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Cardiac transplantation is an effective treatment for
multiple types of heart failure refractive to therapy.
Although immunosuppressive therapeutics have in-
creased survival rates within the first year posttrans-
plant, chronic rejection (CR) remains a significant bar-
rier to long-term graft survival. Indicators of CR include
patchy interstitial fibrosis, vascular occlusion and pro-
gressive loss of graft function. Multiple factors have
been implicated in the onset and progression of CR,
including TGFp, IL-6 and connective tissue growth
factor (CTGF). While associated with CR, the role of
CTGF in CR and the factors necessary for CTGF in-
duction in vivo are not understood. To this end, we
utilized forced expression and neutralizing antibody
approaches. Transduction of allografts with CTGF
significantly increased fibrotic tissue development,
though not to levels observed with TGFf transduction.
Further, intragraft CTGF expression was inhibited by IL-
6 neutralization whereas TGFp§ expression remained
unchanged, indicating that IL-6 effects may potentiate
TGFp -mediated induction of CTGF. Finally, neutraliz-
ing CTGF significantly reduced graft fibrosis without
reducing TGFp and IL-6 expression levels. These find-
ings indicate that CTGF functions as a downstream
mediator of fibrosis in CR, and that CTGF neutraliza-
tion may ameliorate fibrosis and hypertrophy associ-
ated with CR.
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Introduction

Chronic rejection (CR) is a significant barrier to long-term
graft acceptance. Manifestations of CR include interstitial
fibrosis, occlusion of luminal structures and progressive
loss of graft function (1-7). The etiology of CR is not fully
understood. However, multiple factors have been associ-
ated with its onset and progression, especially TGFf. TGFp
overexpression is linked with CR (8,9), and may negatively
impact graft survival through chemotactic and profibrotic
effects (10). However, in addition to its deleterious fibrotic
effects on the graft, TGFB's immunosuppressive and an-
tiproliferative functions may be indispensable for graft and
host survival (11). For example, TGFB plays a critical role
in the induction and function of T regulatory cells (Treg),
which are believed to contribute to graft acceptance (12—
14). Further, TGFB inhibits T- and B-cell proliferation (10)
and represses cancers of epithelial cell origin (15). These
opposing effects make TGFB a suboptimal target for CR
treatments and have prompted investigation into the down-
stream mediators of TGFB in CR pathology. Identifying
downstream mediators of CR may facilitate the develop-
ment of therapeutics that negate the fibrosis-inducing ac-
tivity of TGFB while sparing its antiinflammatory and an-
tiproliferative effects.

One such downstream mediator, known to be induced
by TGFB in multiple cell types (16), including cardiac my-
ocytes and fibroblasts (17), is connective tissue growth
factor (CTGF). CTGF plays an important role in the devel-
opment of connective tissue as well as the formation of
scar tissue (18,19), and is upregulated in multiple fibrotic
disorders, including CR of cardiac and kidney grafts (8,20-
22). CTGF mediates multiple profibrotic effects ascribed
to TGFB including increased extracellular matrix produc-
tion, fibroblast proliferation and enhancement of adhesive
responses (22). Thus, as CTGF is induced by TGFf and be-
cause CTGF mediates profibrotic effects, CTGF has been
proposed as a therapeutic target for limiting the delete-
rious fibrotic effects of TGFB while sparing its immune-
modulatory functions (8,23,24).

CTGF induction by TGFp has been observed in settings of
cardiac fibrosis (22). However, we have previously reported
that transduction of syngeneic grafts with TGFp is insuf-
ficient to induce CTGF or CR (8). Hence, TGFB-mediated



induction of CTGF in vivo is contextually dependent. One
such contextual difference between allogeneic and syn-
geneic grafts is the development of alloimmune responses
which may provide factors that crosstalk with TGF signal-
ing (25). This prompted further investigation into immune
parameters that potentiated TGFB-induced fibrosis and led
to the identification of a critical role in the initiation and pro-
gression of CR for IL-6 (26), a cytokine that modulates the
effects of TGFB in multiple cell types (27-29).

Because TGFB, CTGF and IL-6 have established associ-
ations with CR (8,26), we investigated the relationships
between these cytokines utilizing overexpression and neu-
tralization approaches. These findings support the role of
CTGF as a promoter of cardiac graft fibrosis and indi-
cate that it functions downstream of TGFB and IL-6. Fur
ther, these findings indicate that CTGF neutralization holds
promise as a therapeutic approach for limiting the fibrosis
associated with CR.

Materials and Methods

Mice

Female C57BL/6 (H-2°) and BALB/c (H-29) mice were obtained from Charles
River Laboratories (Raleigh, NC) and were kept under microisolator condi-
tions. The use of mice for these studies was reviewed and approved by the
University of Michigan's Committee on the Use and Care of Animals.

Vascularized cardiac transplantation

Heterotopic cardiac transplantation was performed as described (30).
Briefly, the aorta and pulmonary artery of the donor heart were anasto-
mosed end-to-side to the recipient’s abdominal aorta and inferior vena cava,
respectively. On perfusion with the recipient’s blood, the transplanted heart
resumes contraction. Graft function is monitored by abdominal palpation.

In vivo mAb therapy

Anti-CD4 (hybridoma GK1.5, obtained from American Type Culture Collec-
tion, Manassas, VA), anti-CD40L (hybridoma MR1, kindly provided by Dr.
Randy Noelle, Dartmouth College) and anti-Il-6 (hybridoma MP5-20F3, ob-
tained from American Type Culture Collection, Manassas VA, with permis-
sion of DNAX) mAbs were prepared by Bio X Cell (West Lebanon, NH).
Allograft recipients were transiently depleted of CD4+ cells by i.p. injection
of 1 mg of anti-CD4 mAb on days —1, 0 and 7 posttransplant (8,26). For
inductive anti-CD40L therapy, allograft recipients were injected i.p. with 1
mg of anti-CD40L on days 0, 1 and 2 posttransplant (8,26). Anti-I-6 mAb or
control rat IgG (Sigma, St. Louis, MO) was administered by i.p. injection of
1 mgondays —1, 1 and 3 and weekly thereafter (26,31). Allograft recipients
treated with anti-CTGF mAb (FG-3019, kindly provided by FibroGen Inc.,
San Francisco, CA (32,33)) or control human IgG (Sigma) received 0.5 mg
i.p. twice weekly beginning on day 7 posttransplant.

Adenoviral-mediated transduction of cardiac grafts

Transduction was performed as previously described (8,34,35). Briefly, car
diac grafts were perfused via the aorta with 5 x 108 pfu of E1/E3 deleted
adenoviral vectors encoding the active form of human TGFB1 (AdTGFB)
(8,34), human CTGF (AdCTGF) (36) or beta-galactosidase (AdBgal) (8,34,35).
Following perfusion, donor grafts were placed in iced Ringer's solution for
1 h prior to transplantation. Previous studies with AdBgal have revealed a
patchy distribution of transgene expression by both cardiac and vascular
cells that persists for at least 8 weeks posttransplant (35).
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Morphometric analysis of cardiac graft fibrosis and hypertrophy
Graft fibrosis was quantified by morphometric analysis of Masson's
trichrome-stained sections using iPLab software (Scanalytics Inc., Fairfax,
VA). Mean fibrotic area was calculated from 10 to 12 areas per heart section
analyzed at 200x magnification (26,37). To quantify cardiomyocyte area as
a measure of hypertrophy, digital outlines were drawn around at least 80
cardiomyocytes from views of H&E-stained sections at 200x magnifica-
tion. Areas within outlines were quantified using SCION IMAGE Beta 4.0.2
software (Scion Corporation, Frederick, MD) to measure cardiomyocyte cell
size (38). A minimum of eight hearts were analyzed per group for both
analysis techniques.

Quantitative real-time PCR

Graft RNA was isolated by homogenizing tissues in TRIzol reagent (In-
vitrogen, Carlsbad, CA) as per manufacturer’s protocol. Five micrograms
of total RNA were reverse transcribed using Oligo dT, dNTPs, MMLV-
RT (Invitrogen), RNAsin (Promega, Madison, WI) in PCR buffer (Roche,
Indianapolis, IN). Resulting cDNA was purified by a 1:1 extraction with
phenol/chloroform/isoamyl (25:24:1) then precipitated in one volume 3 M
NaOAc and two volumes absolute ethanol. Levels of atrial natriuretic pep-
tide (ANP), CTGF, IL-6, TGFB, I:17 and T-cell receptor B constant region
(TCRB) message were determined by quantitative real-time PCR using iQ
SYBR master mix (Bio-Rad, Hercules, CA) in a Rotor-Gene 3000 thermo-
cycler (Corbett Life Science, San Francisco, CA). Expression levels were
determined relative to GAPDH using the RotorGene comparative concen-
tration utility.

Primer sequences were as follows:

ANP (Nppa) forward 5-GGAGGTCAACCCACCTCTG-3

ANP (Nppa) reverse 5'-GCTCCAATCCTGTCAATCCTAC-3’

CTGF (Ctgf) forward 5-GGAAAACATTAAGAAGGGCAAAA-3

CTGF (Ctgf) reverse 5'-CCGCAGAACTTAGCCCTGTA-3

GAPDH (Gapdh) forward 5-CTGGTGCTGAGTATGTCGTG-3

GAPDH (Gapdh) reverse 5'-CAGTCTTCTGAGTGGCAGTG-3

I-6 (1/6) forward 5'-CGTGGAAATGAGAAAAGAGTTGT-3'

I-6 (//6) reverse 5'-TCCAGTTTGGTAGCATCCATC-3

TGFB (Tgfb 1) forward 5-CCTGAGTGGCTGTCTTTTGAC-3

TGFB (Tgfb 1) reverse 5'-CCTGTATTCCGTCTCCTTGGT-3

IL-17 (/11 7a) forward 5'-GGACTCTCCACCGCAATGA-3

IL17 (I117a) reverse 5-GACCAGGATCTCTTGCTGGA-3

TCRP (Tcrb-C) forward 5'-CTGCCAAGTGCAGTTCCAT-3

TCRP (Tcrb-C) reverse 5-GGCCTCTGCACTGATGTTCT-3'

Flow cytometry

Splenocytes were labeled with FITC-conjugated anti-CD3, PE-conjugated
anti-CD4 and CY5-conjugated anti-CD8 (PharMingen, San Jose, CA). Cell
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Figure 1: Elevated intragraft expression of TGFp, IL-6 and connective tissue growth factor (CTGF) in cardiac allografts undergoing
chronic rejection (CR). TGFB, I-6 and CTGF message levels were determined at day 30 posttransplant using quantitative real-time PCR in
syngeneic cardiac grafts, cardiac allografts from recipients treated with anti-CD40L mAb therapy (Anti-CD40L) or cardiac allografts whose
recipients were transiently depleted of CD4+ cells (Anti-CD4). Bars represent mean + S.E.M. of four to nine grafts with expression

relative to GAPDH normalized to the syngeneic group.

analyses were performed on lymphocytes gated using forward vs. side
scatter using a Becton Dickinson FACSCalibur (San Jose, CA).

Statistical analysis
Statistical significance was calculated using an unpaired t-test with Welch's
correction. p-values <0.05 were considered statistically significant.

Results

Experimental system

BALB/c cardiac allografts in C57BL/6 recipients receiving
anti-CD40L mAb continue to function for >60 days and do
not develop CR, unless transduced with TGFB (8). In con-
trast, allografts in recipients transiently depleted of CD4+
cells develop CR as CD4+ cells begin to repopulate the
periphery between 3 and 4 weeks following initial deple-
tion (8,39-41). Echocardiographic and histologic analysis
revealed that day 30 posttransplant represents a critical
point in this CR model as extensive graft hypertrophy and
fibrosis are present at this time and are followed by degra-
dation of cardiac contractility (26). Therefore, grafts were
assessed at day 30 posttransplant in these studies. We
have used these models to better understand the roles of
TGFB, IL-6 and CTGF in CR.

Elevated intragraft TGFB, IL-6 and CTGF expression
correlate with CR

Transduction of allografts, but not syngeneic grafts, with
TGFB is sufficient to induce CTGF and CR (8), indicating the
involvement of an immune component in TGFB-mediated
fibrosis. This is further supported by our recent identifi-
cation of Il-6 as a critical inducer of CR (26). Hence, the
in vivo interactions of TGFB, CTGF and IL-6 in CR were the
focus of this study. TGFB, CTGF and IL-6 transcripts were
measured in grafts whose recipients were transiently de-
pleted of CD4+ cells, which develop CR, and compared to
allografts whose recipients were treated with anti-CD40L,
which do not develop CR, or untreated syngeneic grafts.
Intragraft levels of TGFB, I.-:6 and CTGF were significantly
increased (p = 0.0476, 0.0254 and 0.0079, respectively)
in cardiac allografts whose recipients were transiently de-
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pleted of CD4+ cells than in grafts whose recipients were
treated with anti-CD40L or syngeneic controls (Figure 1).
Thus, the upregulation of all three cytokines was observed
in grafts undergoing CR.

Forced expression of CTGF or TGR} promotes
allograft fibrosis

To determine whether exogenous expression of CTGF
promotes cardiac fibrosis, allografts and syngeneic grafts
were transduced with AACTGF. AdCTGF transduction of
allografts in recipients treated with anti-CD40L caused a
significant increase in fibrotic area by day 30 posttrans-
plant compared to allografts transduced with control virus
(Figure 2A). In contrast, syngeneic grafts transduced with
AdCTGF had similar levels of fibrosis to controls. It
should be noted that the mean fibrotic area for AdCTGF
transduced allografts was less than in hearts transduced
with AdTGFB, consistent with previous descriptions in
lung transductions (42). This difference could not be ac-
counted for by differences in transgene expression levels,
as AdTGFB and AdCTGF expression were comparable in
these studies as determined by real-time PCR (data not
shown). Thus, while forced expression of either TGFf or
CTGF promoted cardiac allograft fibrosis, they did so to
different extents (Figure 2). This could in part be due to
TGFp induction of endogenous CTGF expression (8,17,43),
thereby producing an additive effect.

It has been observed that TGFB and CTGF are potently
fibrotic in tandem while less fibrotic individually (44,45).
Therefore, we asked whether cotransduction of both TGFf
and CTGF vectors would induce fibrosis and CR in syn-
geneic grafts. No increases in fibrosis were observed upon
cotransduction of syngeneic grafts compared to single
virus transduction (data not shown). Thus, while injection
of TGFB and CTGF synergize to cause fibrotic responses
in the skin (45), forced expression of both was insufficient
to induce fibrosis or CR in syngeneic cardiac grafts, further
supporting the requirement of an immune component.

American Journal of Transplantation 2010; 10: 220-230
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Figure 2: Forced expression of TGFf or connective tissue growth factor (CTGF) promotes allograft fibrosis. (A) Morphometric
analysis of Masson's trichrome staining at day 30 posttransplant in cardiac grafts that were left untransduced or transduced with
adenoviral vectors encoding Bgal (AdBgal), CTGF (AdCTGF) or TGFB (AdTGFB) before grafting into syngeneic recipients or allogeneic
recipients treated with anti-CD40L. Bars represent the combined mean + S.E.M. of fibrotic (blue) area of 10-12 frames of view per heart
taken from 5 to 12 different cardiac grafts per group. (B) Intragraft 1.-6 message levels were determined at day 30 posttransplant using
guantitative real-time PCR in groups from (A). Bars represent mean + S.E.M. of at least four hearts per group with expression relative
to GAPDH normalized to naive, untransplanted BALB/c hearts. (C) Intragraft IL-17 message levels were determined using quantitative
real-time PCR in syngeneic grafts transduced with AdTGFp or allogeneic grafts transduced with AdTGFB whose recipients received
anti-CD40L treatment. Bars represent mean + S.E.M. of at least five independent hearts per group with expression relative to GAPDH
normalized to the naive BALB/c group.

We next considered whether the greater fibrotic activity increased |l-17 and CTGF transcript levels may promote fi-
of AdTGFB relative to AACTGF could be due to immuno- brosis associated with AdTGFf-transduced allografts, but
logic effects. TGFB is chemotactic for multiple immune not AdTGFB-transduced syngeneic grafts that do not de-
cell types (10) that are able to produce IL-6, which we have velop fibrosis.

recently reported to play a critical role in CR (26). There-
fore, we asked whether differences in intragraft [-6 ex-

pression might account for these disparate outcomes. IL-6 IL-6 neutralization reduces intragraft CTGF and IL-17
transcript levels exhibited a suggested increase in AATGF, transcripts
but not AACTGF transduced allografts whose recipients ~ The association between TGFB, IL:6 and CTGF (Figure 1)
received anti-CD40L therapy. No increases in I1:6 expres- may be strengthened by previous reports that IL-6 en-
sion were observed in AJTGFp or AdCTGF-transduced syn- hances TGFp signaling by altering receptor localization in
geneic grafts (Figure 2B). the cell membrane (29) and that IL-6 can alter the outcome
of TGFp signaling (27,28). Indeed, we have previously re-
TGFPB and I1-6 have been implicated in the development of ported that Il-6 neutralization prevents CR of cardiac allo-
Th17 responses (27), which have recently been linked to grafts (26). We therefore asked whether I1-6 neutralization
CR (46,47). Hence, we assessed the expression of Il-17 in would inhibit CTGF or I1:17 expression (Figure 3). In allo-
allogeneic and syngeneic grafts transduced with AdTGFB. grafts whose recipients were transiently depleted of CD4+
IL-17 expression was significantly greater (p = 0.0107) in cells, treatment with anti-I-6 mAb significantly reduced in-
allografts than in syngeneic grafts (Figure 2C), whereas tragraft I1L-6, I-17 and CTGF expression (p = 0.0216, 0.0044
17 expression was similar in allogeneic and syngeneic and 0.0180, respectively) compared to control antibody
grafts transduced with AACTGF (data not shown). Thus, treatment. In contrast, TGFB expression levels remained
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unchanged (Figure 3). Thus, Il:6 promotes intragraft IL-6,
I-17 and CTGF expression.

CTGF neutralization ameliorates allograft fibrosis

We next asked whether CTGF neutralization would inhibit
the fibrosis associated with CR. To this end, we treated
allograft recipients that were transiently depleted of CD4+
cells with neutralizing anti-CTGF mAb or control antibody.
Treatment with anti-CTGF mAb resulted in significant re-
duction of fibrotic area (p < 0.0001, Figure 4A, B), but was
not accompanied by reduction of intragraft TGFf, CTGF or
|6 transcripts (Figure 4C). These observations support a
role for CTGF as a downstream mediator of fibrosis asso-
ciated with CR.

CTGF neutralization decreases cardiomyocyte
hypertrophy associated with CR

CTGF can induce cardiomyocyte hypertrophy (48,49), a
function it shares with IL-6 (26). Because IL-6 neutraliza-
tion inhibited CTGF expression (Figure 3), we assessed
the effect of neutralizing CTGF on cardiomyocyte hypertro-
phy. Anti-CTGF treatment resulted in a significant decrease
(p < 0.0001) in cardiomyocyte hypertrophy (Figure 5A) and
significantly reduced (p = 0.0102) the intragraft expression
of ANP (Figure 5B), a molecular marker of cardiac hyper
trophy (50,51). For reference, cardiomyocyte area and ANP
expression levels for naive, untransplanted BALB/c hearts
and allografts transplanted into recipients receiving anti-
CD40L therapy are depicted.

CTGF neutralization inhibits T-cell infiltration of grafts
CTGF promotes integrin-mediated adhesive responses in
multiple cell types (52-61) and induces the production of
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Figure 3: IL-6 neutralization reduces
expression of IL-6, IL-17 and connec-
tive tissue growth factor (CTGF) but
not TGFf in cardiac allografts under-
going chronic rejection (CR). Intra-
graft 16, 1-17, CTGF and TGFB mes-
sage levels were determined at day 30
posttransplant using quantitative real-
time PCR in cardiac allograft recipients
that were transiently depleted of CD4+
cells and received either neutralizing
anti-Il-6 (Anti-Il-6) or control rat IgG
(rlgG). Bars represent mean + S.E.M.
of six to eight grafts per group with ex-
pression relative to GAPDH normalized
against rlgG-treated controls.
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chemokines (62). We therefore asked whether CTGF neu-
tralization might also alter the infiltration of immune cells
into grafts undergoing CR. Histologic analysis indicated
reduced cellular infiltrate in grafts receiving anti-CTGF
(Figure BA). Indeed, a significant decrease (p = 0.0238)
in TCRPB constant region expression, a marker of graft-
infiltrating T cells (63), was observed (Figure 6B). To ver
ify that this difference was not due to CTGF neutraliza-
tion preventing peripheral repopulation of CD4+ cells, we
compared the percentage of CD4+ cells in anti-CTGF and
control treated graft recipients. No significant differences
were observed between these groups (Figure 6C).

Discussion

CR has been associated with multiple factors, perhaps
most frequently with TGFB (9). However, the role of TGFB
in CR is complicated by its pleiotropic activity encompass-
ing immunosuppressive and antiproliferative effects in im-
mune (10,64-66) and nonimmune (15,67) cells as well as
the induction of Treg (68-70), which are associated with
graftacceptance (12,13,24). Thus, TGFB may promote graft
survival and global immune tolerance while suppressing
malignancy, making it ill-suited as a therapeutic target in
the treatment of CR. This has prompted investigation into
the downstream mediators of fibrotic TGF function (8,23).

Multiple reports indicate that TGF requires additional fac-
tors to drive fibrosis (8,44,45). Indeed, syngeneic grafts do
not develop fibrosis in response to TGFB, while allografts
whose recipients receive anti-CD40L mAb develop marked
fibrosis in response to TGFB (Figure 2; (8)). Hence, alloim-
mune responses potentiate the profibrotic effects of TGFf.

American Journal of Transplantation 2010; 10: 220-230
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Figure 4: Connective tissue growth factor (CTGF) neutralization ameliorates fibrosis. (A) Representative sections of Masson's
trichrome stains, in which fibrotic tissue stains blue, of cardiac allografts from recipients transiently depleted of CD4+ cells (Anti-CD4)
at day 30 posttransplant in recipients treated with control IgG or neutralizing anti-CTGF mAb (200x magnification). (B) Morphometric
analysis of trichrome staining of groups in (A). Bars represent mean + S.E.M. of 10-12 frames of view from each of six to nine hearts.
(C) TGFB, I-6 and CTGF message levels were determined at day 30 posttransplant using quantitative real-time PCR in cardiac allografts
described in (A). Bars represent mean + S.E.M. of samples taken from 8 to 12 different cardiac grafts with expression relative to GAPDH

normalized against hlgG-treated controls.

We have reported a critical role for IL-6 in CR (26), whose
elevated expression correlated with TGFB and CTGF
(Figure 1). Correlations of TGFB with CTGF (8) and I-6
(26) have previously been described. Further, we have pre-
viously observed CTGF expression associated with areas
of graft-infiltrating mononuclear cells (8), whose recruit-
ment during inflammatory responses has been linked to
IL6 (71,72). Therefore, we considered that there may be
connectivity between all three cytokines.

To ascertain the sufficiency of TGFf and CTGF to induce
CR, allogeneic and syngeneic cardiac grafts were trans-
duced with AdTGFB or AACTGF and transplanted into re-
cipients receiving anti-CD40L mAb or syngeneic recipi-
ents. AdTGFB and AdCTGF significantly increased mean
fibrotic area compared to untransduced or control vector-
treated allografts (Figure 2A). Consistent with a previous
report of adenoviral transduction of lungs (42), the fibrotic
response to TGFP transduction in the heart was signif-
icantly greater than the response to CTGF transduction
(Figure 2A). Greater fibrotic responses to AdTGFp could be
from synergy of TGFB-induced immune factors and CTGF
in cardiac allografts, an effect which is not observed in
syngeneic grafts (8). Further, in cardiac allografts, TGF
induction of endogenous CTGF may synergize with TGFB-

American Journal of Transplantation 2010; 10: 220-230

mediated chemotactic effects on multiple immune lineage
cells (10), which may explain the suggested upregulation
of I-6 and significant upregulation of IL-17 (Figure 2).

Given the differences in AdTGFp responses between al-
lografts and syngeneic grafts and the correlation of TGFpB
and CTGF with I:6 in CR (Figure 1), we asked whether the
presence of |6 was required for CTGF upregulation. In car
diac allograft recipients transiently depleted of CD4+ cells,
I6 neutralization reduced the expression of -6 and CTGF
without altering TGF transcript levels (Figure 3). This sug-
gests that TGFp transcript regulation lies upstream of I1-6
and CTGF in CR. It should be noted that IL-6 neutralization
does not prevent repopulation of CD4+ cells in the periph-
ery (26). This indicates that the ability of [l-6 neutralization
to prevent CR (26) could function in part through reduction
of intragraft CTGF. Further, IL-6 neutralization significantly
inhibited IL-17 expression (Figure 3), indicating that 11-17
might play a role in CTGF induction, as Il-:17 has been re-
ported to induce collagen production in cardiac fibroblasts
(73). Another explanation for this effect might be decreased
recruitment of graft-infiltrating cells which may express or
induce local cells to express CTGF (8), I:6 and Il-17. In-
deed, -6 induces chemotaxis and migration of immune
cells (74,75).

225



Booth et al.

p<0.0001

1500+

1800 <

1700+

1600
1000+

7504

Mean Cardiomyocyte Area

o
fﬁv&"’ &

= Anti-CD4 —

ANP
§=0.0102

T

m

Relative Expression
c 3 3 888 8

4
Y
“

Figure 5: Connective tissue growth factor (CTGF) neutralization ameliorates cardiac hypertrophy in chronic rejection (CR) grafts.
(A) Cardiomyocyte area was quantified from H&E stains of day 30 posttransplant cardiac allografts taken from recipients transiently
depleted of CD4+ cells (Anti-CD4) and receiving CTGFneutralizing mAb (Anti-CTGF) or control antibodies (hlgG), recipients treated with
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group. (B) Intragraft message levels of atrial natriuretic peptide (ANP), a marker of cardiac hypertrophy, were quantified with real-time
PCR in cardiac grafts from groups in (A) at day 30 posttransplant. Bars represent mean + S.E.M. of 8-12 grafts per experimental group
(Anti-CD4 + hlgG or Anti-CTGF) and four grafts per control group (Anti-CD40L and naive BALB/c) with expression relative to GAPDH

normalized against the naive BALB/c hearts.

As |-6 neutralization ameliorated CR (26) and decreased
intragraft CTGF expression (Figure 3), we treated cardiac
allograft recipients with neutralizing CTGF mAb. CTGF neu-
tralization significantly reduced allograft fibrosis (Figure 4A,
B) without significantly reducing intragraft TGFp, |6 or
CTGF expression (Figure 4C). These findings are consis-
tent with CTGF being a downstream mediator of fibrosis
in CR (16,23,42,76).

The significant but incomplete reduction in fibrotic area in
response to CTGF neutralization may be explained by mul-
tiple factors. Our neutralization protocol, though effective,
may not be optimal. Another possibility is the presence of
CTGFindependent profibrotic effects of TGFB and/or IL-6
(77). A further consideration is whether the mAb FG-3019,
which recognizes CTGF module 2 in humans and rodents
(33), might inhibit some but not all profibrotic effects of
CTGF However, this possibility seems unlikely in light of
a recent report evaluating the antifibrotic efficacy of anti-
CTGF antibodies directed against each of the four CTGF
modules. In this report, only mAb directed against the von
Willebrand factor type C domain (module 2) was able to
inhibit TGFB-induced fibrosis (78). Indeed, this is the same
domain that the anti-CTGF mAb utilized in our study binds
(32,33).
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Beyond its roles in fibrosis, CTGF can exert other effects
relevant to CR. Recent studies have described a concomi-
tance of cardiomyocyte hypertrophy with CR (26,79,80).
CTGF is produced by hypertrophic chondrocytes during
development (81), and is produced by cardiac myocytes
in response to hypertrophic stimuli (49). In addition, CTGF
itself can induce cardiomyocyte hypertrophy (48). Treat-
ment with neutralizing anti-CTGF mAb significantly re-
duced mean cardiomyocyte area (Figure 5A) and intragraft
levels of ANP (Figure 5B), a marker of cardiac hypertrophy
in multiple settings (26,50,51). However, it should be noted
that anti-CTGF mAb did not inhibit cardiac hypertrophy to
the extent previously observed with anti-IL=6 (26). This find-
ing indicates that in addition to driving cardiac fibrosis,
CTGF may augment cardiomyocyte hypertrophy associ-
ated with CR. Interestingly, hypertrophy is associated with
downregulation of two recently discovered CTGFinhibiting
micro RNAs in cardiac myocytes (82). Thus, CTGF may be
linked to cardiac hypertrophy on multiple levels.

Finally, as CTGF is known to play an important role
in fibroblast adhesion in response to TGFB (55,76), we
asked whether CTGF might similarly influence recruit-
ment of lymphocytes to the graft. Histologic assessment
of infiltrating cells was indicative of reduced numbers of
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Figure 6: Connective tissue growth factor (CTGF) neutralization limits graft infiltration by T cells in chronic rejection (CR) grafts.
(A) Representative H&E stains of day 30 posttransplant cardiac allografts taken from recipients transiently depleted of CD4+ cells (Anti-
CD4) and receiving CTGF neutralizing mAb (Anti-CTGF) or control antibodies (hlgG). Stains suggest a reduction in perivascular infiltrate
density in grafts treated with neutralizing Anti-CTGFE. (B) Intragraft message levels of T-cell receptor B constant region (TCRB) were
quantified at day 30 posttransplant with real-time PCR as a measure of T-cell infiltration of allografts in recipients transiently depleted of
CD4+ cells (Anti-CD4) and receiving anti-CTGF mAb or control higG antibodies, recipients treated with Anti-CD40L mAb, or naive BALB/c
hearts. Bars represent mean + S.E.M. of 8-12 grafts per group with expression relative to GAPDH normalized against the higG group. (C)
Repopulation of CD4+ cells in the periphery at day 30 posttransplant was determined by flow cytometric analysis of splenocytes isolated
from graft recipients. Bars represent mean + S.E.M. of the percentage CD4+ cells of the gated cell population in five to seven recipients
tested.

higé anti-CTGF
Anti-CD4

graft-infiltrating lymphocytes (Figure 6A). This observation
was further supported by significant reduction of intragraft
TCRP constant region expression (Figure 6B) in response
to CTGF neutralization.
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On the basis of these observations and others in the
literature, we propose a model representing the in-
teractions of TGFB, |6 and CTGF and their induc-
tion of hypertrophy and fibrosis associated with CR
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Figure 7: Proposed model of cytokine interactions in chronic rejection. (A) In cardiac allografts, TGFB and IL-6 contribute to CTGF
production. 1l-6 and CTGF are both known to promote hypertrophy in cardiac myocytes, which in turn can produce CTGFE. CTGF functions
as a downstream mediator of fibrosis. (B) Induction of CTGF downstream of TGF and IL-6 could be explained by the respective presence
of a consensus SMAD-binding element and a STAT3 response element in 5" region upstream of the CTGF promoter. For expanded
explanations, please see text.
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(Figure 7A). In cardiac allografts that undergo CR, TGFp
(Figure 1 (8)) and IL:6 (Figures 1 and 2B (26)) are induced.
In syngeneic grafts, forced expression of TGFp is insuffi-
cient to upregulate CTGF and fibrosis (8), and 11-6 remains
at basal levels (Figure 2B). I1-6 neutralization inhibits hy-
pertrophy and fibrosis associated with CR (26), which may
be in part through inhibition of CTGF and IL-17 expression
whereas TGFpB expression remains unchanged (Figure 3).
Thus, TGFpB and IL-6 appear to be cooperative upstream
factors promoting CTGF expression and CR. CTGF neu-
tralization limits fibrosis (Figure 4A, B) and cardiomyocyte
hypertrophy (Figure 5), without altering intragraft TGFp, IL-
6 or CTGF transcripts (Figure 4C). These effects of CTGF
neutralization coincide with reduction in graft-infiltrating T
cells (Figure 6). Together, these observations support a
downstream role for CTGF in fibrosis and hypertrophy.

Contexts in which TGFB and IL-6 are present coincide with
intragraft Il-17 expression, which has been implicated in
promoting cardiac remodeling (83), fibrosis (73), bronchioli-
tis obliterans syndrome in lung transplant patients (46) and
cardiac allograft vasculopathy (47). However, the effects of
IL-17 on hypertrophy and CTGF expression are unclear and
merit further investigation. Our proposed model of CTGF
induction downstream of Il-:6 and TGFB (and perhaps I
17) might be explained by previous identification of both a
STAT3 responsive element (—740 to —736 bp) (84) and a
consensus SMAD-binding element (—173 and —166) (85)
upstream of the CTGF promoter (Figure 7B). Hence, opti-
mal induction of CTGF in CR may require that CTGF pro-
ducing cells receive both SMAD and STAT3 signals, likely
provided by TGFB (10) and IL-6 (86), respectively.

This study supports a role for CTGF as a downstream medi-
ator of fibrosis and highlights the essential contributions of
immune elements to CR and fibrosis of cardiac grafts while
elucidating relationships between TGFp, Il-6 and CTGF. Fur
ther, these studies indicate for the first time that mAb
neutralizing CTGF can ameliorate fibrosis and hypertrophy
associated with CR. These findings further implicate IL-6 as
a critical immune factor in CR that may potentiate TGFp-
mediated CTGF induction. Finally, TGFB-mediated induc-
tion of fibrosis in allogeneic but not syngeneic grafts was
associated with a suggested increase in intragraft |6 ex-
pression and a significant increase in |17 expression, sup-
porting the notion that TGFB induction of fibrosis and CR
requires interaction with immune parameters.
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