word.
(3) An element of the ring starts on a full-word boundary
and requires (2*n + 4) bytes of storage.

All pointers used in the rings (as in all other QAS data struc-
tures) are twenty-four bit displacements relative to the area base.

The following is an example of how the two-dimensional set
1(1,8), (1,9), (2,8), (2,9), (3,8), (3,9), (7,0), (7,1), (7,2), (8,0),

(8,1), (8,2)} which may be drawn schematically as

First Dimension
NS
[

3L
® L4
21 ® 1 4
1+ ® o
0 R Bamm— — =
0 1 2 3 4 5 6 7 8 9

Second Dimension

45

would be represented in ring structure form:

2)
T : ’/
T 37
1]3| 8
8 9’ 0|2

Descriptions of each Qf the operations available follow below.

PRDT

PRDT generates the set C representing the cartesian product
of two sets A and B, A X B. The dimension of the result C is equal
to the sum of the dimensions of A and B and the number of elements
in the result set ring is equal to the product of the numbers of

elements in the set rings for A and B.

Calling sequence:
GPR 15: Address of PRDT
GPR 1: Address of thre.e-word parameter list.

GPR 12: Base of area.

Parameter list:
Word 1: Address of pointer to head of A ring

Word 2: Address of pointer to head of B ring

46

Word 3: Address of word into which pointer to head of C ring

is to be placed.

If the result set is empty, an integer 1 is returned in GPR 0;

otherwise a zero is returned in GPR 0.

INTR

INTR produces the set C representing the intersection of two sets
A and B, AM B. The dimension of the result set is the same as the
dimensions of A and B (which must bé the same), and the number of
elements in the result set ring is not greater than the product of the

numbers of elements in A and B.

Calling sequence:
GPR 15: Address of INTR

GPR 1: Address of three word parameter list.

GPR 12: Base of area.

Parameter list:
Word 1: Address of pointer to head of A ring.
Word 2: Address of pointer to head of B ring.
Word 3: Address of word into which pointer to head of C ring

is to be placed.

If the result set is empty, an integer 1 is returned in GPR 0;

otherwise a zero is returned.

47

DIFINT

DIFINT produces two sets, C and D, as the result of operating
upon two operand sets A and B. Result set C represents the difference
between A and B, A - B, and result set D represents the intersection
of sets A and B, A\ B. Both result sets have the same dimension

as that of A and B.

Calling sequence:
GPR 15: Address of DIFINT
GPR 1: Address of four-word parameter list.

GPR 12: Base of area,.

Parameter list:
Word 1: Address of pointer to head of A ring.
Word 2: Address of pointer.to head of B ring.
Word 3: Address of word into which pointer to head of C ring
is to be placed.
Word 4: Address of word into which pointer to head of D ring

is to be placed.

A code returned in GPR 0 has the following interpretations:

48

Return Code Interpretation
0 C not empty and D not empty
1 C empty and D not empty
2 C not empty and D empty

C empty and D empty

For the above described routines a number of error conditions

are checked:

Dimension of set A equals zero.
Dimension of set B equals zero.

Sum of dimensions of sets A and B greater than 255
(for PRDT only).

Should one of these conditions occur the routine calls the QAS error

routine DAMMIT with error code X'00010000°.

SUBVECT
SUBVECT operates upon a vector and a set to produce a new
set in which the vector has been "subtracted" from the set. The
set assumes the form of sets described above and the vector assumes

the following form:

n° 4—> __Dimension of vector

a4

{

Byte

49

occupying n+1 consecutive bytes of storage. Each dimension of the
vector is a one-byte binary number in two's complement notation,
thus having a range from -128 to +127.

The "subtraction' operation involves subtracting the vector
from both the lower and upper limit '"vectors' of each element in
the set ring. Recalling that the permissible range of values for the
lower and upper limits of the set dimensions is from 0 to +255, it is
- possible for the subtraction to produce a dimension limit value out-
side the allowable range of values. In this case the following action
is taken: | If the resulting lower limit is less than zero, then it is re-
placed by zero. If the resulting upper limit is greater than 255, then
it is replaced by 255. But if the lower limit exceeds 255 or if the up-
per limit is less than zero, then the entire rectangle (ring element) is
deleted from the result set.

For example, suppose that the following set and vector are the

operands for this operation:

4], :

— | 50

0 |90 0 90 ‘ <10

100 |250 100 [250 5 |
100 {200 250|255
15 | 20 15 |20

Then the resultant set would be:

50

0 |70

120 | 255
110{210

20| 25

Calling sequence:
GPR 15: Address of SUBVECT.
GPR 1: Pointer to head of set.
GPR 2: Pointer to vector.

GPR 12: Base of Area.

If the result set is empty, an integer 1is returned in GPR 0;
otherwise a zero is returned. Also, on return GPR 1 contains a pointer
to the head of the resultant set.

If either the dimension of the set equals zero or the dimensions of
the set and the vector are not equal, the QAS error routine DAMMIT is

called with error code X'000 10000'.

51

ADDVECT

ADDVECT operates upon a vector and a set to produce a new set
in which the vector has been ""added" to the set. The data structures
used and the general operation of ADDVECT are the same as those
for SUBVECT, the only difference being that ADDVECT involves

addition whereas SUBVECT involves subtraction.

Calling sequence:
GPR 15: Address of ADDVECT
GPR 1: Pointer to head of set.
GPR 2: Pointer to vector.

GPR 12: Base of area.

The return and error detection for ADDVECT are the same as

those for SUBVECT.

III. Generation Phase Routines

A. Generation Phase Interpreter

The generation phase interpreter is a routine named GENERATE
which is called by the QAS supervisor whenever a generation phase
command is received, that is, whenever the first byte of the command
(excluding the delimiting bytes) is X'01'. GENERATE checks to insure
that the network area (which was supplied by the supervisor) indeed
exists in the virtual memory and loads GPR 12 with the base of the
network area. If required, GENERATE then calls SETUP and
(@ SYMTAB to initialize the network area. Finally, it examines
the second byte of the command and calls the appropriate generation
phase routine, according to Table 6.
Calling sequence:

GPR 15: Address of GENERATE

GPR 1: Address of one-word parameter list
Parameter list:

Word 1: Location of first byte of command (including initial

delimiter byte).

If the area supplied by the supervisor is not a valid network
area or if the second byte of the command is not a legal command
code, the QAS error routine DAMMIT is called with error code

X'00000600'.

52

53

Table 6

Generation Phase Routines

Second Byté of Command Routine Called
(Hexadecimal)
00 : - CREAT)
01 DSTRY
02 ASSPAR
> command- specific
03 CONNECT routines
04 DISCON
05 ALTER
06 CKNETWK
07 HDUMP

(The exact format of these commands is discussed later on.)

B. Generation Phase Command-Specific Routines

The generation phase command-specific routines are those routines
which are used to create the data structure within the network area
which represents the network being constructed and displaying by SELMA.
This data structure contains all the relational and parametric information
necessary ‘for the eventual solution of the problem at hand.

The generation phase command'—specific routines, a brief description
of which is given in Table 7, have been written as a single multiple-
entry routine, the entries of which are (in the order listed in Table 7):
CREAT, DSTRY, ASSPAR, CONNCT, DISCON, and ALTER.

A large number of possible error conditions are checked in these
routines and in any case where an error is detected, control is trans-
ferred to the QAS error routine DAMMIT with the error code indicating
which routine detecte_d the error as shown in Table 8. All errors are
treated as fatal although many appear at first to be recoverable errors.
The rationalization for this is that all such conditions are to be checked
first by SELMA so that any such error encountered in QAS may be
considered a system error. DAMMIT is called before any change
has been made in the network structure.

In addition to DAMMIT these routines make external references to
@GET and @QFREE when storage is to be obtained or released, and to
ANUMCYV to convert parameter values from their SEL six-bit coded

representations to the IBM 360 arithmetic format,

55

*s3urutol pue sanyeA SursSIXd
Buiaxssaxd ‘9anjonil}s pajerdosse
s9jeaauadod pue aajowered
uoT)RIAUS3 JO anTeA sadury)

*(°g pue %y) sSun

ja0d pojoouuodun aA1303dsax
10 }a10d UOT}OdUUOD PI}OIUUOD
-s1p Surpuodsaiaod pue jxod
JUD WIS PI}IdUUOISIP saoe[doy

"pPajrOIpUl JUdW AT Jo 3x0d payeu
~-S1s9p 03 Pa1eIIPUL UOTI}IIUUOD
J0 jx0d pajyeulisap suiopf

*(d) y001q
1s1] 1939weaed jo jois xadoad
ojul anjeA iadjoweaed sjrosul

., “UOT199UUu0)
10 JuawWal 91ead)),, Jo asaaauf

*91qe) [oquiIAs ul aweu

sadeld ‘IO0Iq daomjau 03 surof
pue (aanjonajs adA} Burpniour jou)
9JN)ONJI)S PI}BIDOSSE pue JO01q
UOT}I9UUOD JI0 JUSWI[D $9)BAID

suoryoun

suoTjdiaosa(] auIjnoy J1J109dg -puBUWI LU0 8SBYJ UOI}BISUID

"onteA I1ajsuweted uoniersusd
Iaquinu JI9j9WeIed UOT}RIaUdS
‘ouIeu UOT}IOQUUOD IO JUSWIH

*asquinu jxod ‘sweu juswald

*xoquinu jxod juswald
‘ouwieu juswiale ‘xaquinu jxod
UOI}23UU0D ‘dWRBU UOTIIUUOD

‘anyeA
1ojowrexed ‘axsquinu aajowered
‘QUWIBU UOTI}IIUUOD IO JUdWSTH

*oJE UOT}IQUU0D JI0 JUSIWITH

‘sonyea
I9jowreaed uorjeasuad ‘adfy
‘OuWiBU UOT}O9UUOD JIO JUSWAH

saajowreaed mdul

L 91qeL

I9)auwieaed
UOTIRIDUDID) X9V

109UU09SI(J

109uu0)

sanfeA
Iojoweied uldissy

*U0T}I3UU0) X0
juowalyg Loaisa(g

uo1309UU0)) JI0
JUSWAH 9383I)D

aurnoy

56

Table 8
Generation Phase Error Codes

Error Code Routine Detecting Error
(Hexadecimal)

00110000 CREAT

00120000 CONNECT

00130000 ASSPAR

00140000 ' DISCON

00150000 DSTRY

00160000 ALTER

00170000 Code common to more than one

routine,

00000600 GENERATE

57

In all of these routines considerable thought was given to making
the definition of new element or connection types relatively easy. In
general, adding a new type requires inserting a short segment of
code and reassembling the routine. This should, however, be straight-
forward and require a minimum of understanding of the existing code.
The routines which will require added code are: CREAT, ASSPAR, and
ALTER.

Below follow descriptions of each of the generation phase command-

specific routines.

CREAT

CREAT is used to create an element or connection within the
network structure. It sets up all necessary storage to represent the
particular type of element or connection, places a pointer to the created
element or connection block in the symbol table, places the ports of the
symbol on the proper ring of unconnected ports , initializes the parameter
list block if necessary (described later in this section), and places
the element or connection block on the ring of elements or connections,
respectively.
Calling sequence:

GPR 15: Address of CREAT.

GPR 1. Address of that portion of command string which contains

the element or connection name, type humber, and any

generation parameters.

58

GPR 12: Base of network area.

Error detected:
Element or connection name already assigned.
Type number undefined.

Element name is X'00' or connection name is X'80’.

DSTRY

DSTRY is used to destroy an element or connection contained
within the network structure. It removes the element or connection
block from the ring of elements or connections, respectively, removes
the ports from the proper ring of unconnected ports, and frees all
storage used to represent the element or connection,
Calling sequence:

GPR 15: Address of DSTRY

GPR 1. Address of byte of command string which contains element

or connecﬁon name.

GPR 12: Base of network area.
Errors detected: |

No element or connection block cbrresponds to name given.

Not all ports disconnected.

Type structure still exists.

ASSPAR
ASSPAR is used to assign a value to the indicated parameter

associated with an element or connection. It calls upon ANUMCYV to

59

convert the SE L-six-bit coded parameter value contained in the
command string to an arithmetic format and then inserts this value
into the proper slot of the parameter list.
Calling sequence:
GPR 15: Address of ASSPAR
GPR 1: Address of that portion of command string which
contains element or connection name, parameter
number, and SEL six-bit coded string representing
parameter value.
GPR 12: Base of network area.
Errors detected:
No element or connection block corresponds to name given.

Illegal parameter number.

CONNCT

CONNCT is used to connect an element port to a connection port.
The ports dre connected after removing them from their respective
rings of unconnected ports. The storage used for the connection port
is then released.
Calling sequence:

GPR 15: Address of CONNCT

GPR 1: Address of that portion of command string which

contains connection name, connection port number,

element name, and element port number.,

60

GPR 12: Base of network area.

Errors detected:
No element block corresponds to name given.
No connection block corresponds to name given.
Illegal port number.

Ports are not both disconnected.

DISCON

DISCON is used to disconnect a particular port of a given element
from the connéction port to which it is connected. A new connection
port block is created and the two ports are placed on their respective
rings of unconnected ports. -
| Calling sequence:v

GPR 15: Address of DISCON

GPR 1: ' Address of that portion of command string which contains

element name and element port number,

GPR 12:. "Ea‘se‘_o‘f network area.
Errors detected:

No element block corresponds to name given.

Illegal port number |

Port already disconnected.

ALTER
ALTER is used to'modify a generation parameter for a given element

or connection. It makes the changes in the data structures required by

61

the change in the generation parameter. Specifically, this involves
altering the length of the parameter list and/or changing the number
of ports for the indicated element or connection;
Calling sequence:
GPR 15: Address of ALTER
GPR 1. Address of that portion of command string which contains
element or connection name, generation parameter
number, and new generation paramefer value.
GPR 12: Base of network area.
Errors detected:
No element or éonnection block corresponds to name given.,
No generation parameter associafed with this element or connection.
Ports to be deleted (if any) are not disconnected.
Illegal generation parameter number given.

Illegal generation parameter value.

Details of the Generalized Element or Connection Parameter List Block

The parameter list block is a block of m +n+ 1 words, where m is
the number of generation parameters associated with the element or
connection and n is the number of parameters. The format of the block

is the following:

62

> m+n

| 1st generation
parameter

Generation <

Parameter
Values mth generation
, parameter
1st parameter
Parameter { o
Values
nth parameter

\

When the structure representing an element or connection is
created (including the parameter list bloék), the values of the
generation parameters are inserted into the parameter list block.
Currently only the random branch and priority branch type con-
nections have ge,neratibn pafa'mefers associated with them. In
both cases, thé generation parameter indicates the number of
output ports, as well as the number of parameters. The parameter
~ associated with each output port of a random branch indicates the
probability of taking that branch, and incase.of priority~branch it
indicates the priority assoCiatedv’with that branch. Note that the
priorities are indicated by the parameters and not by order in
which the connection is created. This facilitates changing the
prioi‘ities in the model. |

Generation Phase Command Formats

The generation phase commands, as interpreted by the generation

63

- phase interpreter, have the following formats, where each division
within the command corresponds to one byte and all numbers contained

therein are hexadecimal:

Create Element or Connection

FF | 01 | 00 |Name |Type | GPV | ... | GPV |FF
‘ K - _
Generation Parameters
(if any)

Destroy Element or Connection

FF|{ 01 |01 Name FF

Assign Parameter Value

FF‘ 01,02 Name| PN FF‘

— >
Parameter Value
(In SEL six-bit code,

Connect one character per byte)

]FF §i01 03 CN CPN! EN | EPN FF{

Disconne:ct

‘FF 01{04 | EN | EPN |FF

Alter Generation Parameter

FF {01 |05 | Name| GPN | GPV | FF

64

The abbreviations used within these commands have the following

meanings:
Name - Element or connection name
Type -~ Element or connection type number
PN - Parameter number
CN - Connection name
CPN - Connection port mndber :
EN - Element name | |
EPN - Element port number
GPN - Generation parameter number
GPV - Generation par‘ametexj value

Note also that all characters in the command string are SEL

six-bit characters stored one charavcter per byte’ Wi'th,leading Zeros,
The correSpqnd'en}c_:'e between an element or connection type and
its type n‘umbef is Igiven in Table 9.
Two é.dditional generation phase commands are available to
facilitate error dete’ctibn. These are:

Check Network

FF| 01 |06 |FF

Issuance of this command causes CKNETWK to be called by the

generation phase interpreter.

65

Table 9
Type Number Assignments

Element Type ‘Type Number (Hexadecimal)
Queue 01
Server 02
Source 03
Exit 04

Connection Type Type Number (Hexadecimal)
Simple Connection 81
Priority Branch 82

Random Branch 83

66

Dump Network Area

FF | 01 |07 | FF

Issuance of this command causes NWKDUMP to be called by the

generation phase interpreter.

In order to clarify the effects of the above described generation
phase routines, ‘a simple example will be given illustrating each
routine and showing "before and after' states of the network stfucture.

Assume initially that the network structure is completely empty.
Schematically, the network structure will then appear as shown in
Figure 1. The hexadecimal codes in the high-order bytes of pointer
slots and ring heads are indicative of the information pointed to or

contained in the ring. These correspondences are shown below:

Pointer and Ring Head Codes

Hexadecimal Code | Information
10 Ring of ports for element or connection.
20 Ring of unconnected element ports, R

; e’
or unconnected connection ports, Rc.

31 Ring of element blocks, E.

32 Ring of connection blocks, C.

A diagonal slash through the left end of a word implies a high-order

byte of zero, indicating a ring element.

67

Symbol N
Table S
N 31) E L
—— T
20 Re . m32 C Ji"ﬁ—"
20 Rc T < D

Empty Network Structure

Figure 1

68

Now suppose that a "Create Element or Connection' command is
given indicating that a server (type 02 hexadecimal) with name 01
hexadecimal is to be "created'. The network structure will then
appear as shown in Figure 2. An element block corresponding to the
server is inserted into the E (element) ring of the network block N
and the element type 02 is inserted into the high-order byte of the
7 (type) slot of the element block. Since there is as yet no type structure
(this will be generated during the compilation phase of QAS), the pointer
portion of the 7 slot is "empty", indicated by a zero pointer. An empty
parameter list block pliS created and a pointer to it is inserted into
the p slot of the element block. The first word of the parameter list
block is set equal to the number of parameters for this type of element
(one in this case). The parameter mode is set to floating point. Two
port blocks corresponding to the two ports of the element are inserted}
into the P (port) ring of the element block. These port blocks are also
insertec into the unconnected elemenf port ring, Re. A pointer to the
element block is inserted into the symbol table in a slot displaced from
the top of the symbol table in correspondence to the name of the
element —name 01 corresponds to the first slot, name 02 corresponds
to the second slot, etc. (Note that there is a zeroeth slot which should
never pe used.)

If at this point a "Destroy Element or Connection” command were
given with element name 01 given as a parameter, the network structure

would revert back to its initial state as shown in Figure 1.

o1

SYMBOL
TABLE

69

20

20| Re

i

N
3 E
S
SEF?VE/? o1
o2 p
£ > 1
7
P

Network Structure Containing a Single Server

Figure

2

70

Suppose next that a ""Create Element or Connection' command is
given indicating that a simple connection (type 81 hexadecimal) with
name 82 hexadecimal is to be "created". The network structure will
then appear as shown in Figure 3. A connection block corresponding
to the simple connection is inserted into the C (connection) ring of the
network block N and the connection typé 81 is inserted into the high
order byte of the 7 slot of the connection block. Since there is no type
structure associated with a connection, the pointer portion of the 7
slot is "empty''. Since the simple connection has no parameters assoc-
iated with it (for other connection types this is not necessarily so), the
p slot of the connection blbck contains a pointer to itself. Two dummy
port blocks corresponding to the two "ports' of the connection are
‘inserted into the P ring of the connection block. These port blocks
are also inserted into the unconnected connection port ring, Rc' A
pointer to the connection block is inserted into the symbol table in the
same nanner as the pointer to the server element block was entered.

If at this point a ""Destroy Element or Connection'" command were
given with connection name 82 given as a parameter, the network structure
would revert back to the state it was in following the ''Create Element
or Connection" command for the server as shown in Figure 2,

Suppose now that an "Assign Parameter Value'" command is given
indicating that the value of the parameter (i.e., the mean service rate,u)
for the server is 0.5. The only change in the network structure would be

to insert the value 0.5 into the empty slot in the parameter list block

71

SYMBOL
TABLE
N 3]
20| R, 32

ﬁmz
J\J‘

' 20 RC —w
- (SIMPLE '
CONNECTION 82
01 "j
f _/.81 %
L T
s B

i
-

Pz -)
S)
Network Structure Containing a Server and an
Unconnected Simple Connection

Figure 3

72

p, as indicated in Figure 4. Any subsequent ""Assign Parameter Value"
command given for the server would merely replace the current value
by the new value,

Suppose next that a "Connect" command is given indicating that
port Py of the simple connection is to be connected to port Py of the
server. The network structure will then appear as shown in Figure 5.
Dummy port block Py associated with the connection is discarded and
port block Py associated with the server takes its place in the P ring
of the connection after being removed from the unconnected element
port ring, Re.

If at this point a "Disconnect’ command were given with element
name 01 and port Py given as parameters, the netwbrk structure would
revert back to the state it was in just before the "Connect' command,

as indicated by Figure‘s 3 and 4.

73

Result of Inserting a Parameter

Figure 4

74

SYMBOL
TABLE

N 3| E

0 R 2(C 1N)
>0 R, -
[PR *—
€ ‘_ﬂ mE
— . CONNECTION 82
0! ; -
— 1 /’ . f

- i
82l +— [& =
= B

SERVER 01

o2

O | s

Result of a Connect Command

Figure 5

75

To illustrate the use of the ""Aiter Generation Parameter' routine
a separate example will be considered.

Assume initially that the network structure is empty as shown in
Figure 1. Now suppose that a "Create Element or Connection" command
is given indicating that a random branch (connection type 83 hexadecimal)
with three branches and name 81 hexadecimal is to be ''created'. The
command string would then contain one generation parameter having a
value 3 indicating the number of branches as well as the number of
parameters. The resultant network structure will then appear as shown
in Figure 6.

If at this point an "Alter Generation Parameter' command is given
indicating that the number of branches of random branch 81 is to be
reduced to two, i.e., that the first (and only) generation parameter of
this connection is to have value 2, the network structure will change to
appear as shown in Figure 7. The value of the generation parameter of
the random branch is changed to 2 and, correspondingly, the number

of ports of the branch and the number of parameters for it are each

reduced by one.

76

32| C ‘)
Random

/Branch .. /

83—F—
o)
10 p
P2 B
o
4
Generation
Parameter 3
4 .
Parameters <
\ —t

Network Structure Containing a Random Branch

Figure 6

81

Symbol
Table

7

N

20

Re

P
3
Generation
Parameters 2
Parameters

Result of Changing a Generation Parameter

Figure 7

78

C. Area Dump

A routine NWKDUMP, which is used primarily for debugging
purposes, may be called to obtain a hexadecimal dump of the network
area on the logical I/O device SERCOM (actually, the calling sequence
allows any desired QAS area to be dumped), allowing inspection of
the network structure therein. To get a dump of the network area,
the generation phase command X'FF0107FF" may be used.
Calling sequence:

GPR 15: Address of NWKDUMP

GPR 12: Base-of-area (first word in area contains

its size)

D. Network Check

A routine CKNETWK may be called to check the structure
resident in the network areé, to insure that the network represented
by the structure is complete. In particular, this routine checks for
missing parameters, ,unconnected-élements or connections, and the
consistency of the parameters associated with random and priority
branches.

CKNETWK is called any time a command is given which leads
to network compilation (compile, solve, get results, etg.). It
may also be explicitly called by issuing the command X'FF0106FF".

The order in which the various error conditions are checked

is the following:

79

(1) Unconnected element
(2) Unconnected connection
(3) Missing parameter
(4) Sum of random branch parameters not equal to
1.0 + 0.00001
(5) Two branches of a priority type connection have the
same priority.
The first (if any) error condition detected results in the generation
of a patchup request and a call to the supervisor routine PATCHUP.
If no error condition is encountered, a normal return is made.
Possible patching requests which can be generated by CKNETWK
are the following, where commas indicate byte boundaries and the
bracket indicates fields to be filied by SELMA:
(1) Unconnected element
FF, 01, 03,80, 00, EN, EPN, FF*
——
The element name and the element port number are
inserted into the patchup request in the bytes designated
EN and EPN, respectively. Since there can never be
a connection named X'80 ' nor a connection port num-
bered X'00', SELMA treats these two bytes as holes

to be filled.

%
See Section III. B for a complete description of all generation
phase commands.

80

- (2) Unconnected connection
FF, 01, 03,CN, CPN, 00, 00, FF
The connection name and the connection port number
are inserted into the bytes designated CN and CPN,
respectively, and the two X'00' bytes which can
never be the element name or the element port
number are considered the holes to be filled.
(3) Missing or inconsistent parameter
FF, 01, 02, NAME, PN, FF
The element or connection name is inserted into the
byte designated NAME. The parameter number is
inserted into the byte designated PN if a parameter
value is unspecified (missing), and zero is inserted
into this byte if ail parameter values are pre sént but
something is wrong with them (currently, this implies
that the sum of the parameters for a random branch
does not equal 1.0 + 0.00001.). A priority branch
type connection, with two parameters having the same |
value, is treated as if one of the parameters is
undefined. A simple patchup requesting that one of
the parameters be redefined, is generated.
Calling sequence:
GPR 15: Address of CKNETWK

GPR 12: Base of network area

IV. Compilation Phase Routines

The procedure for compiling the network involves a successive
absorption of connections. Each connection is considered in turn,
and it and the elements it connects are replaced: by a single equivalent
element. This process is continued until no connections remain. The
resulting element consists of a long list of autoevents which describe
the probability intensity of every change of state which is possible.

Compilation of the network is requested by the issuance of a
"compile' command or any other command which presupposes the
existence of the compiled network when it does not yet exist. In the
latter case, the QAS supervisor generates a compile command with
default parameters.

Before the compiler is called, CKNETWK is called to insure that
the network is consistent, i.e., that both rings of unconnected ports,
Re and Rc, are empty, and that all parameters are present, If this
test is successful, the compiler enters a loop, successively absorbing
connections until none remains,

The absorption of a connection is divided into three distinct steps.
In the first step, the elements joined by the connection to be absorbed
(called "associates' of the connection) are collected into a single
equivalent element having ports corresponding to each of those of the
associates. This collected element then replaces the associates. In

the second step, the connection, which now joins only gorts of a single

81

82

element, is absorbed to create still another element which is
equivalent tothe collected element with its connection. (This two-
step process eliminates the need to treat connections between

ports of a Single element differently from those between ports of
different elements.) In the third step, the state space of the final
collected element with its absorbed connection is trimmed to elimi-
nate transient states, which contribute nothing to the solution of

the network and otherwise would serve only to occupy valuable
storage within the QAS data structures.

Since the compiler operates destructively upon the network
structure, a copy of the network structure must be saved prior to
conipilation. This is done by the QAS supervisor before calling the
compiler. In order to distinguish between the network area (which
contains the network structure) and the workspace of the compiler
(which contains the network structure when compilation begins),

the compiler workspace is referred to as the "working network area'.

COMPSOLV

COMPSOLV is called by the QAS supervisor to carry out the
compilation process. The following steps are performed,
(1) For each connection on the network connection ring C,
COMPSOLYV initiates each of the three steps described
above - collect associates, absorb connection and trim

state set - in that order. In the:case of a priority branch

83

type connection, before initiating the above three steps
subroutine SETPRIOR is called to reorder the connection
port ring according to the priority parameters.

(II) After all connections .have been absorbed, a dump of the
working network area is given, if requested.

(II) The minor area manager is initialized by a call to
RESETMIN.

(IV) A check to insure that one and only one element remains
in the network is made and then the results area is
acquired., Parameters for the mapping of the multi-
dimensional cartesian product state space into a linear
index are inserted into the results area via a call to
GETRA.

(V) The working probability vector is acquired and parameters
for SOLVE are extracted from the command string.
SOLVE is then called to produce the steady state proba-
bility vector.

(VI) The steady state probability vector is inserted into the
results area and the storage for the working probability
vector area is released via a call to PUTPRVEC.

On return from COMPSOLYV, the supérvisor;relea»se*s the working
network area. The results area now contains the solution of the
model. In step IV if the compiled network does not consisc of

exactly one element, the QAS error routine DAMMIT is called

84

with error code X'00000D00' .
Calling sequence:
GPR 15: Address of COMPSOLYV
GPR 1: Address of first byte of compile command (exclusive
of the delimiting byte)
GPR 12: Base of working network area.
Two possible compile commands may be given; they are
(1) Compile, dump compiled network, and solve (calculate
equilibrium probabilities).

(2) Compile and solve.

The hexadecimal equivalents for these commands are:

@ [FF 02 | 01 r ! FF
N l\ o~
@ MXITER EPSILON
}FF!ozfoo} [FF
i . - . ,,_—.._.____(.ﬂhu Rt J

——
MXITER EPSILON

respectively, where MXITER is a halfword integer specifying the
maximum number of iterations to be used in solving for the equilibrium
probabilities and EPSILON is a string of SEL six-bit coded characters
to be assembled into a: constant and used as a convergence criterion
in solving for the equilibrium probabilities.

The difference between the operations initiated by these two

commands should be obvious.

85

A, Collect Associates
The collect associates phase of compilation is effected by a
number of routines which are related to one another in a hierarchy as

illustrated schematically below:

@COLLECT
@ESTAR @SSTAR @XTENDEYV
@PRDT

@ELTYPE @CROSS @CIRCDOT
l

"1 ™~ @crossl

@QUEUE @SERVER @SEX

|

@TEST

The following descriptions of each of these routines should help to clarify

these relationships.

@COLLECT

@COLLECT collects all elements connected by a given connection

and combines their type structures into a structure suitable for

presentation to the connection absorption routine.

@COLLECT first calls @ESTAR which returns with all the con-

nections associates removed from the element ring, E, and placed

86

in a separate ring, E'. Then it calls @SSTAR which returns with
a new state set S* which is composed of the cartesian product of all
the state sets of the elements in E*. Next it removes the first element,
designated e', from E* and inserts it into E immediately after the head.
The parameter pointer p of e' is made to point to itself (indicating that
there are no longer any parameters associated with the element) and
the state set S* becomes the state set of the element e'. Then @XTENDEV
is called to modify the autoevents = and the exoevents £ of e'.
Finally, @COLLECT sequences through the remaining elements in E*,
performing the following operations on each element:
(a) The autoevents = and the exoevents & of the element are
modified by calling @ XTENDEYV.
(b) The port ring P of the element is added to the beginning
of the port ring of e'. |
(¢) The autoevent ring = of the element is added to the beginning
of the autoevent ring of e'.
(d) The exoevent ring Z of the element is added to the beginning
of the exoevent ring of e’
(e) The type structure 7 of the element is destroyed.

(f) The element block itself is destroyed.

Note that the ports, the autoevents, and the exoevents are placed in an
order that will match the order in which the states in 8™ were combined.
When the above sequence of operations has been completed for each

element in E*, the head of E* is freed and return is made.

87

Calling sequence:
GPR 15: Address of @COLLECT
GPR 1: Pointer to a connection block.

GPR 12: Base of working network area.

@ESTAR

@ESTAR creates a ring E containing as members all elements
which are associates of a given connection. First, these elements
are flagged by traversing the port ring P of the connection block and
following each port to its corresponding element block. After the elements
have been flagged, the network element ring E is traversed, removing
all flagged elements from the ring, As each flagged element is encoun-
tered, the flag is removed and the element is added to E*. Finally,
@GET is called to obtain one word of storage to act as the head of E",
Calling sequence:

GPR 15: Address of @ESTAR

GPR 1: Pointer to a connection block.

GPR 12: Base of working network area.

Upon return GPR 1 contains = pointer to E,

@SSTAR
@SSTAR forms the composite state set S* of the elements in
E*. First, E* is traversed and for each element in E* the following

operations are performed:

88

(@) @ELTYPE is called to generate the type structure 7 for
the element,

(b) The parameter list of the élement is destroyed. (Parameter
values are no longer needed once the type structure has been
generated.)

(c) The dimension of the state set of the element is added to a

running total.

Then E* is traversed again, calling @ PRDT to form the cartesian
product of the state sets of the elements in E* to yield the composite
state set S and forming a displacement list D. The displacement list
is a string of bytes beginning on a full word boundary, the first byte of
which contains the number of bytes following it in the list (the number
of elements in E*) and the remaining bytes of which contain the displace-
ment of each element's contribution to the newly formed state set S*.

It is important to note that the cartesian product of the element
state sets is formed backwards relative to the ordering of the elements
around E*, That is, the state set of the first element of E* will be the
last set of entries in an element of S*. Displacements are inserted
into the displacement list from the bottom up. Thus, the ordering of D
is the same as the ordering of S*,

For example, consider the following E* ring:

89

2

90

The resultant state set S* and displacement list D would appear as

follows:
S* D
S B RN 3
_// I : .
_—) 1__ |displacement of S3
/ ; 2 |displacement of S2
—7] _5 ‘ displacement of S1
displacement of S, =1 } from S,
displacement of 82 =2
from S
2
4
displacement of S1 =5 from S1
6 |1

Calling sequence:
GPR 15: Address of @SSTAR
GPR1: Pointer to E* ring
GPR 12: Base of working network area.
Upon return GPR 1 contains a pointer to S* and GPR 2 contains

a pointer to D.

@QELTYPE
@ELTYPE supplies @SSTAR with a pointer to the type structure

of a given element and causes the type structure to be generated if

necessary.

a1

The following convention is assumed for the type (7) slot of an
element block. (See the descriptions of the generation phase routines
for the element block format.) The 7-slot occupies one full word, the
high-order byte of which contains a type number and the low-order bytes

of which contain a pointer to a type structure, as shown in Figure 8.

Type .
Number Pointer

0 7 8 31

T - slot Format

Figure 8

- The correspondence between element ty pes and type numbers is shown

in Table 10. A pointer of zero indicates that a type structure has not

yet been created for the element in question.

Table 10
Element Type Numbers

Element Type Type Number (Hexadecimal)
Queue 01
Server 02
Source 03
Exit 04

When the compiler itself creates an element, it also generates the
type structure for the element and hence the pointer in the r-slot of the

element block will be nonzero (i.e., will contain a pointer to the type

92

structure). On the other hand when the element is created by the
"create element'' routine during generation phase, no type structure is
supplied for the element and the pointer in the 7-slot of the element
block will be zero. In this case the type structure is supplied by QELTYPE
when it is needed by the compiler. @SSTAR requests a pointer to the
type structure of an element through @ELTYPE. When an element is
specified, if the type structure is already present, a pointer to the type
block is immediately returned. Otherwise, if the type structure is not
yet present, @QELTYPE calls a type-evaluation routine which creates the
type structure for the element using the parameter values specified for
that element. The correSpohdence between element types and type-

evaluation routines is shown in Table 11.

Table 11

Type-Evaluation Routines

Element Type Evaluation Routine
Queue @QUEUE
Server @SERVER
Source

@SEX
Exit

Since the type structure for an element is dependent upon the
parameter values associated with the element, the type-evaluation
routines call upon a routine called @TEST which checks the parameter
list corresponding to the element in question to insure that values

have been specified for all parameters.

93

The type structures generated by the various type-evaluation routines
are illustrated in Figures 9, 10, and 11. The hexadecimal codes in the
high-order bytes of pointer slots and ri.ng heads are indicative of the
information pointed to or contained in the ring. These correspondances

are shown in Table 12.

Table 12
Pointer and Ring Head Codes

Hexadecimal Code Information
01 State set
02 b ring
03 g vector
04 Autoevents, o
05 Exoevents, ZY
06 Exoevents corresponding to port
Dy, % ;)

The first slot of the type block 7 contains a pointer back to the

r-slot of the element block. The second slot contains a pointer to the

state set structure for the element in question. This structure has the

format described for sets in the description of the set manipulation routines.
The third slot of the T-_block is used for state mapping purposes.

This slot contains a pointer L to a block of n+1 bytes called the name

stack, the first byte of which contains a count n of the entries in the

block and the remaining n bytes of which contain element names, as

shown in the following diagram:

94

01 T S

Type Structure for Queue

Figure 9

95

Type Structure for Server

Figure 10

96

'

10

Type Structure for Source-Exit
Figure 11

a7

ISt name

nth name

The sequence of the names in the name stack corresponds to the
ordering of the contributions made by the respective component
elements to the state set S and to the b rings of the composite element
which the 7-block represents.

For instance, if the composite element were the following:

which would yield a state set of the form

and assuming that the queue had name 01 and the server had name 02,

then the name stack would appear as follows:

98

02

For each simple element (queue, server, source, or exit) the name

stack appears as follows:

name

and it is to this form that all name stacks are initially set. Only after
at least some amount of compilation do any name stacks assume the more
general form.

* Currently @ELTYPE initializes the name stack for each simple
element when it is called upon to create the type structure for the
element, and during compilation the name stacksgare«-conca;tenated to
yield the final name stack which sﬁpplies necessary stafe_mapping
information.

The fourth slot of the 7-block acts as the ring head for the ring of
autoevents for the element and the ﬁﬁh slot acts as the ring head for the
ring of exoevents. Actually, the ririg of exoevents is a ring of rings of
exoevehts, the upper ring serving to segregate the exoevents into sets of
exoevents corresponding to eéch port of the element.

The format of an event bloék (both for autoevents and exoevents) is

the following: The first slot of an event block serves as a ring link. The

99

second slot contains a bointer to a set structure (identical in format to
the state set structure) designated a b-set which indicates for which
states the event can occur. The third slot contains a pointer to a
vector (having a format like that of the vector in the description of the
set manipulation routines) designated a g-vector which when added to the
b-set yields the set of states to which the event causes a transition.
The fourth slot contains a transition intensity for the event.
Calling sequence:

GPR 15: Address of @ELTYPE

GPR 1: Pointer to element block

GPR 12: Base of working network area.

Upon return GPR 1 contains a pointer to the type block of the element.
The QAS error routine DAMMIT is called with error code X'01000000' if
there is no element type which corresponds to the type code given in the

high-order byte of the 7-slot of the element block.

@QUEUE

@QUEUE calls @ TEST to insure that a value has been specified .for
the parameter of the queue in question and then generates the appropriate
type structure.
Calling sequence:

GPR 1,5: Address of @QUEUE.

GPR 1: Pointer to parameter block of given queue.

GPR 12: Base of working network area.

100

Upon return GPR 1 contains a pointer to the type structure

generated.

@SERVER
@SERVER calls @ TEST to insure that a value has been specified

for the parameter of the server in question and then generates the
appropriate type structure,
Calling sequence:

GPR 15: Address of @SERVER

GPR 1: Pointer to parameter block of given server.

GPR 12: Base of working network area.

Upon return GPR 1 contains a pointer to the type structure

generated.

@SEX

@SEX generates the type structure for the source or the exit
in question.
Calling sequence:

GPR 15: Address of @SEX.

GPR 12: Base of working network area.
Upon return GPR 1 contains a pointer to the type structure

gene rated.

@TEST

@TEST checks the parameter list indicated to determine whether

all parameter values have been specified. A parameter value is

101

considered to be unspecified if either of the following codes is found:

X'000E0000' - unevaluated fixed point

X'FEOF0000' - unevaluated floating point

The QAS error routine DAMMIT is called with error code X'02000000'
if any parameter value is found to be unspecified.
Calling sequence:

GPR 15: Address of @ TEST.

GPR 1: Pointer to parameter block of given element.

GPR 12: Base of working network area.

@XTENDEV

The purpose of @XTENDEYV is to extend the b-sets and the g-
vectors of the events of a given associate of a connection to include
the events' effects within the new state set S* of the collected element.
@XTENDEYV is given a pointer to the associate's 7-block and a
displacement (taken from the displacement list D created by @SSTAR)
indicating where in the state set S* the element makes its contribution.
It then takes each b-set ring of the element's events (both autoevents
and exoevents) and calls @.CROSS 0 suitably modify the b-set. Similarly,
it takes each g-vector of the element's events and calls @CIRCDOT to
suitably modify the g-vector. The newly formed b-sets and g-vectors
are then made to replace the old b-sets and g-vectors, respectively.
Calling sequence:

GPR 15: Address of @ XTENDEYV.

102

GPR 0: Displacement.
GPR 1: Pointer to T-block of associate.
GPR 2: Pointer to S*.

GPR 12: Base of workihg network area,

@CROSS

The function of @CROSS is to suitably modify S* (for the purposes
of extending events only) to eliminate the multiplicity of states which
could arise within the b-sets if S* were not modified when @CROSSI
is calied to modify the b-sets. In order to understand just what effect
@CROSS has on S* it will be necessary to first consider the operation
performed by @CROSSI , Which is the following: A ring of state blocks
b* (which comprises a set structure in the format described earlier) is
generated in the fdllowing manner, The first block within the S* ring
| ‘is inserted into b* and the vfir“st block Within the b-set ring {s copied-
on top of it at the displacement given. This process is then continued,
forming a new block wit‘hinvb* for each possible combination of blocks
within S$* and b. For instanée suppose that S* and b were as shown

below and that the displacement given were 2.

103

.B ‘G - | Q_I_D_\

A
XY X W
E|F K| L

-
Al B G | H
C|D c | D
E|F ‘K | L

The difficulty arises (and herein lies the necessity of the operation
performed by @CROSS) when S* contains blocks which are identical
except for that portion contributed by the element from which the

b-set came. For instance, suppose that S* were as shown below with

b the same as above and a displacement of 2.

104

/

(\'9 / dlf*”% / % /
A | B A B
x| v zlw
E |F E|F

The resultant b* would then be as follows:

b*
)3)
/.

~

e ———'—"‘“""/

S

%moj;»\’

- U%m

Clearly, one of these blocks can be eliminated. In fact unless duplicate
blocks such as these are eliminated, the structure soon mushrooms
tremendously resulting in a'grdss waste of storage and time.

~ Hence, @CROSS checks for instances where this multiplicity will
arise and prunes the S* structure, creating a new structure S' that it
passes on to @CROSSI. In the example above S* would be modified to

the following:

105

‘3!/

W

/ |
A

Z

E

F

before being passed on to @ CROSSI.
Calling sequence:
GPR 15: Address of @CROSS.
GPR 0: Displacement.
GPR 1: Pointer to S*,
GPR 2: Pointer to b.

GPR 12: Base of working network area.

Upon return GPR 1 contains a pointer to the new set b*,

@CROSSI

@CROSSI forms a pseudo-cartesian product (as described under
the @CROSS description) between two rings S* and b.
Calling sequence:

GPR 15: Address of @CROSSI

GPR 0: Displacement.

GPR 1: Pointer to (modified)S*.

106

GPR 2: Pointer to b.

GPR 12: Base of working network area.

Upon return GPR 1 contains a pointer to the new set b*, If the
displacement and the dimensions of S* and b are such that a block of
b does not fit entirely within a block of S*, the QAS error routine
DAMMIT is called with error code X'000000A0".

Note that @ CROSSI will not operate properly for dimensions in

in excess of 128,

@CIRCDOT

@CIRCDOT performs the following operation, using S* and a g-
vector to obtain a new vector g*, A vector of n+1 bytes (where n is
the dimension of §*) is obtained. The dimension of $*, n, is placed
in the first byte of the vector'énd the rest of the bytes are set to zero.
Then the g-vector ivs copiedv on top of the ne\ﬂy creétéd vector at the
displacement given to yield‘ the final vector g*,

For example, if the dimension of S* were 5, the displacement given

were 2, and the g-vector appeared as follows:

then the new vector g* would appear as follows:

107

{O (=) }ij(ﬂi

Calling sequence:
GPR 15: Address of @CIRCDOT.
GPR 0: Displacement.
GPR 1: Pointer to S*,
GPR 2: Pointer to g.

GPR 12: Base of working network area.

Upon return GPR 1 contains a pointer to the new vector g*., If
the displacement and the dimensions of S* and g are su‘clh that g does
not fit entirely within g*, the QAS error routine DAMMIT is called
with error code X'000000B0’.

Note that @ CIRCDOT will not operate properly for dimensions in

excess of 128.

@ PRDT
@PRDT performs essentially the same operation as PRDT which
was described under the set manipulation routines (namely, forming the

cartesian product between two sets) but its calling sequence is "simplified"

108

to make life easier for @SSTAR. Also, the storage obtained from @GET
is in one contiguous block to facilitate releasing the storage. The
number of words obtained is returned to the calling program so that
when an intermediate result is to be destroyed, the entire block may
be released with one call to @ FREE rather than having to sequence
through the structure freeing each fragment individually. Since @SSTAR
may yield a number of intermediate results before the final cartesian
product S* is obtained, this can result in a considerable time savings.
Calling sequence:

GPR 15: Address of @PRDT.

GPR 1: Pointer to state set A.

GPR 2: Pointer to state set B.

GPR 12: Base of working network area.

B. Absorb Connection

The absorption of connections is implemented via two routines

ABSORB and SPON.

ABSORB
The entire absorption of a connection is accomplished by calling
ABSORB with a pointer to a connection block. When called, ABSORB
performs the following sequence of operations: |
| (1) The connection block indicated is removed from the network

connection ring C.

(4)

109

The element ports which are joined by the given connection
are destroyed. The exoevents which correspond to these
ports are placed on the connection's port ring (which no
longer contains any ports).

The minor area to be used as the spontaneous event set
area is set up by a call to EXPMINOR, which is the main
entry in the minor area manager. This sets up one block
of storage as a minor area. (Blocks acquired for the absorp-
tion of previous connections(areix"'eused;)

The entry in SPON which corresponds to the connection type
being absorbed is called. SPON then generates the spon-
taneous event set using the exoevents on the connection's
port ring and the parameters (if any) associated with the
connection.

The augmented spontaneous event set is created using the
spontaneous event set generated by SPON and the element
state set.

The element state set is pruned to eliminate all forbidden
states.

The connection block and its associated ring of exoevents
are destroyed.

The autoevent set of the element and the augmented spon-
taneous event set are consolidated to yield a new autoevent set.
The exoevent set of the element and the augmented spon-

taneous event set are consolidated to yield a new exoevent set.

110

As an illustration of the above sequence of operations, cdnsider
first the fragment of a working network structure shown in Figure 12.
After step (2) the fragment will appear as shown in Figure 13. After
step (5) the structure shown in Figure 14 will be present in addition to
everything shown in Figure 13. After step (7) the structure pointed
to by @k in Figure 13 will have been destroyed. And after step (9)
the fragment will appear as shown in Figure 15.

Note that the execution of ABSORB is not dependent upon the
connection type being processed. All computations unique to a connec-
tion type are performed in SPON., C’onnection type becomes important to
ABSORB only when a particular entry to SPON is to be called. At this
point an illegal type number will result in a fatal error.

The large (minor) area in which the spontaneous event sets are
created is obtained by ABSORB (as indicated above) and the size of this
area is currently set at 2000 words. ¥ necessary this size can be
changec by changing the value of the constant called SPONSIZE.

Calling sequence:
GPR 15: Address of ABSORB.

GPR 1: Pointer to connection block.

GPR 12: Base of working network aréa.

The QAS error routine DAMMIT is called with the indicated error

code if any of the following situations arises:

111

Fragment of Working Network Structure at Beginning
of Connection Absorption

Figure 12

112

Generating Spontaneous Events

Figure 13

113

;3
s S,
. 1
b &
% 9
A %

Additional Structure Generated by Spontaneous
Event Routines

Figure 14

114

o|ml=

—-—%' v
’é%* e,
B

.

W

Fragment of Working Network Structure at
Completion of Connection Absorption

»Figure 15

115

Condition Error Code
Illegal connection type. X'00110000'
Connection joins ports of more than X'00230000'
one element,
Invalid type structure. X'00240000'
SPON

SPON has one entry for each connection type. Each entry creates
the spontaneous event set for the given element using the information
contained in the connection parameter list and the ring of exoevents
which has replaced the port ring. The correspondence between connec-

tion types and the SPON entry points is given below:
Connection Type Type Number SPON Entry Point

Simple Connection ‘ X'81' SPONS81
Priority Branch ‘ X'82' SPON82
Random Branch X'83" SPON83

Calling sequence:
GPR 15: Address of SPON entry point.
GPR 1: Pointer to connection block.

GPR 12: Base of working netwogkiarea.

Upon return GPR 1 contains a pointer to the spontaneous event set.
The QAS error routine DAMMIT is called with the indicated error code

if any of the following situations arises:

116

Condition Error Code

Coding for connection type not included X'00220000'
in this version of SPON (i.e., an entry

for this type exists in SPON but is not yet

coded). Currently, there are no such entries.

Parameter value missing X'00250000'

In addition SPON83 checks to insure that the sum of the parameter
values given for the random branch is equal to 1.0 within some limit of
error. Currently, this limit is 0.01 and is defined by the constant
called EPSILON. Consequently, if the sumuof. 1the; parameter values

is not equal to 1.0 + EPSILON, DAMMIT is called with error code

- X'00250000°'.

C. Trim State Set

The points in the rectangular "state set" SR of the Markov chain of
the entire network fall baSicaHy into three categories ,

(1) Forbidden states

(2) Recurrent states

(3) Transient states.

The forbidden states are those Which immediately result in the
occurrence of spontaneous events, which, in turn, take the process
to a state which is not forbidden. The forbidden states are automatically
pruned from the state set upon each consolidation of events and, hence,
present no problem,

The difficulty arises with the presence of transient states within the

model. Transient states are legitimate states of the Markov model, but

117

since they are characterized by an equilibrium probability of zero and
since they ordinarily have no bearing upon the calculation of equilibrium
probabilities of other states, they are superfluous and waste valuable
storage in the various QAS data structures.

Ideally, it would be desirable to identify transient states of
consolidated elements as they are created, and to immediately
remove them from the state set. Unfortunately, there appears to be
no systematic procedure for identifying all of the transient states
without performing a calculation very similar to the calculation of all
equilibrium probabilities. This, of course, defeats the purpose of
trying to remove them from the state set since it is desired to eliminate

them and to reduce the state set before calculating the equilibrium

probabilities.

Fortunately, there is a (relatively large) class of transient states
which is relatively easy to recognize. It is these states which are
eliminated by the "trim state set'' operation,

The procedure for eliminating this class of transient states is
the following: Subsequent to the absorption of each connection, those
stat es which are not "target states' of any event are successively

trimmed from the state set until no more such states can be found.

TRIM
The purpose of the routine TRIM is to eliminate that class of

easily recognizable transient states from the state set of the element

118

(This includes suitably trimming the state sets of the various events,

also.)

Calling sequence:
GPR 15: Address of TRIM

GPR 1. Pointer to element block (that element into which the
connection has just been absorbed).

GPR 12: Base of working network area.

D. Results Area

As mentioned earlier, the result of the compilation process is
a network éontaining exactly one element having no ports or exo-
events and having a large set of autoevents. The information in this
set of autoevents describes the information in the matrix of transition
intensities for the network. An example of how a typical compiled
network might appear is shown in Figure 16, At this point, after
making certain that one and only one element remains in the E-ring,
subroutine GETRA is called to acquire the results area. Routines
GETRA and PUTPRVEC,, descriptions of which follow, are used
both to acquire the results area and to create various data structures
within it.
GETRA

GETRA first scans through the state set S of the remaining
element (Figure 16) to find the largest value on each dimension of
the state set of the original network. It then forms the partial products

of these values and creates the mapping structure shown below:

119

N

E

C_ leo
e

=

P e
5
.

—{
r-—’ e

Typical Result of Absorption of All Connections

Figure 16

120

Mapping
Ny My
1(1 +MNK)———(1'+MN22 :
] | |
l l !
| | |
| | |
| |
1(1 + MNK)
N M
K NK
1
MN : Maximum value in the state set corresponding to the element
K
named NK‘

Next it computes the amount of Storage necessary to represent
the state set S of the remaihing element, the mapping structure, and
the steady-state probability vector, and acquires it. Finally it
creates the structure shown in Figure 17. Note that the format of
each 'rectangle' in the state set is slightly inodified by the addition of
a full word after the pointer. This word is not used currently, but is
reserved to contain the base index of each rectangle in case the future
modification deem this to be necessary. At this point (in Figure 17)
only the state set and the mapping structure have been inserted into

the results area, and the block for probability vector is empty.

121

LENGTH OF RESULTS
AREA Ly

VECTOR

POINTER TO PROBABILITY

POINTER TO STATE
MAPPING

NO. OF
ELEMENTS

STATE SET
HEAD

T
i

NOT USED

NOT USED

i STATE SET

[

! STATE MAPPING

VECTOR Lo

N-Dimensional 'Rectangular’

State Subset

T

NOT USED

Low
st

HIGH
1st

i

- — "

% LENGTH OF PROBABILITY
|
!

PROBABILITY VECTOR

Results Area

Figure 17

Jg—!

Low
a2nd

HIGH
2nd

Low

HIGH

122

Actually this block of storage, along with working probability area, is
used by the SOLVE routine during the iteration process, and after the
probability vector has been computed, it is inserted into the storage

reserved for it in the results area.

Calling sequence:
GPR 15: Address of GETRA
GPR 1: Pointer to type block

GPR 12: Base of working network area

PUTPRVEC

This routine inserts the probability vector into the storage

reserved for it in the results area.

Calling sequence:
GPR 15: Address of PUTPRVEC

GPR 1: Address of probability vector to be inserted

E. Calculation of Equilibrium Probabilities

The calculation of equilibrium probabilities .is initiated, after
the network has been compiled, by a call from COMPSOLV to a routine
call SOLVE. SOLVE using an iterative procedure very similar to the
one used RQA-1 [3] takes the single element resulting from the
compilation and produces the steady state probability vector for the
original model. Initially, two vectors - one in the results area and
the second in the working probability area - are obtained by
COMPSOLYV and passsed on to SOLVE. The first word in each vector is

its length, including the length word. The rest of words correspond

123

to states of the element and contain that state's probability. The
mapping used to compute the linear index of a state in the multi-
dimensional state set of the element (and, hence, the state's position
in each of the two vectors) is given below:

Let S be the state set and let,

T T

K 7
S11 812 Si3 S1g
S91 S92 P | Sog
i ' L |] i
: | !) " : { i
‘ ' S 3
Sk1 Ska K3 Kg
S1 = Max {Su,Slz,...,S g} +1
S, = Max {821,822,... ,szg} +1
SK = Max {SKI’SKz""’S g} +1
Then the linear index IB for a particular state B is:
Ip = BytPy 1 S + Pk 9 Sk-1 9k *
+ b18283,...,SK'

where B is given by the tuple

124

Before the iteration process to determine the steady state
probabilities begins, the probability intensities, u, for each autoevent
of the element are normalized as follows: One of the probability
vectors is cleared to zero. Then the probability intensity, u, for each
autoevent is added to each of .the initial-state entries for that autoevent.
The largest entry in the vector is found and all probability intensities

are normalized to slightly under this as follows:

by = KX 99 /largest entry

Then each probability vector is cleared (1i. é. , each entry is set to
zero). Next 1.0 is put into each entry that corresponds to the initial-
state (b) or final-state (b+g) of any autoevent. The vectors are then
normalized so that the sum of the probabilities of all states is 1.

Then the iteration process is performed. At the beginning of
each iteration the probability vectors have identical entries, normalized
to a sum of 1.0. One is designated Pol d and one Pnew' Then for each

autoevent the following operations are performed.

P

new(b) Pnew(b) -1 Pold(b)

Pne W(b+g) = Pne W(b+g) + U Pol d(b)

where: the index b represents an initial-state of the autoevent,
the index b+g represents the final-state corresponding to
the initial-state b, and u is the normalized probability

intensity of that autoevent.

125

One iteration then consists of the above operation for each initial-state
and each final-state of each autoevent.
At the end of each iteration Pnew is normalized to 1.0 The
iteration process is discontinued if:
Iteration limit exceeded -- A comment is then sent to SPRINT
to that effect. SOLVE returns with
GPR 1 pointing to Pnew'
Convergence achieved -- That is, the maximum difference
between any corresponding entries in .
Pol d and Pnew is less than epsilon
(FPR 0). SOLVE returns with GPR 1
pointing to Pnew’
Otherwise, another iteration is made.
Calling sequence:
GPR 15: Address of SOLVE
GPR 0: Maximum number of iterations
GPR 1: Pointer to element block
GPR 2: Address of probability vector in results area
GPR 3: Address of working probability vector

GPR 12: Address of working network area

FPR 0: Epsilon, convergence criterion

On return GPR 1 points to the probability vector.

V. Result Phase Routines

Result phase consists of a collection of routines which operate on
the results area to compute and format requested results for display
as graphs or printed tables. Even though there is sufficient infor-
mation in the results area to compute expeéted values and marginal
probability functions for the states of various elements, at this point
in time only the probability density function for the entire model, or
for a single element in the model, can be computed and displayed.
The result phase routines include the result phase interpreter, routines

to plot and label graphs, and finally routines to print the results in

tabular form,

A, Result Phase Interpreter

The result phase interpreter is a routine named RESULTS,
which is called by the QAS supervisor whenever a ‘result phase
command is received, that is, whenever the first byte of the
command (excluding the delimiting bytes) is X'03'. As noted earlier,
the supervisor insures that the current model, the results for which
have been requested, has already been compiled and solved. RESULTS
checks to make sure that the results area, indeed, exists and loads
GPR 12 with its address. The result phase commands, as interpreted
by the result phase, have the following formats and interpretations.
Each division in a command corresponds to one byte and all numbers

contained therein are hexadecimal:

126

127

Plot Probability Density Function

[FF[O3 |00 NAME’ FF ’

Modify Current Plot

!FF 03!01 ' ’CN!FF?

Display Coordinates

fFF[os 02 l IFFJ

Type Probability Density Function

I FF] 03 |03 | NAME I FF l

Call User-Supplied Routine

—
LFFOB 04 ! lFF

128

Note that the last command is not currently generated by SELMA.

The abbreviations used within these commands have the following

meanings:

NAME - A number between 1 (X'01') and 127 (X'7F") identifying
a particular element. Element name X'0C' specifies
the entire model.

CN - A number which specifies the number of points to
be plotted.

SN - A two-byte number between 0 and 16, 363 which specifies

the state of the element or the linear index of state
of the entire model. This number is encoded so that
the low-order bit in each byte is zero and is obtained

by concatenating the high-order 7 bits of the two bytes.

Both the modify and display commands refer to the previous plot
and no additional computation of results is necessary. For these
cases the parameters in the commands are simply decoded and the
plotting routines EXPAND and DISPLAY, respectively, are called.
However, for the other two commands (excluding the call-user-
supplied-routine command), unless the ﬁrobabiiity density function
for the entire model is requested, additional computation is done
by RESULTS to generate a vector of probabilities corresponding
to thé states of the indicated single element. For the entire model,
such a vector already exists in the results area. The last step taken

by RESULTS is to call either the plotting or the printing routine, as

129

indicated by the command.

Calling sequence:
GPR 15: Address of RESULTS

GPR 1: Address of one word parameter list,

Parameter List:

Word 1: Location of first byte of command

B. Plotting Routines

The plotting routines are used to display results via SELMA as
histograms, and to provide support for other facilities provided by
SELMA, such as obtaining numerical values for points on the graph
and looking at various sections of the graph in detail, all of which is
explained in detail in the companion report on SELMA [2]. A
maximum of 50 points may be plotted at any one time. Result plots
which exceed this limit may be displayed by making use of the modify
command., The plotting system consists of the three subroutines

PLOT, EXPAND, and DISPLAY, descriptions of which follow below.

PLOT

This routine is used both to initialize the plotting system and to
generate a plot. PLOT saves the address and the length of the
vector of probabilities to be plotted for later calls to EXPAND and
generates-a plot by a call to EXPAND with a starting index of zero

and the default value of 50 as a count.

130

Calling sequence:
GPR 15: Address of PLOT

GPR 1: Location of 4-word parameter list

Parameter List:

Word 1: Address of vector to be plotted

Word 2: Location of a full WO.I',d containing number of elements
in vector to be plotted

Word 3: Location of a full word containing number of characters
in label for y-axis

Word 4: Location of first byte of label for y-axis. (x-axis label
is supplied by SELMA.)

PLOT is a FORTRAN callable routine and can be called as follows.
CALL PLOT (VEC, VECSZ, LABSZ, 'LABEL')

where VEC is the vector to be plotted, VECSZ is the size, and LABSZ

is the length of the label.

EXPAND

EXPAND may be used to plot any portion of the vector address
and size of which were specified by the last call to PLOT. The
particular portion to be plotted is specified by a starting index and
a count of the number of points therein, If the count is zero or
greater than fifty, fifty points are plotted. The limits of the vector
are, of course, never exceeded (i.e., if the sum of the count and the

starting index indicates some limit beyond the end of the vector, then

131

| only the points which are in the vector are plotted). Given a starting

index, a count, and the address of the vector, EXPAND first computes
the starting address of the section of the vector to be plotted. Next

é. search for the largest value in this section is made. If this value is
greater than 1.0, then it is used to normalize the rest of the points in
the section; otherwise the least negative power of 2 greater than the
maximum value is used. Finally, the minimum and maximum values
of the abscissa are computed from the starting index and count. On
the basis of this information, the following two commands‘ for SELMA

are generated and inserted into the output buffer by a call to QASWRITE.

Set Up Graph

TEXT consists of five variable length fields specifying the minimum
X value, the maximum X value, the minimum Y value, the
maximum Y value, and the Y-axis label. Each of these fields
consists of a sequence of bytes, the first of which contains the
number of bytes which follow it in the field and the remainder

of which are SEL 6-bit character codes specifying the

}
IFFOI‘OO ! MIN X... | MAXX...|MINY...| MAXY...LABEL... |FF
k\f“j ~ ~ -~
XC TEXT
where
XC is the abscissa increment encoded the same way as SN.
(2 bytes)

132

appropriate item.

Plot values

— ——]

LFF o1 |oi | Y

where

YC is a coded normalized ordinate value (2 bytes).

Calling sequence:

GPR 15: Address of EXPAND

GPR 1: Starting index

GPR 0: Count,
DISPLAY

DISPLAY is used to determine and display the coordinates of a
point on a graph. The index of the point to be displayed is supplied as
a parameter. DISPLAY inserts the following record into the output

buffer.

Display Coordinates

FF {01 02 | X VALUE | Y VALUE |FF}|
N j
) NS
TEXT

where X VALUE and Y VALUE are variable length fields like the TEXT
fields for the command "Set Up Graph' containing SEL 6-bit codes

specifying the coordinates.

Calling sequence:

GPR 15: Address of DISPLAY

133

GPR 1: Index of point the coordinates of which are to be displayed.

‘C. Printing Routines

The printing routines are used to print (via teletype, for instance)
the probability density function for the entire model or for a single
element. When the probability function for the entire model is
requested, both the linear index and the n-tuple of state is printed.
These routines have been written in FORTRAN and they put the output

records on logical I/O unit 6.

PRNTRS (SIZE, VEC, NAME)

PRNTRS is used to print the probability density function for a
single element named NAME. The states of the element are given
by the set {0,1,2,3,...,SIZE-1} and the corresponding probabilities

are contained in the vector VEC.

PRNTAL (VEC, SIZE, NAMVEC, DIMVEC)

PRNTAL is used to print the steady state probability vector for
the entire state space of the model. VEC and SIZE define this
probability vector, while NAMVEC and DIMVEC define the list of
element names in the model and their corresponding maximum
dimensions, and are used to compute the n-tuple of state corresponding

to each probability.

VI. Documentation Phase Routines

The purpose of the documentation phase routines is to save/retrieve
the SELMA network display structure and the corresponding QAS
network structure (network area) on/from a user's supplied file.
Optionally, for a compiled and solved model, the results area may also
be saved. Rather than saving the entire display structure, an enco&ed
version of it retaining just enough data to enable the model to be
regenerated is saved. The information which is saved is produced by
SELMA. QAS does nothing except save the records containing this
information in a file, and later on, after the retrieval command, these
records are transferred back to SELMA. The details of these records
and how they are manipulated to redraw the model are explained in the
companion report on SELMA [2]. The reason for not saving the entire
display structure is that all the traffic between SELMA and QAS is via
a relatively slow 201 line (2000 bits/sec.). As a result, saving the
entire display structure would be too time-consuming. QAS, of course,
has the responsibility of saving and retrieving the network area and
the results area (if necessary). QAS documentation phase consists
of the main control section DOCUMENT and the internal service

routines STSAVE, SAVERC, ENDSAVE, and GET.

DOCUMENT

DOCUMENT examines the second byte of the documentation phase
command (excluding the delimiter) and calls the appropriate service

routine as indicated in Table 13. In Table 13 FILENAME corresponds
134

135

Table 13

Documentation Phase Commands

Command Service Routine

FF| 04|00 | FILENAME | FF STSAVE

|\ J
—_

SEL 6-bit Code

FF |04 |01 |FF ENDSAVE

FF| 0402 | FILENAME FF GET

S/

—

~"

SEL 6-bit Code

FF| 04 |03 | BINARY TEXT |FF SAVERC

& J

~"

SELMA phase 02
command

136

to the name of the user's supplied file, and the BINARY TEXT corresponds
to the encoded display structure data, which will be transmitted back
to SELMA during the retrieval of this model and from which SELMA

will redraw the network.

Calling sequence:
GPR 15: Address of DOCUMENT

GPR 1: Address of one-word parameter list

Parameter list:

Word 1: Location of documentation phase command

STSAVE

Since the file name is transmitted to QAS in SEL 6-bit code, it
has to be translated to its EBCDIC equivalent (an MTS [4] requirement).
A modifier is associated with the file name and it specifies whether
the resulté area is to be saved or not. If the file name is followéd
immediately by the delimiting character X'FF', the modifier is assumed
to be off, which implies that the results area is not to be saved. If
the file name is followed by a blank (this can be detected since a file
name cannot contain a blank character) and then the characters 'ALL’,
the modifier is considered to be 6n, and implies that the results area is
to be saved. Next STSAVE checks to make sure that the specified file
exists and if it does exist, STSAVE opens it. If the file does not exist,
patchup mode is entered and the name of another file (which hopefully
does exist) is requested. After the file has been opened, it is emptied

and the pointer to the file control block is saved for future accesses

137

to the file. At this point the following command is sent back to SELMA
(through QASWRITE) to indicate that the file has been opened and

that SELMA should start transmitting network display records.

Transmit Network Display Records

FF | 03|00 | FF

SAVERC

The first three bytes of the command received from SELMA are
stripped and replaced with the delimiter X'FF'. This is then saved
in the already opened file. Thus the initial records in the documentation
file are SELMA phase 02-commands and the first two bytes of all
these records are X'FF02'. (This information is used during the
retrieval process.) This process of saving display records is continued
until the end of display command is received from SELMA, at which

point the service routine ENDSAVE acquires control.

ENDSAVE

ENDSAVE computes the number of records contained in the network
area and, if necessary, the results area. Each record (corresponding
to a line) is assumed to be equal tc 240 bytes. Before inserting the

network and results area into the file, the following record is written.

Bookkeeping Record:

Code! NASZ] RASZ

where each of the three fields is 4 bytes long and

138

Code: contains X'FFFFFFFF'. Thus, during retrieval the
second byte of each command can be examined to
check for the end of the display records. (Normally,

this byte cannot be X'FF'.)

NASZ: contains the number of lines necessary to save network
area.

RASZ: contains the number of lines necessary to save results
area. If the results area is not to be saved, this word

is set to zero.

Then the records corresponding to the network area and the results

area are written and the file is closed.

GET

GET is the routine used to service the retrieval command from
SELMA. GET, like STSAVE, translates the file name and opens it.
If the file does not exist, an appropriate patchup request is generated.
As noted earlier, the initial lines in the file ére display records,
which are subsequently followed by the bookkeeping record. Thus, the
lines in the documentation file are read sequentially and inserted into
the output buffer (QASWRITE) until the bookkeeping record (which can
be recognized by X'FF' in the second byte) is encountered. Noted
that the display records are not transmitted directly to SELMA but,
rather, are inserted into the the output buffer to be retrieved by

SELMA at its convenience. From the information contained in the

139

bookkeeping record the storage necessary to reclaim the network
area and the results area is computed. The previous network area

(if any) is released and a new network area is acquired into which

the network area records ar.e read. The previous results area (if any)
is destroyed regardless of whether a new one is to be acquired or not.

If the results area was originally saved in the file, it is retrieved.

VII. Conclusions

The implementation of QAS and SELMA [2] has demonstrated
the feasibility and the usefulness of a programming system for the
conversational design of stochastic service systems using a graphical
display for both specifying the stochastic network and evaluating it.
The networks, which are restricted to systems which can be modeled
by a continuous time, finite Markov chain, are solved by numerical
solution of the Kolmogorov equilibrium equations. The advantages of
this approach, in terms of speed, precision, and ease of design, have
been demonstrated, However, before this system can be used as a
handy tool by the queueing analyst, a few modifications to the present
system will be necessary both to improve its performance and to
enhance its capability.

As noted eérlier, considerable thought was given during the
implementation of this system to making the definitions of new
elements or connections a relatively easy task., The set of primitive
elementsand connections which is currently available (i.e., queue,
server, exit, source, and simple, priority and random connections)
is not extensive enough to allow the specification of certain important
models. Hence, the definition of any additional elements or connection
types would be very helpful in extending the capabilities of the system.
The routines which would require modification in order to include any
new definitions are CREAT, ASSPAR, and ALTER. Additional type

structure routines and spontaneous event routines would also be

140

141

necessary. The inclusion of new elements in SELMA would not be
difficult, since the "'menu" of elements in SELMA is table driven.
Another desirable feature would be allowing the user to define
éomposite elements using the existing primitive elements, Such a
facility could conceivably be supported exclusively by SELMA.

The current system is rather limited in the kinds of results that
can be displayed. Subroutines to compute expected values, marginal
probability functions, etc. could easily be implemented. However,

a universally acceptable set of results satisfying the majority of
users is difficult, if not impossible, to define, Perhaps a facility
whereby a user supplied routine is used to compute results would be
the most viable alternative. An interesting possibility would be a
post-processing system which, using the QAS documentation file,
would generate via the Calcomp plotting system [4] a hard copy of
the network diagram and plots of useful results.

The weakest features in the current system are the lack of efficient
state mapping and deferred evaluation schemes. In general the
cartesian product of the states of all elements in the model can be
partitioned into two sets: the set of actual states of the model and the
set of ordered tuples which are not states. The simple mapping used
in SOLVE routine maps the entire ‘cartesian product of the states of
all elements to the set of consecutive integers {0,1,2,...,N} thereby

making the size of the probability vector unnecessarily large. More-

over, the matrix of transition intensities descriptive of the model is

142

never explicitly derived. Instead the autoevent set is used during the
iteration process, necessitating repeated calculations of the linear
index, thereby rendering SOLVE less efficient. A very desirable
feature in QAS would be a system of deferred evaluation whereby,
after compilation, each intensity in the autoevent set is given by an
algebraic expression in terms of the parameters of the model, which
expression is evaluated when the value of the given intensity is
required for some calculation and after the parameter values are
supplied. Thus a model with undefined parameters could be compiled
and the results of compilation could be used for a number of different
parameter values. Currently changing a parameter value necessitates

a recompilation,

References

Wallace, V. L., and J. B. Irani, A System for the Solution of
Simple Stochastic Networks, Technical Report 14, Concomp
Project; also SEL Technical Report 31, Systems Engineering
Laboratory, The University of Michigan, Ann Arbor, September
1969.

Jackson, J. H., SELMA: A Conversational System for the
Graphical Specification of Markovian Queueing Networks,
Technical Report 23, Concomp Project; also SEL Technical
Report 45, Systems Engineering Laboratory, The University
of Michigan, Ann Arbor, October 1969,

Wallace, V. L., and R. S. Rosenberg, RQA-1, The Recursive
Queue Analyzer, SEL Technical Report 2, System Engineering
Laboratory, The University of Michigan, Ann Arbor, February
1966.

University of Michigan Computer Center, MTS: Michigan
Terminal System, Ann Arbor: University Press, December 1967.

Wallace, V. L., and K. B. Irani, Network Models for the
Conversational Design of Stochastic Service Systems, Technical
Report 13, Concomp Project; also SEL Technical Report 30,
Systems Engineering Laboratory, The University of Michigan,
Ann Arbor, November 1968.

143

Appendix A

Format of Commands

This appendix lists all the commands which may be transmitted
between QAS and SELMA. The formats of the commands which are
accepted by QAS are indicated by Table 14, and the formats of the
commands which are accepted by SELMA are indicated by Table 15.
The abbreviations for various groups of data bytes are interpreted
as _follows:)

CN Connection name, A number between 129 and 254

which identifies a particular connection. (1 byte)

CPN Connection port number. A number between 1 and
254 whichuspecifies a particular port of the connec-
tion specified by an associated connection name. (1
byte)

CT Connection type. A number between 129 and 254
which specifies the type of connection (e.g., simple
connection, random branch or merge, priority
branch or merge). (1 byte)

DW Display file word. Two bytes, each of which has
a value from 0 through 127. These two bytes are
decoded to form an 18-bit word to be loaded into
core by SELMA according to the following scheme:
(1) The low-order 7 bits of each byte are concat-

enated to form a 14-bit number.

144

EN

EPN

ET

FN

GPN

GPV

145

(2) The two high order bits of the 14-bit number
are placed into positions 0 and 1 of the 18-
bit word, and the remaining 12 bits are placed
into positions 6-17 of the 18-bit word. Posi-
tions 2-5 of the 18-bit word are set to zero.

Element name. A number between 1 and 127 which

identifies a particular element. (1 byte)

Element port nuniber. A number between 1 and

254 which specifies a particular port of the element

specified }by an associated element name. (1 byte)

Element type. A number between 1 and 127 which

specifies the type of element (e.g., queue, server,

or source or exit). (1 byte)

File name. A sequence of bytes whose values are

SEL 6-bit character codes which represent a file name

(1 to 16 bytes)

Generation parameter number. A number between

1 and 254 which identifies a particular generation

parameter (i.e., parameter which modifies an ele-

ment or connection type). (1 byte)

Generation parameter value. A number between 1

and 254 which represents the value of a generation

parameter. (1 byte)

IL

LET

PN

PV

SC

146

Iteration limit. Two bytes, each of which has a
value between 0 and 127. A number between 1

and 16, 383 which represents the maximum number
of iterations which will be performed whenever a
model is solved is obtained by concatenating the

low order 7 bits of the two bytes.

Local element type. A number between 1 and 254
which identifies a graphical symbol for an element
type. This number is not necessarily the same as
the corresponding element type, for several graphi-
cal symbols may be associated with one element
type (e.g., source and iexit represent the same
element type). (1 byte)

Parameter number. A number between 1 and 254
which identifies. a parameter for an element or
connection. (1 byte)

Parameter value. A sequence of bytes whose values
are SEL 6-bit character codes which represent a non-
negative real or integer number. (1 to 18 bytes)
State count. A number between 1 and 254 which repre-
sents the number of points to be plotted, If this number
is either zero or greater than 5_0, 50 points are plotted

(1 byte)

SN

wC

XC

YC

147

State number. A number between 0 and 16, 383 which
represents an abscissa on a graph plotted by QAS.

This number is coded in the same way that an iteration
limit (IL) is coded. (2 bytes)

Text item. A sequence of bytes, fhe first of which

has a value which is the number of bytes which follow
it, and the remainder of which are SEL 6-bit character
codes. (2-16 bytes)

Word count. A number between 1 and 16, 383 which
repi‘esents the size of storage block required to load a
connection leaf when retrieving a model from a file.
This number is coded in the same way that an itera-
tion limit (IL) is coded. (2 bytes)

An abscissa between -8192 and 8191. This coordinate
is coded in the same way that an iteration limit (IL)

is coded. However, the 14-bit number represented is
interpreted as a two's complement number, rather than
as an unsigned positive number. (2 bytes)

An ordinate between -8192 and 8191. This number

is coded in the same way an abscissa is coded. (2

bytes)

Phase Command

Byte Byte
00 00
00 01
00 02
00 03
00 04
00 05
00 06
01 00
01 01
01 02
01 03
01 04
01 05
02 00
03 00
03 01
03 02
03 03
04 00
04 01
04 02
04 03

Table 14.

148

Data Bytes

ENor CN, ET or CT, GPV
EN or CN

EN or CN, PN, PV
CN, CPN, EN, EPN
EN, EPN

EN or CN, GPN, GPV

IL, PV

EN®
SN, SC
SN
EN®

FN

FN

SELMA phase 02 command

Commands accepted by QAS.

Null

Patch—up1

Call system

Call error1

Call MTS1

Initialize

Wipe out QAS output buf
Create element

Destroy element or
connection

Assign parameter value
Connect
Disconnect

Alter generation para-
meter value

Compile and solve1
Plot results

Mddify plot

Get value for graph
Type results

Begin saving model
Terminate saving mode

Retrieve model from
file

Save command to be
returned

1 This command is not currently generated by SELMA.

2

Parameter value specifies convergence factor.

3 An element name 00 specifies the entire model.

Phase Command

Byte Byte
00 00
00 01
00 02
01 00
01 01
01 02
02 00
02 01
02 01
02 02
02 03
02 04
02 05
02 00

Table 15.

149

Data Bytes

(See text)

EX,T,T,T, T, T"

YC,YC,...,YC
T

YC,XC
YC,XC,EN, 00, LET
YC,XC,EN, 00, WC
DW,DW,...,DW

YC,Xc,pv

EN,EPN

Function
Null
Patch-up
End of file
Set up graph
Plot values
Display single value
Create fragment3
Create element3
Create connection3
Load connection segment3
Insert connection leaf3
Assign parameter 3
Connect3

Send model to be saved.

Commands accepted by SELMA.

1 Distance between abscissas, minimum x label, maximum x
label, minimum y label, maximum y label, y axis label.

2 Ordinate label

3

See SELMA report [2] .

Appendix B

Miscellaneous MTS Routines

For the sake of completeness, the MTS library routines called
explicitly by QAS will be listed here with a brief mention of their
functions. This list does not contain some of the FORTRAN supplied

routines.

GETSPACE

Obtains storage under program control,

FREESPAC

Releases storage that was obtained with GETSPACE.

SYSTEM
Produces a call to monitor system MTS and releases all storage

occupied by the calling program.

ERROR

Returns control to MTS to terminate execution. The comment
"ERROR RETURN" is printed. The storage occupied by the calling

program is not released.

MTS
Returns control to MTS. Control can be transferred back to

calling program by the MTS command $RESTART.

CANREPLY

Finds out if user is at a terminal or if this is a batch job.

150

151

GETFD

Obtains a file or a device. Returns pointer to file /device control

block, which is used in subsequent calls to file management routines.

GDINFO

Obtains information about a file or a device and finds out if a

file exists or not,

FREEFD

Frees a file or device obtained with GETFD.

EMPTY

Removes all lines from a file without destroying it,

REWIND#

Resets a magnetic tape or a file without destroying it.

SDUMP.

Produces a hexadecimal dump of any or all of the following:
1. general registers, 2. floating point registers, and 3. a specified

region of core storage.

SCARDS

Reads an input record from logical unit SCARDS.

GUSER

Reads an input record from logical unit GUSER, the default value

of which is master source (SELMA).

152

SPRINT

Writes an output record on logical unit SPRINT (sink).

SERCOM

Writes an output record on the logical unit SERCOM (sink).

READ

Obtains an input record from a specified logical unit.

WRITE

Writes an output record on a specified logical unit.

153

unclassified

Security Classification

Security eclagsifivation of title, body o!

DOCUMENT CONTROL DATA - R & D

z2ostract and indexiag ennotation musr

be criserscl whan the overall report is classified)

‘ 1. ORIGINATING ACTIVIT‘Y (Corporate author)
The University of Michigan
Concomp Project

2a. RERPORT SECURITY CLASSIFICATION

Unclassified

5 GROUP

3, REPORT TITLE

An Implementation of the Queue Analyzer System (QAS) on the IBM 360/6'7

&, DESCRIPTNE NOTES (Type of report and inclusive dates)

Technical Report May 1970

S. AUTHORI(S) (Firyt name, middle initial, last name)

L. S. Randall

G. A, McClain

I. S. Uppal J. F. Blinn
6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO, OF REFS
May 1970 152 5

8a. CONTRACT OR GRANT NO.
DA-49-083 OSA-3050

b. PRQJECT NO.

9a. ORIGINATOR'S REPORY NUMBERI(S)

Technical Report 22

9b. OTHER REPORT NO(S) (Any oth.er numbers that may be assigned
thiereper Systems Engineering Laboratory.

Report 07842-4-T

10. DISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC

11, SURPRPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

13. ABSTRACT

to requested specifications,

This report details and documents QAS, a conversational programmmg
system composed of an aggregation of programs and data structures resident
in the IBM 360/67 which accepts graphical descriptions of Markovian queueing
networks via data-phone from a remote graphical system resident in a DEC 339,
and which returns solutions to these networks to the remote system according

FORM

DD}. woves 1473

Security Classification

UiliCiassiiea
Security Classification 15}-’»

i
z
T
(g]

14. ' LINK A LINK B

ir'?:i

KEY WORDS : " ROLE WT ROLE | WT RO WT

Computer-Aided Design -
Computer Graphics
Computer Languages
Queueing Networks
Markovian Networks
Network Models
Numerical Queueing Theory
Mathematical Modeling
Data Structures
Large Scale Systems
Conversational Design

Security Classification

