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Effects of Ethanol in an Experimental Model 
of Combined Traumatic Brain Injury and 
Hemorrhagic Shock 
Brian J. Zink, MD, Susan A. Stem, MD, Xu Wang, MD, Carl C. Chudnofsky, MD 

I ABSTRACT 

Objectives: Given that clinical and laboratory studies suggest that ethanol and hemorrhagic shock (HS) 
potentiate traumatic brain injury (TBI), the authors studied the effects of ethanol in a model of combined TBI 
and HS. 
Methods: A controlled porcine model of combined TBI and HS was evaluated for the effect of ethanol on 
survival time, hemodynamic function, and cerebral tissue perfusion. Anesthetized swine (17-24 kg) were 
instrumented, splenectomized, and subjected to fluid percussion TI31 with concurrent 2 5 - m u g  graded hem- 
orrhage over 30 minutes. Two groups were studied: control (n = 11) and ethanol (n = 11). Ethanol, 3.5 g k g  
intragastric, was given 100 minutes prior to TBVHS. Systemic and cerebral physiologic and metabolic param- 
eters were monitored for 2 hours without resuscitation. Regional cerebral blood flow (rCBF) and renal blood 
flow were measured with dye-labeled microspheres. Data were analyzed with 2-sample t-test and repeated- 
measures ANOVA. 
Results: Ethanol levels at the time of injury were 162 2 68 mg/dL. Average TBI was 2.65 2 0.35 atm. 
Survival time was significantly shorter in the ethanol group (60 2 27 min vs 94 5 28 min, p = 0.011). The 
ethanol group had significantly lower mean arterial pressure, cerebral perfusion pressure, and cerebral venous 
0, saturation in the postinjury period. Cerebral 0, extraction ratios and cerebral venous lactate levels were 
significantly higher in the ethanol group. A trend toward lower postinjury rCBF in all brain regions was 
observed in the ethanol group. 
Conclusion: In this TBVHS model, ethanol administration decreased survival time, impaired the hemodynamic 
response, and worsened measures of cerebral tissue perfusion. 
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I Ethanol intoxication is present in approximately one 
third of adults who suffer multiple trauma or traumatic 
brain injury (TBI).'-4 A number of clinical and laboratory 
studies have demonstrated a potentiating effect of ethanol 
on traumatic injury, including brain injury, but have not 
provided insight into possible  mechanism^.^-'^ Many 
trauma victims have concurrent TBI and hemorrhagic 
shock (HS). Clinical investigations indicate that systemic 
arterial hypotension, reduced cerebral perfusion pressure 
(CPP), and reduced cerebral blood flow (CBF) are asso- 
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ciated with increased morbidity and mortality following 
TBI.'5-23 Previously, we have studied the effects of etha- 
nol in porcine models of isolated HS or TBI. Ethanol- 
treated animals subjected to HS alone demonstrated in- 
creased systemic h y p o t e n ~ i o n . ~ ~ * ~ ~  In a porcine model of 
isolated TBI, we found that ethanol impaired ventilation 
and reduced mean arterial pressure (MAP), CPP, and CBF 
in the early postinjury Previous studies have 
not assessed the effects of ethanol in the presence of con- 
current TBI and HS. Therefore, the current study evalu- 
ated the effects of ethanol in a new model of combined 
TBI and HS. The hypothesis of this study was that etha- 
nol-treated animals would have decreased survival time 
and worsened cardiovascular and cerebral physiologic 
parameters when compared with animals that did not re- 
ceive ethanol. 

I METHODS 

Study Design: A porcine model of combined TBI and 
HS was evaluated for the effect of ethanol on survival 
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I FIGURE 1. Timeline for the experimental protocol. Numbers are in minutes. * = Physiologic and metabolic measurements obtained. 0 = 
Microspheres injected for reduced cerebral blood flow and renal blood flow measurement. Ethanol = ethanol administered for ethanol group. 
InjurykIem = traumatic brain injury induced and hemorrhage performed (open arrow). 

time, hemodynamic function, and cerebral tissue perfu- 
sion. The study was controlled and nonblinded. This in- 
vestigation was approved by the University of Michigan 
Committee on Use and Care of Animals. Animal care 
standards were in compliance with the Guide for the Care 
and Use of Laboratory Animals. 

Subjects and Instrumentation: Immature swine (17- 
24 kg) of either sex were given a veterinary health screen- 
ing examination. Animals determined to be healthy were 
sedated with IM ketamine 20 mgkg, given nosecone 
isoflurane 2%, and endotracheally intubated. Thereafter, 
the animals were maintained on isoflurane 1.15% (1 MAC 
[minimal alveolar concentration]) with an FI, of 28- 
31%. An orogastric tube was inserted for ethanol or pla- 
cebo administration. Bilateral femoral artery and vein and 
right carotid artery catheters were placed for drug admin- 
istration, blood sampling, hemorrhage, and arterial pres- 
sure monitoring. A pulmonary artery thermodilution cath- 
eter was placed for pressure, core temperature, and cardiac 
output (CO) monitoring. A left ventricular catheter was 
inserted via the femoral artery for injection of micro- 
spheres to determine regional blood flow measurements. 
Splenectomy was performed using standard surgical tech- 
niques. The animal was then placed prone in a head sta- 
bilizer and the scalp was reflected. A 16-mm craniotomy 
was created with a hand drill 1.5 cm to the right of the 
sagittal suture, and 6 cm anterior to the inion. A T-shaped 
bolt that connects to the fluid percussion device was 
screwed into the craniotomy site until it abutted the intact 
dura. The fluid percussion device (Stevenson Machine 
Co., Cincinnati, OH) consists of a saline-filled plexiglass 
cylinder (length 60.5 cm, ID 7 cm) that is connected to a 
0.8-cm ID plastic tube, both of which are saline-filled. The 
end of the smaller plastic tube has a threaded metal fitting 
that screws into the craniotomy bolt. On the opposite end 
of the device is a pendulum arm with a 4.8-kg weight at 
its distal end. This arm is drawn back to a predetermined 
setting and released. The weight strikes a plexiglass pis- 
ton, which in turn strikes a rubber seal at this end of the 
cylinder. The resulting saline fluid wave that is generated 
in the closed system transmits a 15-msec pressure pulse 
to the intact dura. A high-pressure transducer (Sensym, 

Sunnyvale, CA) screwed into one side-port of the crani- 
otomy bolt permits quantification of delivered pressure. 

A second craniotomy was performed in the left pos- 
terior parietal region, 3 mm anterior and 5 mm lateral to 
the bregma. A neonatal intraventricular catheter (Phoenix 
Biomedical, Valley Forge, PA) was placed in the left lat- 
eral ventricle and connected to an intracranial pressure 
transducer. A brain temperature probe (Cole-Parmer, 
Niles, IL) was placed in the ventricle adjacent to the cath- 
eter and the site was sealed with dental cement. A third, 
T-shaped craniotomy was made just anterior to the inion 
over the midline, and the sagittal sinus was identified and 
accessed with a 14-ga IV catheter. A 4-Fr fiberoptic oxi- 
metric catheter (Abbott, North Chicago, IL) was placed 
through the 14-ga catheter into the sinus for cerebral 0, 
saturation monitoring and blood sampling. The catheters 
were then sealed in place with dental cement. 

Measurements: Following instrumentation, the animals 
were paralyzed with succinylcholine 1.5 mgkg as an IV 
bolus, followed by an infusion of 2-4 mg/kg/hr. A vol- 
ume-cycled ventilator was used to maintain PaO, at 90- 
120 torr, and PaCO, at 40-50 torr. A computerized phys- 
iologic data acquisition system (Biopac, Santa Barbara, 
CA) was used for monitoring of systolic and diastolic ar- 
terial blood pressures (BPs), MAP, intracranial pressure 
(ICP), pulmonary artery pressures, and end-tidal CO, con- 
centration. Brain injury was measured with the Sensym 
transducer and recorded on the Biopac system with a sam- 
pling frequency of 700/sec. CO was measured by ther- 
modilution technique (American Edwards Cardiac Output 
Computer, Irvin, CA). Arterial and venous blood was sam- 
pled every 15 minutes for the first hour after injury, and 
every 30 minutes thereafter. Measurements performed 
every 15 minutes included systemic arterial and cerebral 
venous blood gases, hematocrit, hemoglobin, and blood 
sodium, potassium, and calcium (Gem Premier Blood Gas 
and Chemistry Analyzer, Mallinckrodt Sensor Systems, 
Ann Arbor, MI). Lactate and glucose were measured at 
preinjury, and 30, 60, and 120 minutes after (Kodak Ek- 
tachem DT 6011 and DTSC 11 Multichemistry Analyzer, 
Rochester, NY). Ethanol levels, obtained preinjury and 2 
hours postinjury, or upon death of the animal, were mea- 
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sured by gas chromatography (Hewlett Packard model 
5890, Palo Alto, CA). 

Cerebral and renal blood flow determinations were 
made immediately before injury, and at 45, 60, and 120 
minutes postinjury using dye-labeled microspheres (Dye- 
Trak, Triton Technologies, San Diego, CA) with a refer- 
ence sample methodology. Blue, yellow, white, or red 15- 
p microspheres were injected via a pigtail catheter into 
the left ventricle while reference blood was withdrawn 
from the femoral artery at 6 mumin  for 2 min. Following 
euthanasia, 3-g tissue samples were taken from the right 
and left anterior and posterior cerebral cortex, cerebellum, 
and medulla. Two cortical tissue samples (1.5 g each) 
were taken from the right and left kidneys. The tissue and 
blood samples were digested with 4 mol potassium hy- 
droxide and the spheres were recovered by vacuum filtra- 
tion through a polyester membrane with a 10-pm pore 
size. Dye was extracted from the spheres using dimethyl 
formamide (Fisher Scientific, Fair Lawn, NJ). Absorbance 
was measured on a spectrophotometer (Hewlett Packard 
8452A, Diode-Array, Walbron, Germany). Final regional 
blood flows were calculated by comparing tissue absorb- 
ances with reference blood sample absorbances using ma- 
trix inversion software. The combined weights of the 6 
regions represented approximately one-third of total brain 
weight. 

Interventions: Two experimental groups were studied. 
The animals in the ethanol group received 3.5 g /kg  of 
95% ethanol as a 1: 1 dilution with tap water by orogastric 
tube 100 minutes prior to brain injury. The control animals 
received an equivalent volume of tap water by the same 
route. The animals from both groups were subjected to 
fluid-percussion TBI, and this point was designated as 
time 0. At the same time hemorrhage was initiated from 
the femoral artery catheter. The animals were bled 25 mL/ 
kg over 30 minutes via a computer-driven roller pump 
(Masterflex, Cole-Parmer Instrument Co., Chicago, IL). 
To simulate the physiology and kinetics of acute hemor- 
rhage, the hemorrhage rate was decreased exponentially 
over the 30-minute span. Blood and brain temperatures 
were maintained in the range of 36-38°C throughout the 
experimental period with a warming blanket. The physi- 
ologic and metabolic variables described above were 
monitored for 2 hours following TBVHS or until death of 
the animal. From these measurements the following pa- 
rameters were calculated: 

CPP = MAP - ICP 

DcO, = CBF X CaO,, where CaO, = Hb( 1.34)(% sat- 
urationA00) + (Pa02)(0.003 1) 

0,ERc = (SaO, - ScvO,)/SaO, 

CMRO, = CBF( 1 .34)(Hb)(SaO, - ScvO,) 

I TABLE 1 Preinjury Characteristics* .............................................................................. 

Parameters Control Ethanol p-value? 

MAP (mm Hg) 99 (11) 81 (13) 0.003 
ICP (mm Hg) 16 (5 )  18 (5) NS 
CPP (mm Hg) 82 (11) 63 (12) 0.001 
CO (Llmin) 2.6 (0.8) 2.8 (0.5) NS 
Hb (g/W 10.8 (1.3) 11.9 (0.9) 0.040 
scvo, (%) 79 (5 )  76 (8) NS 
DcO, (mU100g/rnin) 14.6 (6) 12.9 (5) NS 
0, ERc 0.20 (.05) 0.23 (0.08) NS 
CMRO, (mU100g/min) 2.83 (1.2) 2.84 (1.2) NS 
Brain temperature (“C) 35.8 (0.6) 36.2 (0.6) NS 
Lactate, cerebral venous 2.0 (1.0) 3.0 (1.2) 0.065 

(mmoVL) 
Ethanol (mmovL, mg/dL) 35 (15); 

162 (68) 

*Values are mean (SD). For MAP, ICP, CPP. CO, and brain temp, n = 
11 in both groups. For other parameters, n = 11 in the control and 10 
in the ethanol group. 
?Two-sample t-test. NS = not significantly different. 

where DcO, = cerebral 0, delivery; CaO, = arterial 0, 
content; Hb = hemoglobin concentration; 0,ERc = cere- 
bral 0, extraction ratio; SaO, = arterial 0, saturation; 
ScvO, = cerebral venous 0, saturation; and CMRO, = 
cerebral metabolic rate for O2 

Animals surviving to 2 hours postinjury were eutha- 
nized with 30 mg/kg pentobarbital and the brain and kid- 
neys were removed and sectioned for CBF analysis. An 
experimental timeline is shown in Figure 1. 

Data Analysis: Values are expressed as mean 2 SD. 
Comparisons between the 2 study groups were made with 
a 2-sample t-test. Repeated-measures analysis of variance 
(ANOVA) was used to compare parameters that had >2 
sampling points. A p-value of 0.05 was considered sig- 
nificant. Since so few animals in the ethanol group sur- 
vived beyond 45 minutes, meaningful statistical compar- 
isons were not possible beyond this sampling point. A 
prestudy power analysis revealed that 11 animals would 
be needed per group to be able to detect a difference in 
survival time of 30 minutes, assuming a standard devia- 
tion of 25 minutes with a power of 0.80. 

i RESULTS .............................................................................. 

Preinjury Characteristics: Eleven animals were stud- 
ied in each group. Preinjury characteristics are summa- 
rized in Table 1. The ethanol effects were evident in many 
of the preinjury measurements. The ethanol-treated ani- 
mals had significantly lower preinjury MAP and CPP and 
higher preinjury Hb concentrations. However, preinjury 
CO, ICP, ScvO,?, DcO,, O,ERc, regional CBF (rCBF‘), and 
CMRO, values and brain temperatures were not signifi- 
cantly different between groups. A malfunction in pro- 
cessing of microspheres prevented measurement of renal 
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and cerebral blood flows in 1 ethanol group animal; there- 
fore data for DcO,, O2ERc, and CMR02 were available 
for 10 animals in this group. 

Survival Time: Ethanol levels at the time of injury were 
162 2 68 mg/dL. Average TBI was 2.64 2 0.39 atm in 
the ethanol group and 2.66 5 0.31 atm in the control 
group. Survival time was significantly shorter in the eth- 
anol group than the control group (60 2 27 min vs 94 2 
28 min, p = 0.01 1, 2-sample t-test). Seven animals in the 
ethanol group died at or before 60 minutes postinjury, 
compared with 2 in the control group. Two-hour mortality 
was 91% in the ethanol group and 65% in the controls. 

Physiologic Response: MAP and CPP fell in both 
groups in the postinjury period, but the ethanol-treated 
animals had significantly lower MAP and CPP through 45 
minutes when compared with the control animals. No sig- 
nificant time-group interaction was found for MAP, or 
CPP, indicating that the magnitudes of ethanol effects on 
MAP and CPP were similar in the preinjury and postinjury 
periods (Table 2, Fig. 2). CO dropped in both groups fol- 
lowing TBUHS, and mean CO was lower at each time 
point in the ethanol group, but the between-group means 
were not significantly different. However, a significant 

I TABLE 2 Selected Postinjury Data* .............................................................................. 

Parameter Time Control Ethanol p-value 

Number 45 rnin 10 8 
surviving 60 min 9 4 

120 min 4 1 0.311t 
Ethanol (mmoyL; Death 40 (21); 

mg/dL) 184 (97) 
Brain temperature 45 min 36.7 (0.6) 36.6 (0.8) NS 

(“C) 
MAP(mm Hg) 45 min 52 (17) 31 (17) 0.002$ 
Renal blood flow 45 min 80 (49) 33 (36) 0.0218 

scvo, (a) 45 min 55 (22) 21 (15) 0.005$ 
DcO, 45 min 6.15 (3.3) 4.00 (2.3) 0.1047 

CMROi 45 min 2.54 (0.8) 2.85 (2.3) 0.6977 

Lactate, cerebral 30 min 3.2 (2.4) 5.7 (2.0) 0.0217 

(mUlOOg/min) 

( m u  1 00g/mi n) 

(mL/lOOg/min) 

venous 
(mmol/L) 

HCO, (rnmol/L) 45 min 28 (2.7) 24 (3.4) 0.016$ 
pH, cerebral 45 min 7.24 (0.08) 7.13 (0.11) 0.016$ 

Hemoglobin 30 rnin 10.1 (1.2) 11.1 (0.9) 0.078$ 

*Numbers are means with standard deviations in parentheses. Time = 
elapsed time postinjury. 
tFisher’s exact test (2-tailed). 
$Repeated-measures ANOVA for time points preinjury, 30 minutes, and 
45 minutes. 
BTwo-sample t-test for left kidney superior cortex specimen. 
7’nvo-sample t-test. 

venous 

WdL) 45 min 9.7 (1.0) 9.8 ( 1 . 1 )  

T 

0 15 30 45 60 
Time (min.) 

I FIGURE 2. Cerebral perfusion pressure (CPP) and intracranial pres- 
sure (ICP) in the ethanol and control groups. For CPP, p = 0.010, re- 
peated-measures ANOVA for preinjury, 30-minute, and 45-minute time 
points. ICP values were not significantly different between groups at 
any point. 

time-group effect for CO was observed (Fig. 3). Elevated 
ICP did not occur in response to fluid percussion injury 
with concurrent hemorrhage (Fig. 2). Brain temperatures 
remained relatively constant in the postinjury period and 
were not significantly different between groups (Table 2). 

Cerebral blood flow was reduced in both groups fol- 
lowing TBUHS. As in previous studies, we found no sig- 
nificant regional differences in the CBF responses. Mean 
rCBF values at 45 minutes postinjury were lower in the 
ethanol-treated animals than in the controls for all 6 brain 
regions, with the difference being statistically significant 
in the left anterior cerebral cortex, but not in the other 5 
regions (Fig. 4). Renal blood flow also was reduced fol- 
lowing TBVHS to a similar degree as was rCBE The eth- 
anol group had significantly lower blood flow in 3 of the 
4 renal tissue samples at 45 minutes postinjury (Table 2). 

The Dc02 and ScvO, decreased in both groups follow- 
ing TBI/HS, with a concurrent increase in 0,ERc. The 
changes in ScvO, and 0,ERc were significantly greater in 
the ethanol group (Fig. 5,  Table 2). CMRO, values did 
not change significantly following TBVHS, and were not 
different between groups at 45 minutes postinjury (Table 
2). 
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Hematologic and Metabolic Response: Lactate con- 
centrations in arterial and cerebral venous blood rose sig- 
nificantly in both groups following TBUHS. but mean val- 
ues were not different for arterial and cerebral venous 
blood. The increase in cerebral venous lactate at 30 
minutes postinjury was significantly greater in the ethanol 
group (Table 2). Cerebral venous bicarbonate concentra- 
tions, which were not different between groups at the 
preinjury time point, fell in both groups, and were signif- 
icantly lower in the ethanol group in the postinjury period 
(Table 2). Cerebral venous pH was significantly lower in 
the ethanol group both preinjury and postinjury, but the 
magnitude of the difference was greater in the postinjury 
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I FIGURE 3. Cardiac output in the ethanol and control groups. Overall 
means: p = 0.32, repeated-measures ANOVA. Time-group effect: p = 
0.007. repeated-measures ANOVA for preinjury, 30-minute, and 45- 
minute time points. 
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I FIGURE 4. Regional cerebral blood flow (rCBF) at 45 minutes 
postinjury. Key to brain region abbreviations with p-values for 2-sample 
t-test: RCA, right cerebral cortex anterior, p = 0.066; RCP, right cortex 
posterior. p = 0.059; LCA, left cortex anterior, p = 0.033; K P ,  left 
cortex posterior, p = 0.090; CBLM, cerebellum, p = 0.078; and MED, 
medulla, p = 0.065. 

period (Table 2). Hb concentrations did not fall until 45 
minutes postinjury. At 30 minutes postinjury, mean Hb 
concentrations remained higher in the ethanol group (p = 
0.037, 2-sample t-test). Analysis by repeated-measures 
ANOVA for the entire study period showed a nonsignifi- 
cant trend toward higher Hb concentrations in the ethanol 
group (Table 2). Other measured metabolic parameters, 
including sodium, potassium, calcium, and glucose, did 
not change significantly with TBUHS, and were never sig- 
nificantly different between groups. 

I DISCUSSION 

In this porcine model of TBI with concurrent HS, ethanol 
administration significantly reduced survival time, and 
worsened systemic and cerebral physiologic parameters. 
In noninjured humans, ethanol intoxication in this range 
(33-43 mmoVL [150-200 mg/dL]) does not lead to sig- 
nificant effects on hemodynamic parameters.28 Some eth- 
anol effects were present prior to initiation of TBI and HS 
(MAP, CPP, Hb), but other measures of cerebral physi- 
ology such as Scv02, O,Erc, and cerebral venous lactate 
were altered in the ethanol group only after injury. Effects 
on rCBF showed a strong trend toward lower mean values 
in the ethanol group. 

Since neuropathologic changes were not assessed, we 
cannot definitively conclude that cerebral ischemia oc- 
curred in the ethanol group. The degree of CBF lowering 
observed in the ethanol-treated animals was above the 
threshold that is usually used to define cerebral ischemia 
in humans (around 20 mUlOOg/min), but the threshold 

.............................................................................. 
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for cerebral ischemia in immature pigs is not known. 
Baseline brain blood flow values in our model were higher 
than those reported in adult humans, and are more con- 
sistent with what has been described in 2- to 4-year-old 
children.,' Even if absolute cerebral ischemia did not oc- 
cur in the ethanol-treated animals, the overall pattern of 
physiologic and metabolic changes suggests that ethanol, 
at relatively low levels, causes adverse effects in the brain 
when TBI is combined with HS. 

The finding that CBF was not maintained in a normal 
range in the face of reduced CPP demonstrates that ce- 
rebral autoregulation of blood flow was impaired in both 
groups. However, the magnitude of reduction in blood 
flow was greater in the kidneys than in the brain in the 
ethanol group. This suggests that some degree of auto- 
regulation of CBF remained intact following TBVHS. The 
CMRO, data also indicate that compensatory mechanisms 
were active in the ethanol-treated animals. CMRO, re- 
mained fairly constant in the postinjury period despite the 
reduction in CPP and CBF in the ethanol-treated animals. 
This was due to increased extraction of 0, in the ethanol 
group. 

Our previous studies using a similar porcine fluid per- 
cussion TBI model without hemorrhage have also found 
that ethanol reduced CPP and ICBF.~~.'~ The current study 
demonstrates that systemic and cerebral hypoperfusion is 
greater when hemorrhagic hypotension is superimposed 
on TBI. For example, mean CPP values in the first hour 
postinjury with TBI and ethanol without hemorrhage were 
approximately 40 mm Hg, compared with slightly less 
than 20 mm Hg in the current experiment. In the previous 
experiments with isolated fluid percussion injury in the 
range of 2.5-2.75 atm, ICP increases in the range of 
25-40 mm Hg were usually seen during the first 30 
minutes postinjury. In the current study, ICP increased in 
the first 10 minutes following TBI, but hemorrhage 
ablated this increase by about 15 minutes postinjury. 

The concept of secondary brain injury is important 
when considering ethanol effects in TBI. Secondary brain 
injury can be defined as brain dysfunction or cellular dam- 
age that occurs after the primary brain injury, and is due 
to factors unrelated to the primary injury  force^.^' In the 
clinical setting, hypoxia and systemic arterial hypotension 
are the two most important secondary insults in the early 
postinjury p e r i ~ d . ~ ~ * * * * ~ ' ~ ~ ~  Laboratory investigations have 
also found that systemic arterial hypotension is associated 
with worse neurologic outcome and increased mortality 
following TBI.3'-39 These studies have not examined the 
biomolecular basis for secondary brain injury. However, 
other work has shown that ischemic brain cells release or 
enhance the formation a number of biomolecular media- 
tors of injury, including 0, radical molecules, excitatory 
amino acids, and endogenous opioids.4' These mediators 
may promote further damage to already compromised 
neurons and endothelial cells. 

A previous study has examined ethanol effects in a 
TBI model with induced hypotension.'2 Albin and Bune- 
gin induced a focal brain injury by direct pressure on the 
cerebral cortex in dogs. Ethanol levels of 43 mmol/L [200 
mg/dL] were produced by IV infusion, and MAP was low- 
ered to 50 mm Hg for 1 hour with trimetaphan. The eth- 
anol-treated animals with induced hypotension had sig- 
nificantly greater brain lesion volumes 5 days postinjury 
than did the control hypotensive animals.12 These findings 
provide neuropathologic evidence for ethanol potentiation 
of secondary brain injury. 

Ethanol may contribute to secondary brain injury via 
its effects on the early physiologic response to TBI, a n d  
or by influencing the neurochemical response. As we be- 
gin to search for specific mechanisms, a starting point is 
to ask whether ethanol effects on cerebral function in TBI 
and HS may simply be the result of systemic cardiovas- 
cular effects. Numerous laboratory investigations in mod- 
els of HS without TBI have found that ethanol worsens 
hemodynamics and increases m ~ r t a l i t y . ~ ~ . ~ ~ . ~ ' - ~  The pri- 
mary mechanism proposed for these effects is direct sup- 
pression of myocardial c~n t r ac t i l i t y .~~ .~  We cannot deter- 
mine whether the effects observed in the current study 
were due to direct suppression of myocardial function, or 
due to central neurochemical effects of ethanol on cardi- 
ovascular tone and myocardial contractility. Two previous 
studies in human volunteers found that ethanol ingestion 
led to significant increases in plasma norepinephrine con- 
centrations, but also reduced a-adrenoceptor-mediated va- 
soconstriction, resulting in lower-than-expected BP.45s46 

In addition to direct cardiac effects, ethanol may alter 
cerebrovascular tone. A number of laboratory studies sug- 
gest that ethanol induces constriction of cerebral arteries 
and pial arterioles, but the results have been variable, de- 
pending on the species, model, and dose of ethanol 
~sed!~-~' In general, it appears that higher concentrations 
of ethanol (>65 mmoVL [>300 mg/dL]) cause cerebral 
vasoconstriction. Some authors have theorized that etha- 
nol effects on the cerebral vasculature may be mediated 
by nitric oxide release?' We cannot determine from our 
data whether ethanol-induced cerebral vasoconstriction 
contributed to decreased survival time or impaired phys- 
iologic responses. 

A consistent finding in this study and our previous 
studies is higher Hb concentrations in the ethanol-treated 
animals. This is presumably due to suppression of anti- 
diuretic hormone (ADH) by ethanol, with a resultant os- 
motic diuresis and contracted plasma v o l ~ m e . ~ '  A higher 
Hb concentration in the ethanol group led to higher ce- 
rebral 0, delivery in the preinjury period, but these pos- 
itive effects were apparently offset by lower CBF in the 
postinjury period. Recent studies linking the nitrosylation 
of Hb with nitric oxide-mediated control of vasoreactivity 
underscore the potential importance of ethanol effects on 
Hb in HSS2 
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The neurochemical effects of ethanol are extremely 
wide-ranging, and may be dose-dependent. As noted 
above, a number of neurochemical systems that are af- 
fected by ethanol are also thought to contribute to the 
pathophysiology of TBI. These include brain lactate for- 
mation, excitatory amino acids and the N-methyl-D-as- 
partate (NMDA) receptor, gamma-aminobutyric acid 
(GABA)-receptor systems, O2 radical-mediated cell 
damage, and endogenous opioid p r o d u ~ t i o n . ~ ~ - ~  Neuro- 
chemical analysis in our study was limited to cerebral ve- 
nous blood lactate concentrations. 

The metabolism of ethanol stimulates the conversion 
of pyruvate to la~tate.~’ In the current study this produced 
a 1-2-mmoVL elevation in serum lactate in the preinjury 
period in the ethanol group compared with the controls. 
Following TBI and hemorrhage, the magnitude of the in- 
crease in lactate concentrations was greater in the ethanol- 
treated animals, but the effect was no more substantial in 
cerebral venous blood than in systemic arterial blood. Ce- 
rebral venous bicarbonate levels and pH were lower in the 
ethanol group, presumably in compensation for the in- 
crease in lactate. Both clinical and animal studies of TBI 
have found elevated cerebrospinal fluid or brain lactate 
levels within hours after TBI.68.69 Whether this elevation 
in brain lactate levels represents a primary part of the 
pathophysiology of TBI or is an aftereffect of cellular 
damage and ischemia remains to be determined. 

I LIMITATIONS AND FUTURE QUESTIONS 

The extrapolation or generalizability of the results of this 
study must be tempered by some limitations in the meth- 
odology. Study numbers were relatively small. Although 
sample sizes provided adequate power to detect a differ- 
ence in survival time, which was the primary outcome 
measure, the number of animals per group may have been 
too small to detect significant differences in other pa- 
rameters such as CBF.  Other limiting factors are the use 
of immature animals and the anesthetic agent. Although 
the cardiovascular system of immature pigs is thought to 
be quite similar to that of humans, and our baseline values 
would corroborate this, less is known about the pig ce- 
rebrovascular system. The effects of isoflurane on cardi- 
ovascular function are reported to be less than other in- 
halation agents, but little is known about the specific 
cerebrovascular and neurochemical effects.” We elected 
to use these agents because other anesthetic agents such 
as the barbiturates and benzodiazepines are known to pro- 
duce GABA effects similar to ethanol. The possibility ex- 
ists that the observed effects are due to synergy between 
ethanol and isoflurane, rather than solely from ethanol. 

In this study, ethanol was given prior to full instru- 
mentation of the animals to allow adequate time for gas- 
trointestinal absorption. This made it impossible to record 
true baseline measurements. Ethanol effects on MAP, 

.............................................................................. 

CPP, and blood lactate concentration were evident even 
prior to the initiation of TBI and hemorrhage. However, 
based on CO, CPP, cerebral 0, saturation, 0, delivery, 
and extraction values that were in normal or low-normal 
ranges, ethanol did not adversely affect cerebral function 
in the preinjury period. Measurement of urine output and 
serum osmolality would be useful in our model to assess 
the magnitude of ethanol-induced osmotic diuresis. 

Some interesting questions can be posed based on our 
findings and previous work with ethanol and TBI. The 
first relates to the cerebrovascular response to ethanol. 
While our data showed global reductions in CBF follow- 
ing TBI and HS, we did not look directly at arteriolar 
diameter. Techniques that would allow real-time monitor- 
ing of cerebral arteriolar diameter would be useful in de- 
termining the cerebrovascular response in the early pos- 
tinjury period. 

Major questions remain as to which of the neurochem- 
ical mediators of injury are most important in ethanol ef- 
fects on TBI. Direct measurement of glutamate and 
GABA, and indirect measurement of 0, radicals are pos- 
sible in brain tissue and cerebral venous blood. Opioid 
and NMDA-receptor agonist and antagonist agents may 
also be useful in defining ethanol effects in TBI. Some of 
our future experiments will focus on these mediators. 

A final question relates to dosage and chronicity of 
use. Ethanol may have varying effects with dose. Few 
studies account for this, and some do not use levels that 
are clinically relevant. Ideally, future TBI studies will test 
various doses of ethanol to determine whether effects vary 
with blood concentration. In the clinical setting many sub- 
jects with TBI have both acute ethanol intoxication and 
chronic ethanol abuse. Animal studies such as ours ad- 
dress only acute intoxication. The effects of ethanol on 
the brain response may be far different when the brain has 
developed tolerance to ethanol. Future studies will need 
to explore ethanol effects in animal models that incorpo- 
rate chronic alcohol consumption. 

I CONCLUSION .............................................................................. 

In this animal model of TBI and HS, acute ethanol ad- 
ministration reduced survival time and had detrimental ef- 
fects on systemic and cerebral physiology. These effects 
occurred early in the postinjury period. The primary rea- 
son for worsened cerebral perfusion in the ethanol-treated 
animals appeared to be impaired cardiovascular function. 
The exact physiologic and neurochemical mechanisms re- 
sponsible for these effects remain to be determined. 

This investigation was supported in part by a grant from the NIH, Na- 
tional Institute on Alcohol Abuse and Alcoholism: #1 KO8 AA00184- 
01A2. 
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