
1 I0 

Determining intended evidence relations in natural language arguments 

MARK A. YOUNG’ 
Deparlment of Electrical Engineering and Computer Science, University of Michigan. Ann Arbor, MI 48109, U.S.A. 

AND 

ROBIN COHEN 
Department of Computer Science, University of Waterloo, Waterloo, Ont., Canada N2L 3GI 

Received August 15, 1989 
Revision accepted March 5, 1991 

When trying to understand a speaker’s argument, it is necessary to determine what her claim is and what evidence 
she provides for it. It is necessary, therefore, to be able to recognize evidence relations in terms of the speaker’s beliefs. 
This paper describes an implementation of an evidence oracle, which tests for evidence between statements and builds 
a model of the speaker based on the evidence relations found. This implementation is intended to be an advance in 
the development of practical discourse analysis systems, proposing a basis for verifying certain relationships between 
utterances. Another contribution of the work is a stratified speaker model which allows for varying levels of acceptance 
of beliefs attributed to the speaker. Integration of the implemented evidence oracle into a full discourse analyser is 
presented, together with output illustrating the analysis for several sample arguments. Some extensions of this approach 
for plan inference are also discussed. 

Key words: evidence, user modeling, beliefs, natural language, inference. 

Lorsque l’on essaie de comprendre I’argument d’un locuteur, il importe de determiner la nature de sa pretention 
et le type d’evidence qui I’accompagne. Par consequent, il est nkcessaire de pouvoir distinguer des relations d’evidence 
les croyances du locuteur. Cet article decrit la mise en oeuvre d’un’oracle qui recherche I’kvidence entre des honcks 
et construit un modile du locuteur en fonction des relations d’kvidence constatees. Cette mise en oeuvre propose une 
base pour verifier certaines relations entre des Cnoncis; eIle se veut une contribution au developpement d’un syst6me 
pratique d’analyse du discours. Une autre contribution de cette recherche est l’elaboration d’un modele de locuteur 
stratifie qui tient compte de niveaux variables d’acceptation des croyances attribuees au locuteur. L’intCgration de I’oracle 
d’ividence sous forme d’analyseur de discours est presentte, ainsi que des illustrations de I’analyse de plusieurs arguments 
types. Une extension de cette approche A I’inference de plans est egalement discutie. 

MOIS d e s  : evidence, modele de I’utilisateur, croyances, langage naturel, inference. 
[Traduit par la ridaction] 

Comput. Intell. 7. 110-118 (1991) 

1. Introduction 
This paper addresses the problem of determining relations 

between utterances in a discourse. The  type of discourse 
studied is the monologue argument, where the speaker has 
as goal to convince the listener of some point of view. The 
relations between utterances which must be determined in 
analysis are therefore intended evidence relations. 

For the analysis, it is assumed that the argument will be 
input as a sequence of statements or propositions. Each 
statement made plays the role of evidence or claim (posSibly 
both). Before judging the validity of the argument, one must 
determine its structure - which statements are evidence for 
which claims. Since large parts of arguments often go 
unstated, a knowledge of the speaker’s beliefs is essential. 

This paper describes one component of an  argument 
understanding system. The evidence oracle (EO) takes two 
propositions, Q and P, from the speaker’s argument, and 
answers the question “Does the speaker intend P to be 
evidence for Q?” In coming to its answer the oracle con- 
siders its own model of the world and a model of the speaker. 
Based on the answer it derives, it may build on the speaker 
model. The evidence oracle is more fully described in Young 
(1987). 

‘This paper describes work completed while the author was at 
the University of Waterloo. 
Prinied m Canada , Imprtrnc au Canada 

1 .  I. The argument understanding system 
The EO is based on  the subsystem of the same name in 

Cohen’s argument understanding system (AUS). The AUS 
(described in Cohen (1983, 19870) and par t idy  implemented 
in Smedley (1986, 1987)) parses a natural language argument 
(monologue) into a tree representation. The root of the tree 
is the main claim of  the speaker, and the children of each 
node are the statements made in evidence for that  node. By 
identifying and using a limited number of coherent transmis- 
sion strategies, Cohen was able to restrict the number of calls 
to the EO to be linear in the number of statements in the 
argument. Each transmission strategy represents a way of 
ordering the Statements in the argument. The transmission 
strategies that the AUS accepts are ( i )  claim first - each 
claim followed by the evidence for  it; ( i i )  claim last - each 
claim preceded by the evidence for it; and (iii) hybrid - 
each sub-argument is either claim first or claim last. (For 
more details on why these orderings constitute coherent 
transmissions, see Cohen (1983, 1984a).) 

Figure 1 shows the flow of control and data in the AUS. 
The propositions of the argument are passed one  at a time 
to the proposition onalyser (PA), which, based on the restric- 
tions of the transmission strategy, selects those nodes in the 
argument representation that may be related to  the current 
proposition. For each of the selected nodes, the question 
of evidence is asked of the EO. When an evidence relation 



YOUNGANDCOHEN 111 

argument 
repTsentation 

language ............. .. Proposition A d y w  4 . .  ......... .. 

/ am- 

Clue Interpreter 

i speak?r model knowledge basc - control flow 

FIG. 1. System design. 
........ data flow 

is found, the current node is inserted at the appropriate posi- 
tion and the AUS goes on to the next proposition. 

The clue interpreter finds and analyses clue words in the 
argument. These are special words and phrases used by the 
speaker to indicate the structure of the argument (for exam- 
ple, connectives). These clues may restrict the nodes con- 
sidered in the search of the proposition analyser, or the types 
of evidence relations considered for each node pair (passing 
the clue information to the evidence oracle through the PA). 
(For more discussion on the role of clues in arguments, see 
Cohen (1984b).) 

If the argument is coherent and the analysis is correct, 
then the representation returned will be a tree. It is expected 
that this tree will be passed on to  some sort of response unit 
(RU), which will generate a reply to the argument. It is the 
RU that will deal with the believability of the overall argu- 
ment; the EO, in contrast, is concerned with the believability 
of the individual evidence relations in the argument - the 
basis for deciding the yes/no answer for the PA. 

2. The evidence oracle 
2.1. Frames of evidence 

To recognize evidence relations the EO uses frames with 
slots for a conclusion and one or more premises. We say 
that E is evidence to C (claim) if E and C fit some frame 
of evidence with E as a premise and C as the conclusion. 
The frames used appear in Tables 1 and 2. Modus ponens 
and modus tollens represent the rules of logic. The general- 
ization is a variation on modus ponens in which the cor- 
respondence is not perfect; that is, it need not be true for 
all values of its free variables. It may be viewed either as 
a default rule (similar to Reiter (1980) or Poole et a/. (1987)) 
or as a relation which is merely probable. The generalized 
rule corresponding to  A - B is represented by A 4 B. 

Refutation and concession appear in counterarguments 
and serve to deny a rule proposed by another speaker. The . 
“rule” is contradicted by giving a counterexample - the 
refutation. Before showing the counterexample, though, it 
is usual to lead the way with concessions - examples of the 
“rule” at work. These concessions are a form of contkstive 
evidence, as discussed in Cohen (1983). 

Table 2 shows frames of partial evidence. These forms 
of evidence allow for “giving examples.” There is an implied 
rule at work here: 

If the examples for a generalization outweigh the examples 
against, then that generalization is (probably) true. 

The above rule may not be particularly convincing (to say 
nothing of the generalization it is being used to support), 
but the usage is common. 

TABLE 1. Frames of evidence 

Minor Major 
premise premise Conclusion 

Modus ponens A A - B  B 
Modus tollens 7 B  A - B T A  
Generalization A A + B  B 
Refutation A 1 B  ’ ( A  - B )  
Concession A B - ( A  - B )  

The oracle should also be prepared to recognize incorrect 
rules of logic, such as “asserting the consequence,” if there 
is evidence that the speaker is using them. For now we will 
restrict our attention to the above frames. 

2.2. Missing premises 
The speaker often does not fill in all slots of the applicable 

frame. This phenomenon is called modus brevis in Sadock 
(1977). Thus, while the speaker could say 

Socrates is a man. All men are mortal. Therefore, Socrates 
is mortal. 

she is more likely so say either 

All men are mortal. Therefore, Socrates is mortal. 

or (even worse) 
Socrates is a man, and therefore mortal. 

The listener is expected to fill in the empty slots from his 
own knowledge. 

The sort of information that is usually not conveyed is 
that which is common knowledge: if everyone knows that 
Socrates is a man, then there is no po.int in telling anyone 
so. Sometimes something the speaker considers ‘‘obvious” 
will not be considered so by the listener. The oracle must 
be prepared to deal with beliefs used by the speaker that 
it does not share. A further complication is that the oracle 
deals with predicates by twos. Thus it is possible (indeed, 
quite likely) that the missing premise will be stated later in 
the argument. . 

It is important that the missing premises could plausibly 
be held by the speaker. That the missing premises contradict 
shared beliefs or earlier statements of the speaker could 
indicate that the relation found’is not the one intended. 

Cohen (1983) suggests that we determine whether a belief 
is plausible by consulting the following sets of knowledge: 
(i) shared beliefs; ( i i )  the hearer’s beliefs; (iii) a stereotype 
of the speaker; and ( i v )  a model of a hypothetical person 
- a “least detailed” speaker model. To facilitate the imple- 
mentation, we shall take a slightly different approach. The 



112 COMPUT. INTELL. VOL. 7 .  1991 

TABLE 2. Frames of partial evidence 

Minor premises Conclusion 

Positive example A B A - B  or A - B  
Contrapositive example - B  -.IA A - B  or A - D B  
Counterexample A -B  A - o B  

TABLE 3. An instantiation of the modus ponens frame 

(1-1) All men are mortal. Major premise mortaf(X) - man(X) 
(1-2) Socrates is a man. Minor premise man (socrates) 
(1-3) Therefore, Socrates is mortal. Conclusion mortal(socrates) 

oracle will consult: ( i )  shared beliefs; ( i i )  a model of the 
speaker, including a stereotype; and (iii) the system’s 
beliefs/knowledge. 

We assume the speaker to be a fairly competent reasoner. 
Therefore, if she says that P is evidence for Q by virtue of 
the relation P A  R - Q, then she believes not only that 
P, Q, and P A R - Q are true, but also that R is true. On 
this basis, any premises missing from an accepted evidence 
relation may be added-to the speaker model. 

2.3. Model of the world 
The oracle maintains a model of the world to help it judge 

the plausibility of missing premises. Part of that world model 
is a model of the speaker. The world model is broken into 
several modules, depending on who holds the beliefs 
represented : 

facts the beliefs common to the conversants’. 
speaker a stratified model of the speaker’s beliefs, broken 
down into: 

explicit those statements made by the speaker, and thus 
attributed to herself. 

missing beliefs we have attributed to the speaker on the 
basis of evidence relations determined earlier in 
the argument. 

stereotype default beliefs for the speaker. The system’s 
beliefs will initially serve as a basis for the 
speaker stereotype. 

hearer the private beliefs (or knowledge) of the system. 

The ordering of modules given above reflects the order 
of search for missing beliefs. Roughly speaking, the further 
down the list one must search for a missing belief, the less 
plausible it is that the speaker has that belief. Predicates that 
do not appear in the list, however, may also be judged 
plausible. In particular, if a predicate is not explicitly con- 
tradicted by one of facts, explicit, or missing, then it can 
be considered plausible. 

2.4. Determining evidence relations 
To show,how frames are used to determine evidence rela- 

tions, consider the instantiation of the modusponens frame 
given in Table 3. The speaker gives the speech on the left 

%is module could have been called “shared,” since the beliefs 
here are shared between the oracle and the speaker (this may be 
seen as one-sided mutual belief, in Clark and Marshall (1981)). 
But since these beliefs are meant to be shared with any speaker, 
the name “facts” was considered more descriptive. 

(the statements are numbered for later reference), which is 
translated into the predicates on the right. (Our implementa- 
tion of the evidence oracle, in Waterloo Unix Prolog (WUP), 
assumes that the input has already been preprocessed into 
the predicate notation3.) The oracle can then fit the 
predicates into the slots for- modus ponens and recognize 
the relation intended. 

Assuming a claim-last transmission, and that the statements 
are made in the order given above, the PA first asks the EO 
whether (1-1) is evidence for (1-2). The oracle answers no, 
since there is no frame of evidence appropriate for the pro- 
posed relation. The PA defers handling (1-1) for the present. 
The next question asked is whether (1-2) is evidence for (1-3). 
The oracle discovers that (1-2) and (1-3) fit the modus ponens 
frame with (1-1) as the missing premise. Since (1-1) appears 
in explicit (it was put there on the first call to the oracle), 
it is deemed a plausible belief and the relation is accepted. 
The PA then completes processing the argument by asking 
whether (1-1) is evidence for (1-3). This succeeds in the same 
manner as (1-2) for (1-3) did, with the same result. The argu- 
ment ‘has been successfully parsed into the tree: 

(1-3) 

/ \  
(1-1) (1-2) 

To illustrate adding missing premises to the speaker 
model, consider the following. Assume the speaker and the 
system have a common belief that all Greek men are mortal 
(represented by rnortal(X) - greek(X) A man(X)). The 
speaker says “Socrates is Greek, and therefore mortal.” The 
oracle can recognize greek(s0crates) as evidence for 
mortal(socrates) with two missing pieces: the rule about the 
mortality of Greek men, and a belief that Socrates is a man. 
As long as the speaker’s beliefs do not indicate that Socrates 
is not a man, we can accept that belief as plausible. The pred- 
icate man (socrates) would then be added to module missing. 

2.5. Multiple evidence relations 
Sometimes more than one frame of evidence may be 

appropriate for a qiven pair of predicates. Consider the fol- 
lowing argument: 

(2-1) Socrates is Greek, greek(socrates) 
(2-2) and, so, mortal. 

’The implementation was tested on a number of examples, 
including several much longer than the ones presented in this paper 
for illustration. 

mortal( socrates) 



YOUNG AND COHEN 113 

TABLE 4. Relative plausibility 

Truth value in stereotype 
Truth value in 
explicit/missing True Unknown False 

True/True 0 1 2 
True/Unknown 3 4 5 
Unknown/True 6 7 8 
Unknown/Unknown 9 10 I 1  

with shared beliefs 

mortal(X) - greek(X) A man(X) 
mortal(X) - greek(X) A woman ( X )  

There are two frames of modus ponens that allow (2-1) as 
evidence for (2-2). One has Socrates as a man, the other as 
a woman4. 

If one of these beliefs is plausible and the other not, then 
there would be no problem to choose between them. When 
both are plausible, however, we must make a decision. The 
simplest solution is to take whichever is more convenient 
- the first one generated, for example. Another solution 
is to refrain from choosing - simply report a relation 
without updating missing. The former solution could lead 
to many errors, while the latter results in lost information. 
Keeping disjunctive knowledge in missing is another 
possibility, but would require a more complex management 
of the missing module. We prefer to make some decision 
on the intended interpretation, in accordance with the 
general strategy of the AUS to incrementally reconstruct the 
representation for the input. 

2.6. Belief levels 
Our solution is as follows: when faced with multiple 

evidence relations the oracle will select the most plausible. 
A predicate is not plausible if its negation appears in any 
of facts, explicit, or missing. The beliefs considered plausible 
(in order of decreasing plausibility) are ( i )  beliefs the speaker 
has attributed to herself; ( i i )  beliefs the oracle has attributed 
to the speaker; (iii) beliefs typical to the speaker’s stereotype; 
and ( i v )  beliefs not contradicted explicitly by ( i )  or ( i i ) .  

Table 4 gives numerical values to the various acceptable 
combinations. Conjunctions receive the value of the least 
plausible conjunct. (Note that 0 indicates the most plausible, 
and 11 the least. Only predicates without a value in Tabie 4 
are implausible.) 

A predicate is true in a module if it appears in that 
module, false if its negation appears there, and unknown 
otherwise. Based on the truth values found, the oracle assigns 
a numerical value representing plausibility. This internal rep- 
resentation allows comparisons to  be made more easily. 

Belief levels are presented as a solution to the problem 
of selecting between competing evidence relations, as 
described in Sect. 2.5. If the system is aware that Socrates 
was a man and is using its own beliefs as a stereotype of 
the speaker, then it will judge it more plausible that the 
speaker also believes Socrates to  be a man than that she 
believes him to be a woman. 

4Actually, this is a case where there are two possible major 
premises for the same frame of evidence. There are examples as 
well where two different frames may apply, for example, concession 
or refutation. See Young (1987) for more details. 

hearer’s beliefs: mun(socrates) 
shared beliefs: mortul(X) - greek(X) A mun(X)  

mortal( X )  - greek (X) A womun ( X )  
considering greek(socrates) for mortal(socrates) 
greek(socrates) is evidence for mortal(socrates) 

with [man(socrates)] missing. 
man(socrates) has belief level 9 

The conjunction has belief level 9 
greek(socrates) is evidence for mortal(socrates) 

with [woman(socrates)] missing. 
woman(socrates) has belief level 10 

The conjunction has belief level 10 
success greek(s0crate.s) for mortal(socrates) 
missing [man(socrates)] 

FIG. 2. Sample session: multiple relations. 

TABLE 5 .  Laughing at geniuses 

Belief-believer Facts Speaker Hearer 

geniusfcolumbus) UnkOown Unknown True 
genius(boz0) False Unknown Unknown 

Consider the sample session in Fig. 2, which shows the 
analysis of the argument about Socrates, with the modules 
for the hearer’s beliefs (then attributed to  stereotype) and 
shared beliefs (equivalent to  facts) initialized as indicated. 
The modules for explicit and missing are currently empty. 
When the evidence relation is tested, there are two plausible 
bases for confirming the relationship. Filling in that Socrates 
is a man has belief level 9, since it is unknown in explicit 
and missing, but true in stereotype (which is taken by default 
from the hearer’s beliefs). That Socrates is a woman is 
simply unknown everywhere, resulting in a value of 10. 

2.7. Sample arguments 
2.7. I .  Concessions and refutations 
Consider the following argument? 

Not everyone who is laughed at is a genius. Sure, they 
laughed at Columbus; but they also laughed at Bozo the 
Clown. 

This would translate to our notation as: 

(3-1) i (genius(X) - laughed-at(-) 
(3-2) laughed-at (Columbus) 
(3-3) laughed-at( bozo-thecclown) 

Suppose the system believes that Columbus is a genius. Sup- 
pose further that it is common knowledge that Bozo the 
Clown is a fool (that is, a non-genius). 

In this argument, (3-2) and (3-3) are given as evidence for 
(3-1)6. However, the relationship between (3-2) and (3-1) is 
not the same as that between (3-3) and (3-1). Columbus 
appears in the argument for rhetorical purposes. The speaker 
does not mean to say that Columbus is not a genius; rather, 
he is a genius who was laughed at. The speaker does, on 
the other hand, intend to say that Bozo the Clown is not 

’Paraphrased from an argument by Carl Sagan. 
%ee Sect. 3.2 for sample runs showing how the AUS deter- 

mines this. 



I14 COMPUT. INTELL. VOL. 7. 1991 

a genius. These two relations are captured by the concession 
and refutation frames of evidence (Table 1, Sect. 2.1). 

Note that the argument is understandable even without 
the clue words “sure” and “but” (though not so easily as 
with them). When processing this argument, there is no syn- 
tactic difference between (3-2) and (3-3). The oracle must 
consider both concession and refutation for both (3-2) 
and (3-3). 

If the speaker means there to be a concession relation 
between (3-2) and (3-1), then he believes that both he and 
the listener can recognize Columbus as a genius. The oracle 
doesn’t yet know what the speaker believes, but it does con- 
sider Columbus a genius. It assigns a belief level of 9 to the 
speaker believing the same. If, instead, the speaker is using 
a refutation frame, then Columbus should not be a genius. 
This is contrary to what the oracle believes. Since we have 
no knowledge yet of the speaker’s beliefs, the oracle assigns 
a belief level of 11 to the speaker believing Columbus to be 
a non-genius. The preferred explanation, then, is that 
Columbus is offered as a concession. 

For Bozo the Clown, the same two relations must be con- 
sidered. The concession frame requires that the speaker think 
Bozo a genius. But Bozo is a well-known non-genius, as rep- 
resented in the facts modules above. Thus this frame is 
rejected as implausible. The refutation frame, however, is 
acceptable, since it contradicts no known beliefs of the 
speaker. Thus the refutation frame is selected for (3-3), as 
intended. 

Note that the oracle employs a liberal attribution of beliefs 
to the speaker, even with the distinctions in likelihood of 
belief introduced by belief levels. A statement is considered 
to be a plausible belief of the speaker as long as it is not 
explicitly contradicted in the speaker model. The speaker’s 
beliefs are allowed to contradict those of her stereotype, as 
well as those of the oracle. 

2.7.2. Conflicting beliefs between speaker and system 
While the oracle will use its own beliefs when it doesn’t 

know the speaker’s (by virtue of attributing hearer’s belief 
to stereotype), it will prefer the speaker’s beliefs where avail- 
able. Say we have the following pair of statements: 

(4-1) Mark went to the CSCSI conference. 
(4-2) He enjoyed it. 

Further, the speaker and the listener share beliefs that 

(R-1) Studious people enjoy conferences. 
(R-2) Party animals enjoy conferences. 

If the system knows that the speaker believes Mark to be 
a party animal, then the oracle will find (4-1) to be evidence 
for (4-2) by rule (R-2). This will be so even if the system 
believes Mark to be studious. 

In fact, the oracle will recognize the speaker’s use of rule 
(R-2) even if it knows that Mark is not a party animal. By 
maintaining the speaker’s beliefs in a module separate from 
its own, the system can deal with this conflict of belief with 
no problem. Once the oracle has recognized the evidence 
relation, a response unit for the hearer may react to indicate 
rejection of the validity of the rule. Still, the argument is 
parsed correctly, so an appropriate response may be gener- 
ated. If  the system believes Mark to be studious, this 
response may be of the form “Yes, he did enjoy the con- 
ference, but not for the reasons YOU think.” 

2.8. Inconsistent beliefs 
The EO must often judge whether it is plausible that the 

speaker hold a given belief. We have two opposing concerns 
as we try to  reach the decision. We want to recognize many 
different kinds of argument. At the same time, we do not 
want to attribute beliefs to the speaker that she does not 
hold. It would be nice if we could assume the speaker to 
be ideally rational. Yet, it is not often we meet someone who 
knows everything that follows from her beliefs. We need 
to know what we can deduce about the speaker’s beliefs 
based on what she says. 

Our solution is based on Fagin and Halpern (1985), which 
is in turn based on Levesque (1984). Levesque divides the 
speaker’s beliefs into explicit and implicit parts. Explicit 
beliefs are those that the speaker is aware of. Implicit beliefs 
are those that merely follow from what is explicitly believed. 
Fagin and Halpern suggest that reasoning agents would not 
believe both F and i F explicitly. Implicit contradictions, 
however, are allowed. Thus an agent may explicitly believe 
that A implies C, that B implies 1 C, and that both A and B.  
Beliefs C and 1 C are merely implicit, and so do not cause 
the agent discomfort. 

In our system, this notion of explicit contradiction is rep- 
resented by requiring the actual logical negation of the pred- 
icate under consideration to be present in the speaker model. 
No chains of inference are followed while trying to detect 
a contradiction. 

In our model of the speaker we have three modules. One 
of these, stereotype, consists of statements we think it likely 
the speaker believes, but which have not yet been attributed 
to her. Since these may not be beliefs of the speaker, we 
do not look for contradictions here. The other modules, 
explicit and missing, consist of beliefs that have been 
attributed to  the speaker by herself and by the system, 
respectively. In the case of the former, we can be sure that 
the speaker holds them explicitly; she has stated them 
openly. These beliefs we will not allow to be contradicted. 
In the case of the latter, it is less obvious. We make a design 
decision to not allow these beliefs to be contradicted, either. 
(Note that we are not saying that these “missing” beliefs 
are also explicitly held, only that they are so obvious that 
any contradiction should have been pointed out already. If 
an undetected contradiction does underlie an intended rela- 
tion, then our analysis of the argument should fail com- 
pletely, and the speaker’s error be discovered in a dialog with 
the response unit .) 

Our system also maintains a set of beliefs, facts, which 
it holds to be shared with the speaker. We will not allow 
beliefs in this module to be contradicted. 

2.9. Chaining beliefs 
While contradictions in the speaker model must always 

be explicit, other operations do look for implicit beliefs. In 
particular, when searching for missing premises in a putative 
evidence relation, belief chains are followed. So, if we are 
trying to find a missing major premise to link P to Q, it need 
not appear as P - Q. The rules P - R and R - Q would 
do nicely. Beliefs are also chained when looking for examples 
and counterexamples to possible generalizations (see below). 

When belief chains are being followed, it is important not 
to end up going in circles. The implemented oracle makes 
sure that it does not go into infinite loops by including a 
simple ancestor-check in its search. Before we expand C in 



YOUNG AND COHEN 115 

any search, we check to see that G has not already been 
expanded (all searching is depth first). This simple test 
prevents most forms of infinite regress, but at  the cost of 
completeness. Thus, the oracle may fail to find some 
solutions. 

2.10. Missing major premise 
When one of the missing premises of an argument is the 

major premise, the judgement of plausibility is carried out 
somewhat differently from that described above. Clearly, 
any two premises can fit the modus ponens frame with an 
appropriate missing major premise. For this reason, no such 
major premise is generated unless it appears somewhere in 
the system’s knowledge of the world. 

On the other hand, we must allow for the chance that the 
intended rule has not been previously encountered by the 
system, and yet is still valid. Therefore, if no other frame 
of evidence is found to fit the given predicates, the oracle 
will generate a generalization major premise and test that 
premise for plausibility. This is the case refered to as “partial 
evidence’’ in Sect. 2.1. 

The following two tests then measure the plausibility of 
P - - p  Q: 

1. There are more instances of P A Q than of P A i Q. 
That is, when P i s  true, Q is more likely to be true than 
false. 

2. There are more instances of 1 P A 1 Q than of P A -I Q. 
When Q is false, P is more likely to be false than true. 

Both must be true for the generalization to be established. 
For example, if the oracle3 asked whether sharkuoey) 

might be meant as evidence for dangerousuoey), and it finds 
no other frames of evidence appropriate, it will generate the 
rule shark(X) 4 dangerous(X), and test it for plausibility. 
Assume the system has the following beliefs’: 

shar kCj oey) , dangerousG oe y ) , 
shark(fred), dangerous( fred), 
whale(louis), dangerous(louis), 
whale(carl), lnot(dangerous(carl)), 

Inot(shark(X)) - whale(X) 

When shark(X) is true, we have two examples of danger- 
ous(X) true, and none for dangerous(X) false. When 
dangerous(X) is false, we have one example of shark(X) 
false, and none of shark(X) true. Thus our rule is deemed 
plausible, it is added to module missing, and the oracle 
reports an evidence relation found. 

3. Related work 
3.1. Plan inference 

The general problem of plan inference has been addressed 
recently by several researchers, including Kautz (1987), 
Pollack (1986), and Carberry (1988). Pollack states that it 
would be useful to have a model of plan inference that 
distinguishes the beliefs of the planner from those of the 
observer. The reason for this distinction is to allow the 
observer to recognize incorrect plans and generate appro- 
priate responses. The EO makes such a distinction in the 
context of argument understanding, and can be applied to 
plan inference as well. 

’The term “lnot” is used to stand for logical negation. 

By identifying claim with plan, and evidence with subplan, 
the oracle can detect when one stated goal of the user is a 
subgoal of another. With the distinction between explicit 
and missing in the speaker model, the oracle can help isolate 
the cause of the user’s error, especially when more than one 
explanation of the error exists. The oracle can also detect 
plans from questions regarding the conditions on a plan 
(Young 1987, p. 50). 

To elaborate on the potential use of the stratified speaker 
model of the evidence oracle for plan inference, consider 
the following example, from Pollack (1986): 

I want to prevent Tom from reading my mail file, How 
can I set the permissions on it to faculty read only? 

with the translation into predicates as follows: 

(5-1) prevent(mrnfile, read, torn) 
(5-2) set-permission (mmfile, read, faculty) 

and a starting set of rules in the system of the following 
form: 

prevent(F, P,  U) - set-permissions(F, P,  G )  
lnot(member( U, G ) )  
lnot (system-mgr( U)) 

set-permissions( F, P, G )  - valid-permission (P,  G )  
type(“set protection ( C  : 
P )  F”) 

Using its own beliefs as a basis for the stereotype of the 
user, the system infers that she intends to achieve (5-1) by 
doing (5-2). Missing beliefs that Tom is not a member of 
the faculty and that he is not the system manager may be 
filled in. If one of these beliefs is wrong (in the system’s 
view), then the plan is, in Pollack’s terminology, ill-formed. 
The response unit could provide a reply by using the general 
rules above. Now, the division of beliefs into explicit, 
missing, and stereotype may provide some more informa- 
tion. If the rule itself is in missing, then the source of the 
confusion may be an incorrect understanding of the condi- 
tions on the plan. If, however, all missing beliefs are also 
believed true by the system, then the plan may still be incor- 
rect - for example, valid_permission( read, faculty) could 
be false, and the plan thus unexecutable. The response unit 
could provide a different kind of response, in this case. 

Carberry (1988) considers assumptions often made by plan 
recognition systems that she thinks ought not to be made. 
The oracle takes these issues into account to greater and 
lesser extents, as described below. 

The user does not have incorrect beliefs about the 
domain. By dividing the domain beliefs into those shared 
with the speaker and those not, the oracle allows for incor- 
rect beliefs of the speaker. The oracle will attribute incorrect 
beliefs only when they are required to make the argument 
coherent. 

The user’s statements are correct and not misleading. 
Again, the speaker can make statements that the oracle 
disbelieves because the two sets of beliefs are kept separate. 
Misleading statements, on the other hand, are those that 
cause the listener to infer incorrect beliefs. The oracle cannot 
guard against these, but will be able to recognize them when 
the erroneous beliefs contradict something that the oracle 
already knows. 

The user’s queries always address aspects of the task 
within the system ’s knowledge of the domain. The oracle 



I16 COMPUT. INTELL. VOL. 7, 1991 

will try to recognize novel methods, and to follow new 
premises laid out by the speaker. It does, however, appeal 
to its own knowledge to judge plausibility. In this respect, 
it works best in limited domains where the relevent rules (and 
common misconceptions) are likely to be already stored. 

No errors are introduced into the user model. The oracle 
cannot prevent incorrect inferences from being made, any 
more than people can. However, it does try to keep the 
speaker consistent, and keeps what the speaker said separate 
from what it infers she believes. It also saves its work, which 
should make it easier to go back and fix the model when 
an error is detected. 

A summary of the comparison between plus recognition 
and the oracle’s processing is as follows. 

Plan recognition requires the storing of all plan configura- 
tions ahead of time, and recognizing one of these configura- 
tions in the input. If a “match” cannot be produced, this 
can be as a result of misconceptions.on the part of the 
speaker as to what can legitimately be executed in the 
domain. We would want to at least recognize the expected 
faulty plan, and the operations of the oracle can accomplish 
this by accepting relations believed to be held by the speaker, 
even if these are not part of the hearer’s beliefs. 

Another possibility, if a match cannot be found to an 
existing plan library, is that the speaker’s proposed plan is 
correct, but merely novel, that is, the system is not yet aware 
of the possibility. This may occur, for example, when parts 
of the real world knowledge have simply not been configured 
as a plan in the library, that is the relations between actions 
have not been fully realized’. 

The procedures of the oracle allow recogniticm of novel 
plans. If a relation between two propositions is deemed 
plausible, by virtue of lack of contradictory evidence in the 
system’s beliefs, then this novel plan can be accepted’. The 
clean separation of speaker model and system beliefs 
facilitates this recognition. 

One feature of the oracle’s processing which distinguishes 
it from plan recognition is the absence of a stored plan 
library. Relations between propositions (or actions) are 
individually listed, to be recognized. This is not dissimilar 
to the proposal of Goodman and Litman (1989) and Litman 
and Goodman (1989) for constructive plan recognition, to 
accept novel plans in the domain of CAD design. 

3.2. Argument understanding 
This work on the evidence oracle can be merged with exist- 

ing implementations of the AUS (Smedley 1986, 1987), pro- 
viding a prototype working version of the overall model of 
Cohen (1983). 

In Smedley (1986), the basic proposition analyser is imple- 
mented. The evidence oracle is replaced by an “ask-the- 

‘Creating the initial plan library often requires freezing the 
description at one specific level of detail; if a plan is input at a 
more specific level of detail, the matching algorithm may fail. Kautz 
(1987) and others have investigated the organization of plan 
libraries along specialization links, which begins to address the dif- 
ficult problem of allowing varying levels of detail in the input. 

9The current oracle is quite generous in its acceptance of new 
relations; this can be adjusted in the implementation with stricter 
rules on what is considered “acceptable.” Table 4 of  Sect. 2.6 
shows all acceptable relations, when filling a missing proposition. 
To fill a missing major premise, the rules of Sect. 2.10 apply. 

user” facility. Smedley (1987) augments this basic analysis 
algorithm to include the acceptance of connective clues, to 
help restrict the processing and detect incoherent arguments 
(according to the algorithm of Cohen (1987)). 

In Song (1988), a fully integrated implementation of tne 
AUS is constructed, using the proposition analyser and clue 
interpreter of Smedley (1987), and a slightly modified ver- 
sion of the code in Young (1987) for the evidence oracle. 

There are two options for someone interested in examin- 
ing the analysis of a sample argument. “Parse” (option one) 
adopts the procedures of Young (1987) and assumes claim- 
first input only. It is convenient to use “parse” to examine 
raw interpretations of evidence relations in simple argu- 
ments, to facilitate understanding of the evidence oracle 
operations, “Analyse” (option two) allows other transmis- 
sion orderings and reacts to the presence of clues according 
to the algorithms implemented in Smedley (1987). 

The input in Smedley (1987) is unsophisticated - a list 
of words in each sentence, with cue phrases clearly labelled 
- because no semantic processing was required. (The user 
would supply the answers regarding intended evidence rela- 
tions.) The input for Young (1987) is a predicate encoding 
of each individual sentence, to facilitate processing in Prolog 
and chaining on inferences when necessary. This predicate 
form is therefore also the required input form in Song 
(1988). 

For the analysis, the user must supply 
1. the argument to  be analysed, with each statement coded 

in predicate form; and 
2. beliefs initially held by the hearer (the user), and those 

believed shared by hearer and speaker (“facts”). The 
speaker model may also be initialized if there are known 
beliefs recorded from an earlier session or by a stereotype. 

Session one. 
To show the integrated version at work, we return to the 

(3- 1) i (genius( X )  - laughed-at ( X ) )  

(3-2) laughed-at (columbus) 

(3-3) laughed-at (bozo-the-down) 

example from Sect. 2.7.1. 

Not everyone who is laughed at is a genius. 

Sure, they laughed at Columbus, 

but they also laughed at Bozo the Clown. 

Waterloo Unix Prolog [Version 3. la  - Beta Release 
March 16, 19881 
?setup; 
? add-beliefs(facts, flnot(genius(bozo~the~clown))]); 
? add-beliefs(hearer, [genius(columbus)]); 
? parse( [hot(  for-all(genius( X) , [laughed-at( X)] )) , 

laughed-at(bozo-the clown)]); 

for lnot(for-all(genius(X), [laughed-at(X)])) 

laughed-at (Columbus), 

considering laughed-at(co1umbus) 

laughed,at(columbus) is evidence for 
lnot(for,all(genius(columbus), 

[laughed-at(columbus)])) with 
[lnot(genius(columbus))] missing. 

Inot(genius(co1umbus)) is not believed by the model 
laughed,at(columbus) is evidence for 
lnot(for-all(genius(columbus), 



YOUNG AND COHEN 117 

[laughed-at(columbus)])) with 
[genius(columbus)] missing. 

genius(co1umbus) has belief level 9 

[laughed-at(X)])) 

for laughed-at(co1umbus) 

for laughed-at(co1umbus) 

for lnot(for-all(genius( X ) ,  [laughed-at( X)])) 

Inot(for-all(genius(bozo-the-clown), 

lnot(genius(bozo-the-clown)) has belief level 0 

The conjunction has belief level Max:9, Sum:9 
success laughed-at(co1umbus) for Inot(for-all(genius(X), 

considering laughed-at(bozo-the-clown) 

failure laughehat(bozo-t he-clown) 

considering laughed-at(bozo-the-clown) 

laughed-at(bozo-the-clown) is evidence for 

[laughed~at(bozo~the~clown)])) with 
[ lnot(genius(bozo-t he-clown))] missing. 

The conjunction has belief level Max:O, Sum:O 
laughed-at(bozo-the-clown) is evidence for 
lnot(for-all(genius(bozo-the-clown), 
[laughed-at(bozo-the-clown)])) with 
[genius(bozo-the-clown)] missing. 

genius(boz0-the-clown) is not believed by the model 

lnot(for-all(genius(X), [laughed-at(X)])) 
success laughed-at(bozo-the-clown) for 

The argument tree is: . 
lnot( for-all(geni us( X), [laughed-at( X ) ] ) )  

laughed-at(co1umbus) 
laughed-at(bozo-t he-clown) 

? print-beliefs(missing); 
module: missing 

lnot(genius(bozo-the-clown)) 

Session two. 
Similar to the example above, but this time, the argument 

is given in claim-last order and is described by the integrated 
program using Analyse. 

Waterloo Unix Prolog [Version 3.la - Beta Release 
March 16, 19881 
?setup; 
? add-beliefs(facts, [lnot(genius(bozo~the~clown))]); 
? add-beliefs(hearer, [genius(columbus)]); 
? analyse([laughed-at(columbus), 

laughed-at(bozo-the-clown), 
lnot(for-all(genius(X), [laughed-at(X)])) 
I); 

The argument is: 
laughed-at(co1umbus) 
laughed-at(bozo-the-clown) 
lnot(for-all(genius( X ) ,  [laughed-at( X ) ] ) )  
considering laughed-at(bozo-the-clown) 

failure laughed-at(bozo-the-clown) 

considering laughed-at(co1umbus) 

failure laughed-at(co1umbus) 

for laughed-at(co1umbus) 

for laughed-at(co1umbus) 

for laughed,at(bozo-t he-clown) 

for laughed-at(bozo-the-clown) 

for laughed-at(bozo-the-clown) 

for laughed-at(bozo-the-clown) 

for lnot(for-all(genius( X), [laughed-at(X)])) 

lnot(for-all(genius(bozo-the-clown), 

considering lnot(for-all(genius(X), [laughed-at( X)])) 

failure lnot(for-all(genius(X), [laughed-at(X)])) 

considering laughed-at(bozo-the-clown) 

laughed-at(bozo-the-clown) is evidence for 

[laughehat(bozo~the~clown)])) with 
[Inot(genius(bozo-the-clown))] missing. 

lnot(genius(bozo-the-clown)) has belief level 0 
The conjunction has belief level Max:O, Sum:O 
laughed-at(bozo-the-clown) is evidence for 
lnot(for-all(genius(bozo-the-clown), 

[laughed~at(bozo~the~clown)])) with 
[genius(bozo-the-clown)] missing. 

genius(bozo-the-clown) is not believed by the model 
success laughed-at(bozo-the-clown) for 

considering laughed-at(co1umbus) 

laughed-at(co1umbus) is evidence for 

lnot(for-all(genius( X), [laughed-at( X)])) 

for Inot(for-all(genius(X), [laughed-at(X)])) 

lnot( for-all(genius(columbus), 
[laughed-at(columbus)])) with 
[Inot(genius(columbus))] missing. 

laughed-at(co1umbus) is evidence for 
lnot(genius(co1umbus)) is not believed by the model 

lnot(for-all(genius(columbus), 
[laughed-at(columbus)])) with 
[genius(columbus)] missing. 

genius(co1umbus) has belief level 9 
The conjunction has belief level Max:9, Sum:9 
success laughed-at(co1umbus) for 

Argument tree: 
hot(  for-all(genius( X ) ,  [(laughed-at( X)])) 

Inot(for-all(genius(X), [laughed-at(X)])) 

laughed-at (Columbus) 
laughed-at (bozo-t he-clown) 

? print-beliefs(missing); 
module: missing 

lnot(genius( bozo-t he-clo w n)) 

The predicate “analyse” can deal with not only claim- 
first order but also claim-last order and hybrid order or both. 
The resulting argument tree is the same as above, but the 
intermediate outputs are different from the previous 
example. 

In the example sessions above, the argument tree shows 
the final structure of the given argument. In each considera- 
tion, “success” confirms the claim-evidence relation between 
two propositions with the case having smallest Max or Sum 
as the result. The predicate print-beliefs(h4) is used to show 
how modules have been updated. Note that, in this example, 
some missing evidence is said “not believed by the model.” 
This means that it contradicts some existing beliefs in one 
of the four modules. Of course, this case is eliminated from 
consideration. 



I18 COMPUT. INTELL. VOL. 7. 1991 

The integrated system handles clues, and different trans- 
mission strategies. Incorporating clue interpretation saves 
calls to the oracle. The  acceptance of  various orderings of 
propositions and the analysis of clue words in the input are 
discussed in greater detail in Cohen (19876 6); since these 
topics are not the focus of this paper, we will not include 
further discussion here. 

4. Conclusion 
In this paper we have described an implementation of a 

module for deciding a question of evidence in the context 
of argument understanding. In particular, the module answers 
the question “Does the speaker intend her statement P to 
be evidence for her statement Q?” 

To decide the question, the oracle uses frames - proto- 
types of evidence relations. Each relation found must match 
one of these frames. If more than one relation is found, then 
considerations of user and system beliefs, with a ranking 
provided by “belief levels,” provide an indication of the 
most likely intention of the speaker. 

The implemented oracle thus makes possible a full 
implementation of an argument understanding system based 
on the model of Cohen (1983), critical to the advancement 
of practical processing models of discourse. 

As it answers the questions posed to it, the oracle takes 
note of what beliefs are required to  support the relations 
found, and ensures that these are plausible. If the relation 
is accepted, this “keyhole recognition” is used to expand 
the speaker model. The system does not, however, give as 
much weight to these inferred beliefs as to explicit statements 
by the speaker. 

The oracle might also be useful in recognizing plans, par- 
ticularly those that a r e  only hinted at  by the speaker. The 
two problems are similar in that some hierarchy applies, and 
that not all relevant components are mentioned. Therefore, 
the general proposals for belief recognition and updating 
of the speaker model have useful extensions for other natural 
language understanding tasks. 

Acknowledgements 
Many thanks to Fei Song, Paul Kates, Bruce Spencer, and 

our anonymous reviewers for their assistance with this paper. 
This research was partially supported by the Natural Sciences 
and Engineering Research Council of Canada. 

CARBERRY, S. 1988. Modeling the user’s plans and goals. Com- 
putational Linguistics, 14(3): 23-37. 

CLARK, H.H., and MARSHALL, C.R. 1981. Definite reference and 
mutual knowledge. In Elements of discourse understanding. 
Edited by A. Joshi, B. Webber, and I. Sag. Cambridge Univer- 
sity Press, New York, NY. 

COHEN, R. 1983. A computational model for the analysis of argu- 
ments. Technical Report CSRG-151, University of Toronto, 
Toronto, Ont. 

1984~. A theory of discourse coherence for argument 
understanding. Proceedings of the Canadian Society for Com- 

putational Studies of Intelligence Conference, Saskatoon, Sask., 

19846. A computational theory of the function of clue 
words in argument understanding. Proceedings of the Interna- 
tional Conference on Computational Linguistics, Stanford, CA, 

1987~. Analyzing the structure of argumentative discourse. 
Computational Linguistics, 13( 1-2): 11-24. 

19876. Interpreting clues in conjunction with processing 
restrictions. proceedings of the National Conference on Artificial 
Intelligence, Seattle, WA, pp. 528-533. 

FAGIN, R., and HALPERN, J.Y. 1985. Belief, awareness, and 
limited reasoning: preliminary report. Proceedings of the 
9th International Joint Conference on Artificial Intelligence, 
Los Angeles, CA, pp. 491-501. 

GOODMAN, B.A., and LITMAN, D.J. 1990. Plan recognition for 
intelligent interfaces. Proceedings of the IEEE Conferences on 
Artificial Intelligence Applications, Santa Barbara, CA, 

KAUTZ, H. 1987. A formal theory of plan recognition. Technical 
Report TR 215, Department of Computer Science, University 
of Rochester, Rochester, NY. 

LEVESQUE, H.J. 1984. A logic of implicit and explicit belief. 
Fairchild Technical Report No. 653, and FLAIR Technical 
Report No. 32, Palo Alto, CA. 

LITMAN, D.J., and GOODMAN, B.A. 1989. A knowledge-based 
interface for process design. Proceedings of Third International 
Conference on Expert Systems and the Leading Edge in Produc- 
tion and Operations Management, Hilton Head Island, SC, 

POLLACK, M. 1986. A model of plan inference that distinguishes 
between the beliefs of actors and observers. Proceedings of 
24th Annual Meeting of the Association for Computational 
Linguistics, New York, NY, pp. 207-214. 

POOLE, D., GOEBEL, R., and ALELIUNAS, R. 1987. Theorist: 
a logical reasoning system for defaults and diagnosis. In The 
knowledge frontier: essays in the representation of knowledge. 
Edited by N. Cercone and G. McCalla. Springer-Verlag, 
New York, NY. pp. 331-352. Also appears as Research Report 
CS-86-06, University of Waterloo, Waterloo, Ont., February 
1986. 

REITER, R. 1980. A logic for default reasoning. Artificial 
Intelligence, 13(1&2): 81-132. 

SADOCK, J. 1977. Modus brevis: the truncated argument. In 
Papers from the 13th Regional Meeting, Chicago Linguistic 
Society. pp. 545-554. 

SMEDLEY, T.J. 1986. An implementation of a computational 
model for the analysis of arguments. Research Report CS-86-26, 
University of Waterloo, Waterloo, Ont. 

1.987. Integrating connective clue processing into the argu- 
ment analysis algorithm implementation. Research Report 
CS-87-34, University of Waterloo, Waterloo, Ont. 

SONG, F. 1988. An implementation of the argument understand- 
ing system (AUS) - integrating the proposition analyser with 
the clue interpreter, and the evidence oracle. Research Report 
CS-88-40, University of Waterloo, Waterloo, Ont. 

YOUNG, M.A. 1987. The design and implementation of an 
evidence oracle for the understanding of arguments. Research 
Report CS-87-33, University of Waterloo, Waterloo, Ont. 

pp. 6-10. 

pp. 251-258. 

pp. 297-303. 

pp. 615-688. 


