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The objectives of this paper are (1) to review methods that can be
used to test for different types of random effects and regressor
dependencies, (2) to present results from Monte Carlo studies
designed to investigate the performance of these methods, and (3) to
discuss estimation methods that can be used when some but not all
of the random effects and regressor independence assumptions, are
violated. Because current methods are limited in various ways, we
will also present a list of open problems and suggest solutions for
some of them. As we will show, the issue of regressor random-effects
independence has received some attention in the econometrics
literature, but this important work has had little impact on current
research practices in the social and behavioral sciences.
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1 Introduction

In many situations data have a hierarchical structure. For example, when one

investigates how workplace characteristics affect worker productivity, both workers

and firms are units in the analysis. Similarly, hierarchical data arise in the context of

panel research, when multiple observations are available on the ‘objects’ under
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study. Typically, these types of data are analyzed with multilevel or hierarchical

linear models. The model we consider is given by

yij ¼ X 0
ijb þ Z 0

ic þ ai þ gij; ð1Þ

where yij is the dependent variable, Xij 2 Rk·1 are level-one or individual specific

regressors, Zi 2 Rl·1 contains level-two or group specific regressors, gij is a random

(error) component with E(gij) ¼ 0 and varðgijÞ ¼ r2
g, and where i ¼ 1,…,n and

j ¼ 1,…,ni. Throughout this article, matrices are printed in capitals and scalars and

vectors as lowercase. Greek symbols denote unobserved parameters that are to be

estimated. The unit-specific intercept ai may be specified to be random (with

E(ai) ¼ 0 and varðaiÞ ¼ r2
a) or fixed depending on the context of the study and the

types of inferences that can be drawn (VERBEEK, 2000; JUDGE et al., 1985; WOOLD-

RIDGE, 2002; BRYK and RAUDENBUSH, 1992; SNIJDERS and BOSKER, 1999).

Frequently, in the modeling of hierarchical data structures it is assumed that the

explanatory variables X and Z are independent of the random (error) components. If

independence holds, the regressors are said to be ‘exogenous’ (or determined outside

the model). However, in many applications it is unrealistic to assume that regressors

and random components are independent. For the model given in (1) we consider

two types of independence:

1. level-2 independence or Xa- and Za-independence, and

2. level-1 independence or Xg- and Zg- independence.

This article shows that even in the presence of modest dependencies, regression

effects can be biased substantially. Different approaches for testing the independence

assumption are presented and illustrated with the help of simulation studies.

Importantly, the independence assumptions can be easily violated. Examples

include (1) relevant omitted variables (CARD, 1999, 2001; UUSITALO, 1999; SPENCER

and FIELDING, 1998a, 1998b), (2) measurement error in the regressors (PLAT, 1988;

BAGOZZI et al., 1999; WANSBEEK and MEIJER, 2000; CARROLL et al., 1995), (3) self-

selection (HAMILTON and NICKERSON, 2003; VELLA and VERBEEK, 1998; ANGRIST

et al., 1996), (4) simultaneity (WHITE, 2001; GREENE, 1997), and (5) serially correlated

regressors in the presence of lagged dependent variables (WHITE, 2001; RUUD, 2000).

In the standard (single level) regression model, the ordinary least squares (OLS)

estimator can be written as b̂OLS ¼ ðX0XÞ�1X0y ¼ b þ ðX0XÞ�1X0�, where E(�) ¼ 0.

When the assumption of independence of regressors and errors does not hold (i.e.

when E(�|X) „ 0), it follows immediately that the OLS estimator is biased. This bias

can be reduced, at least in large samples, by using instrumental variables estimation

techniques (BOWDEN and TURKINGTON, 1984; WHITE, 2001; WOOLDRIDGE, 2002).

Instrumental variables (IVs) should be uncorrelated with the error term �, and

should explain part of the variability in the endogenous regressors X. Once

instruments are available, unbiased estimates for the regression parameters can be

obtained. Furthermore, Hausman-like tests (HAUSMAN, 1978) can be used to test for

regressor error dependencies in this standard linear regression model. The general
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idea of this approach is to compare two estimators, one that is consistent under both

the null hypothesis of regressor–error independence and the alternative hypothesis,

and one that is only consistent under the null hypothesis. The null hypothesis is

rejected once a significant difference between these two estimators is found

(cf. VERBEEK, 2000). For a more detailed explanation of instrumental variables

techniques and the Hausman test, we refer to Appendix 1.

In multilevel models additional random components reflect the nesting structure in

the data. Henceforth, an investigation of independence of explanatory variables and

random terms becomes even more important. Because of the potentially severe

consequences when these independence assumptions are violated, they need to be

tested for explicitly in any application of multilevel models. The literature suggest

performing the following diagnostic steps when endogeneity is suspected, which

serves as a roadmap to the remainder of this paper. First, a diagnostic check to

examine Xa-independence is readily available for multilevel models based on the

work by HAUSMAN and TAYLOR (1981). Fixed-effects (FE) estimation gives an

unbiased estimate for b in model (1) regardless of violation of Xa-independence,

whereas random-effects (RE) estimation yields biased estimates (see Section 2). If

the test, which is based on the Hausman test (HAUSMAN, 1978), proposed by

HAUSMAN and TAYLOR (1981) (which we denote by the Ha-test) does not reject

the independence hypothesis, both fixed- and random-effects estimation for b can

be used. Once rejected, only fixed-effects estimation yields consistent results,

provided the regressors are independent of level-1 random components. We show

how the inclusion of group means can be used to examine Xa-dependencies (MUND-

LAK, 1978). We present the Hausman–Taylor (HT) estimator as an alternative to

fixed-effects estimation, which is potentially more efficient and which, in contrast to

the fixed-effects estimator, can be used to estimate level-2 effects. The Ha-test,

Mundlak’s p approach and the Hausman–Taylor estimator are discussed in Section 3.

However, these above-mentioned steps should be considered with caution. As will

be shown in Section 4, the performance of the Ha-test relies on the independence of

regressors and level-1 random components. Unfortunately, endogeneity at this level

can often not be ruled out a priori. Although this type of endogeneity is often ignored,

it is a crucial assumption in using standard multilevel estimators. As a first diagnostic

check for it, one should carefully consider whether or not, based on theoretical

grounds, level-1 independence can be assumed. If not, IV estimation techniques can

be adopted to estimate regression parameters in model (1) (BOWDEN and TURKING-

TON, 1984; WOOLDRIDGE, 2002). Several different multilevel IV estimators can be

derived to estimate the regression parameters in model (1), depending on the specific

assumptions about the exact form of the endogeneity problem (see Appendix 2). This

approach is illustrated and discussed in Section 5. To test for level-1 independence,

another test based on the general approach of HAUSMAN (1978) can be constructed.

We will refer to this test as the Hg-test and illustrate its usefulness in Section 5.

The diagnostics steps for investigating independence assumptions in two-level

multilevel models are presented in Table 1. For the sake of simplicity, no distinction is
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made between level-1 and level-2 regressors. Now three types (cases (ii)–(iv)) of

violations of regressor–error dependencies can be distinguished. This table specifies the

various sections in which tests and estimators for each case are discussed in more detail.

2 Biases caused by level-1 (Xa)- and level-2 (Xg)-dependencies

The parameters b in the multilevel model given in (1), can be estimated by fixed- or

random-effects methods (VERBEEK, 2000; BALTAGI, 2001; GOLDSTEIN, 1995; LONG-

FORD, 1993). We do not discuss the estimators here, but details can be found in

Appendix 2. To illustrate the effects of Xa- and Xg-dependencies under fixed-effects

and random-effects estimation, consider Table 2 which summarizes the simulation

results for the model:

yij ¼ b0 þ b1xij þ ai þ gij; ð2Þ
where i ¼ 1,…,150, j ¼ 1,…,10, ai � Nð0; r2

aÞ and gij � Nð0; r2
gÞ, and the following

four cases are specified: (i) q(x, a) ¼ q(x, g) ¼ 0, (ii) q(x, a) ¼ 0.3 and q(x, g) ¼ 0, (iii)

q(x, a) ¼ 0 and q(x, g) ¼ 0.3, and (iv) q(x, a) ¼ q(x, g) ¼ 0.3. The table presents

means and standard deviations computed across 250 replications. As expected, both

the fixed-effects and random-effects estimator yield unbiased results for b1 and unbi-

ased estimates for the variances when the regressor is truly exogenous (case (i)). The

fixed-effects estimator cannot estimate the constant b0 (nor the effects of other level-2

variables). Unbiased results for these parameters are obtained with the random-effects

estimator. When q(x, a) ¼ 0.3 and q(x, g) ¼ 0 (case (ii)), the random-effects estimator

Table 2. Results of simulation study to examine bias fixed-effects (FE) and random-effects (RE)

estimator for level-1 and level-2 endogeneity. True values: b0 ¼ 10, b1 ¼ 2, r2
g ¼ 1 and r2

a ¼ 1.

Case

(i) (ii) (iii) (iv)

FE b0 – – – –

b1 1.99 (0.04) 2.00 (0.04) 2.43 (0.04) 2.42 (0.04)

RE b0 10.04 (0.21) 8.87 (0.29) 7.88 (0.20) 5.79 (0.30)

b1 1.99 (0.04) 2.23 (0.05) 2.42 (0.04) 2.84 (0.06)

r2
a 1.01 (0.14) 0.10 (0.02) 0.99 (0.13) 0.00 (0.00)

r2
g 1.00 (0.04) 1.00 (0.04) 0.90 (0.03) 0.91 (0.04)

Table 1. Overview of diagnostic tests to determine independence between regressors and random effects

in a linear two-level regression model, where ‘yes’ (‘no’) means that the specific independence assumption

is (not) satisfied.

Case EXa ¼ 0 EXg ¼ 0 Section Table Test Estimators

(i) Yes Yes 2, 5 2, 7 Ha or Mundlak’s p, and Hg FE or RE

(ii) No Yes 2, 3 2, 3, 4 Ha or Mundlak’s p, and Hg FE or HT

(iii) Yes No 2, 4, 5 2, 5, 6, 7 Hg External IV

(iv) No No 2, 4, 5 2, 5, 7 Hg External IV
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is biased upward and r2
a exhibits a severe downward bias, but fixed-effects estimation is

possible for b1 and an unbiased estimate for r2
g can be obtained. When q(x,a) ¼ 0 and

q(x,g) ¼ 0.3 (case (iii)), both the fixed-effects and the random-effects estimator yield

biased results for the regression parameters and similar conclusions hold for r2
g.

However, r2
a can be estimated consistently in this case. Finally, when all independence

assumptions are violated (case (iv)), it can be seen that both fixed-effects and random-

effects estimation yields biased results for the regression parameters. The bias in the

fixed-effects estimator for case (iv) is independent of the presence ofXa-dependency. It

can be seen that random-effects estimation yields an even larger bias in this case. In all

replications, the estimate of r2
a was negative, and therefore set to 0. The bias in the

estimate of r2
gis approximately equal to its bias for case (iii).

These results indicate clearly that one should consider carefully whether to use

random-effects estimation when there are reasons to assume that independence may

not hold. Even a moderate (positive) correlation between x and a in model (2)

induces in this case an (upward) bias of approximately 10% in the random-effects

estimator for b1 and an approximately 90% downward bias in r̂2
a. Dependencies

between the regressors and a can be accommodated by using a fixed-effects

estimation. However, failure to correct for dependencies between regressors and

g leads to biases in both the random-effects and the fixed-effects estimator. A

moderate positive correlation between the regressor and g induces a significant

upward bias in both the fixed- and random-effects estimate for b1. Finally, when the

regressor is correlated with both ai and gij, the bias in the random-effects estimator

for the regression parameters is even larger and under case (iv) it would be concluded

incorrectly that no random effects are present in the data. The following sections

focus on the case when only Xa- but no Xg-dependencies are present.

3 The case of level-2 (Xa) dependencies only

3.1 Testing for Xa-dependencies
In this section we first discuss two test statistics to examine Xa-dependencies. It is

assumed that no Xg-dependency is present. In case this type of dependency cannot

be rejected, we present and illustrate alternative estimators.

HAUSMAN and TAYLOR (1981) show that the multilevel structure of the data and

the presence of a consistent estimator regardless of the correlation between

regressors and ai (but with X and g independent), facilitate tests for this type of

endogeneity in model (1) using the general idea of a Hausman test (HAUSMAN, 1978).

This Hausman test statistic can be computed as follows:

Ha ¼ ðb̂FE � b̂REÞ0R̂�1ðb̂FE � b̂REÞ; ð3Þ

where R̂ is an estimate of the covariance matrix of b̂FE � b̂RE and computed as

dcovðb̂FEÞ � dcovðb̂REÞ. The resulting test statistic Ha can be shown to have a chi-

square distribution under the null hypothesis of independence of X, Z and ai. If the
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null hypothesis is rejected, the fixed-effects estimator should be used. A great

advantage of multilevel over single level applications is the possibility to test for

regressor-error disturbances of this type. This is not possible in single-level appli-

cations, as there is no estimator that is consistent under both the null hypothesis and

alternative hypothesis when IVs are not available.

3.2 Mundlak’s approach for Xa-dependencies
One approach for investigating potential correlations between X and the random

effects ai is to model the dependence between ai and the regressors explicitly.

MUNDLAK (1978) suggests the inclusion of group means by estimating

ai ¼ �Xip þ ni. SNIJDERS and BOSKER (1999) argue that the inclusion of group

means as explanatory variables in multilevel models can yield interesting substantive

results. It can be shown that the test proposed by HAUSMAN and TAYLOR (1981) and

Mundlak’s approach, are closely related and, in fact, yield numerical identical results

(BALTAGI, 2001, p. 65–72). Modeling this dependence explicitly allows for unbiased

random-effects estimation for b, regardless of whether X and a are independent or

not. This approach is attractive when fixed-effects estimation is undesirable, but Xi

and ai cannot be assumed independent. However, this procedure does not yield

unbiased estimates for level-2 effects/parameters (c and r2
a).

These methods are illustrated in Table 3 where we present the results for the

Ha-test and Mundlak’s approach. The data were simulated according to the same

design as in the previous simulation study (model (2)). It can be seen that when there

is no regressor–error dependency (case (i)), the proportion of replication in which the

Ha-test rejects the null hypothesis is very close to the nominal P-value of 5%. With a

correlation between x and a of 0.3, the null hypothesis of no level-2 (Xa) dependency

is rejected in all replications. The same conclusions follow from Mundlak’s p, which

is significantly different from zero for qx,a ¼ 0.3 but not for qx,a ¼ 0. Furthermore,

random-effects estimation in Mundlak’s model allows for unbiased estimates of the

level-1 predictor, but the constant (and other potential level-2 predictors) cannot be

estimated unbiasedly. The same holds for the variance r2
a, but r2

g can be estimated

unbiasedly. In the next section we present a more satisfying solution to the problem

when Xa-dependencies, but no Xg-dependencies, are present.

Table 3. Results of Ha-test and Mundlak’s approach (ai ¼ p�xi þ ni).
True values: b0 ¼ 10, b1 ¼ 2, r2

g ¼ 1 and r2
a ¼ 1.

Case

(i) (ii)

Ha-test 4% 100%

Mundlak b0 9.90 (1.85) )11.17 (0.86)

b1 1.99 (0.04) 2.00 (0.04)

p 0.03 (0.38) 4.23 (0.18)

r2
a 1.01 (0.14) 0.10 (0.02)

r2
g 1.00 (0.04) 1.00 (0.04)
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3.3 The Hausman–Taylor estimator under Xa-dependencies
Although Mundlak’s approach allows for random-effects estimation, no unbiased

results can be obtained for the level-2 (group-specific) variables. As a solution,

HAUSMAN and TAYLOR (1981) suggested an estimator that consistently and efficiently

estimates both level-1 and level-2 parameters. It requires a priori knowledge about

which of the level-1 and level-2 regressors are uncorrelated with the random

components. Let Xij ¼ [X1ij : X2ij] and Zi ¼ [Z1i : Z2i], where the variables in sets X1

and Z1 are assumed to be uncorrelated with ai and all regressors are assumed to be

independent of gij. The idea is that X1ij and Z1i serve as their own instruments;

X2ij � �X2i can be used as instruments for X2ij (as in the fixed-effects approach), and �X1i

serves as instrument for Z2i. To identify all the regression parameters, the number of

variables contained in set X1 needs to be at least as large as the number of variables in

set Z2. An attractive feature of the Hausman and Taylor estimator is that no external

instruments (i.e. variables that are not included in the main regression equation) are

needed, as this estimator constructs instrument from available data (‘internal’

instruments). More recent studies suggest modifications (to improve efficiency) of the

Hausman–Taylor estimator, see ARELLANO and BOVER (1995).

Table 4 illustrates the Hausman–Taylor estimator. The previously considered

model to generate the data is extended as follows:

yij ¼ b0 þ b1x1ij þ b2x2ij þ c1z1i þ c2z2i þ ai þ gij ð4Þ

for i ¼ 1,…,150 and j ¼ 1,…,10. We specify x1 and z1 to be independent of the

random components. x2 and z2 are related to a (qx2a ¼ qz2a ¼ 0.3), but independent

of gij (i.e. case (ii)). Table 4 contains the means and standard deviations of the

estimated parameters computed across 250 simulation replications. As can be seen,

the fixed-effects (FE) estimator yields consistent results for level-1 effects, but no

estimator for level-2 effects can be obtained. The random-effects (RE) estimator

yields biased results for all regression parameters and r2
a, which is in agreement with

the results in Table 2. The Hausman–Taylor estimator uses the additional infor-

mation that x1 and z1 are exogenous. These ‘internal’ instruments can be used to

estimate the effects of all regression parameters consistently. Furthermore, an

approximately unbiased estimate for r2
a can be obtained. In all cases, r2

g can be

estimated unbiasedly.

Table 4. Results of Hausman–Taylor (HT) estimator for qx2a ¼ 0.3 and qz2a ¼ 0.3, but no level-1

dependencies (case (ii)). True values: b0 ¼ 10, b1 ¼ b2 ¼ c1 ¼ c2 ¼ 2, r2
g ¼ 1 and r2

a ¼ 1.

FE RE HT

b0 – 9.25 (0.34) 10.06 (0.97)

b1 2.00 (0.05) 1.59 (0.08) 2.00 (0.05)

b2 2.00 (0.04) 2.38 (0.07) 2.00 (0.04)

c1 – 1.22 (0.17) 2.02 (0.44)

c2 – 2.40 (0.11) 1.97 (0.44)

r2
g 1.00 (0.04) 1.00 (0.04) 1.00 (0.04)

r2
a – 0.01 (0.01) 1.13 (0.36)
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The Hausman–Taylor estimator is very powerful as it does not require external

instruments. We agree with VERBEEK (2000) that despite this obvious advantage, the

method has played a surprisingly minor role in empirical work. In practice one does

not know which X and Zs are independent of the a, but it is possible to test for this

assumption (HAUSMAN and TAYLOR, 1981).

In this section we assumed independence of regressors and gij. Unfortunately, the

methods presented in this section become unreliable and yield incorrect conclusions

in the presence of Xg-dependencies. Similar observations were made for the fixed-

and random-effects estimators in Section 2. This is illustrated and discussed in the

following section.

4 Limitations in the presence of level-1 (Xg)-dependencies

This section considers two problems in using the methods discussed so far. First, as

noted when discussing the results in Table 2, both random-effects and fixed-effects

estimation fails when endogeneity arises from level-1 dependencies (case (iii) and

(iv)). Second, although successful in testing and solving for Xa-dependencies, we will

show that the Ha-test, Mundlak’s approach, and the Hausman–Taylor estimator

also break down in this case.

In Section 2 we illustrated the consequences of using the fixed-effects and the

random-effects estimator when regressors are correlated with the lowest level error

term gij. It was illustrated that even a small correlation between x and g in model (2)

induced biases in both the fixed- and random-effects estimators. Similar limitations

apply to the Ha-test and Mundlak’s approach discussed in Sections 3.1 and 3.2.

Based on model (2), the simulation results in Table 5 illustrate this situation. First, it

can be seen that a situation with endogeneity at the first level (Xg-dependency) but

no Xa-dependency, cannot be detected by the Ha-test and Mundlak’s approach (case

(iii)). This is not surprising, as the test is not designed for investigating this

hypothesis. However, the estimates for both b1 and r2
g are still significantly biased

due to Xg-dependencies. Researchers who are not aware of potential endogeneity

problems at the first level may incorrectly conclude from these tests that either

Table 5. Results of Ha test and Mundlak’s approach (ai ¼ p�xi: þ ni).
True values: b0 ¼ 10, b1 ¼ 2, r2

g ¼ 1 and r2
a ¼ 1.

Case

(iii) (iv)

Ha-test 6% 100%

Mundlak b0 8.00 (1.95) )13.34 (0.20)

b1 2.42 (0.04) 2.42 (0.04)

p )0.03 (0.39) 4.25 (0.05)

r2
a 0.99 (0.13) 0.00 (0.00)

r2
g 0.90 (0.03) 0.91 (0.04)
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fixed- or random-effects estimation can be used, although, in fact, both methods

yield biased results. When Xa-dependencies and Xg-dependencies are present (case

(iv)), the Ha-test and Mundlak’s p diagnose the Xa-dependency. Given that

Xa-dependency is detected, one should now use fixed-effects estimation (or the

Hausman–Taylor estimator). However, it was seen in Table 2 that in the presence of

Xg-dependencies fixed-effects estimates for b are biased. The researcher in this case

correctly concludes that Xa-dependencies are present, but misses the Xg-dependen-

cies and, henceforth, still uses biased estimates.

The same fallacious conclusion follows from the Hausman–Taylor estimator

based on internal instrumental variables, as can be seen from Table 6. These results

are based on model (4), where x1 and z1 are specified to be independent of all random

components, but x2 and z2 are correlated with gij (but not with ai). The table shows

that both the fixed-effects and the random-effects estimators yield biased results. The

Ha-test does not diagnose this type of endogeneity and rejects the null hypothesis in

15% of the cases, when the nominal rate is at 5%. Thus, importantly, this test

indicates too often that there is a Xa-dependency whereas in fact there is none, as the

dependency is caused by correlation between X and g. The Hausman–Taylor

estimator is also biased in general, but because x1 is truly exogenous it is a valid

instrument for z2, and the Hausman–Taylor estimate for c2 is unbiased. The bias in

the estimate for r2
g is small, as is the one observed for r2

a.

We conclude that when endogenous regressors are present at the lowest level of the

hierarchical model, caused by correlations between X and g, all available tests and

estimators presented in Section 3 yield invalid inferences. In the next section we

discuss possible solutions to this problem.

5 Testing and solving for Xg-dependencies

5.1 External instruments

We consider potential remedies to the situation where Xg-dependencies are present

in the form of ‘classical’ IV methods. These methods are similar to the Hausman–

Taylor estimator, but require the availability of ‘external’ instruments.

Table 6. Results of Hausman–Taylor (HT) estimator for qx2g ¼ 0.3 and

qz2g ¼ 0.3. True values: b0 ¼ 10, b1 ¼ b2 ¼ c1 ¼ c2 ¼ 2, r2
g ¼ 1 and r2

a ¼ 1.

FE RE HT

b0 – 8.48 (0.54) 9.64 (1.27)

b1 1.58 (0.06) 1.57 (0.06) 1.58 (0.06)

b2 2.21 (0.03) 2.21 (0.02) 2.21 (0.03)

c1 – 1.59 (0.13) 1.78 (0.23)

c2 – 2.19 (0.08) 1.99 (0.21)

r2
g 0.95 (0.04) 0.95 (0.04) 0.95 (0.04)

r2
a – 0.95 (0.13) 1.06 (0.19)

Ha-test 15%
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External instrumental variables are desirable for an unbiased and consistent

estimation when Xg-dependencies are present in the data (BOWDEN and TURKING-

TON, 1984; WOOLDRIDGE, 2002). The main ideas behind these estimators are similar

to the ones of classical IV estimators developed for cross-sectional situations, with an

additional step to account for nonspherical disturbances due to the hierarchical

structure (WOOLDRIDGE, 2002). Two multilevel IV estimators that yield unbiased

estimation of the parameters in model (1) in the presence of Xg-dependencies are the

(multilevel) two- and three-stage least-squares (SLS) estimators (see Appendix 2),

where the latter estimator takes the random error component structure into account

yielding a potential more efficient estimator (IM et al., 1999, WOOLDRIDGE, 2002;

BOWDEN and TURKINGTON, 1984). In the following, we will use the multilevel 2SLS

estimator to illustrate the usefulness of external IV estimators when the

Xg-independence assumption is violated. We also show how this estimate can be

used to construct another Hausman-based test (Hg-test) to test for Xg-independen-

cies. The results of this test can be used to decide whether fixed-effects, random-

effects or the Hausman–Taylor estimator, or multilevel (external) IV estimators

should be used.

Using model (2) we illustrate the multilevel IV estimator with one level-1 instrument.

The endogenous regressor is now simulated as xij ¼ c + vij + /ij, where q/,g ¼ 0.3, c

is a constant, and vij is the instrument generated independent of all error terms. In

addition, a Hausman-based test is computed that compares the multilevel IV estimate

for (b0, b1) with the random-effects estimate for (b0, b1) (or the fixed-effects estimate for

b1). The results are presented in Table 7. Note that in Table 7 we estimate r2
� , which is

the variance of �ij ¼ ai + gij, from the residuals computed from the IV regression. The

table shows that once valid external instruments are available, we obtain approxi-

mately unbiased estimates for the model parameters. Furthermore, these estimates

are unbiased regardless of Xa-independence (case (iii) vs. (iv)). The Hg-test based on

these estimates detects both case (iii) and case (iv) endogeneity, indicating that the

multilevel (external) IV estimators should be used. A disadvantage of this method is

that it is less efficient than fixed- and random-effects estimators. Furthermore,

valid instruments that have no direct effect on y and explain a substantial part of

the variance in x, have to be available, which is often difficult in empirical work.

Although external IVs can be useful for dealing with Xg-dependencies, it should be

noted that IV estimators can be seriously biased in small samples and may exhibit

Table 7. Results for multilevel IV for case (iii) and case (iv) violations. True values:

b0 ¼ 10, b1 ¼ 2, r2
g ¼ 1 and r2

a ¼ 1.

Case

(i) (iii) (iv)

Hg-test 3.2% 96.4% 100%

Multilevel IV b0 10.00 (0.21) 9.98 (0.14) 9.98 (0.20)

b1 1.99 (0.07) 2.00 (0.07) 2.01 (0.07)

r2
� 1.99 (0.12) 1.98 (0.14) 1.99 (0.15)
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poor asymptotic properties when weak instruments are applied. An instrument is

said to be ‘weak’ when it explains none or only a small part of the variance in the

endogenous regressor (i.e. it is only weakly correlated). There is a considerable

literature that investigates the potential pitfalls in IV estimation when weak

instruments are used and several recommendations to deal with these problems are

made (STAIGER and STOCK, 1997; BOUND et al., 1995; NELSON and STARTZ, 1990;

KLEIBERGEN and ZIVOT, 2003).

To address the problem of weak instruments, HAHN and HAUSMAN (2002) recently

developed a test for the validity of instruments. Their approach is also based on the

general Hausman specification test approach (HAUSMAN, 1978). The test statistic is

fairly simple to compute and is shown to have a t-distribution under the null

hypothesis. Rejection of the null hypothesis might indicate a failure of the

orthogonality assumption of the instruments or that the instruments are weak.

HAHN and HAUSMAN (2002) suggested a two step approach, based on this test, to

decide which IV estimator, or none, should be used. This approach may provide a

helpful guide in guarding against weak instruments. Furthermore, it is relatively

straightforward to use and it could prevent the researcher from relying on results

obtained with weak instruments.

However, although IV methods are attractive in theory, they can be difficult to

apply in practice because it may prove difficult to locate ‘good’ IVs as indicated by

the Hanh and Hausman test. As a possible solution, we next consider LEWBEL’s

(1997) method for computing instrumental variables from the data at hand and

demonstrate that this method could potentially be extended to multilevel models

with general Xg-dependencies.

5.2 Internal instruments: Lewbel’s approach

LEWBEL (1997) provides a method for constructing internal instruments when

Xg-dependencies exist. This approach has been proposed originally in the context of

measurement error models, but we argue that it is also useful in the context of

general correlated-regressor error. To the best of our knowledge, the issue

of constructing internal instruments from available data in multilevel models where

Xg-dependencies are present has not been addressed before. LEWBEL’s (1997) idea is

based on the observation that when the endogenous regressor in model (2) has a

skewed distribution, the following transformations of the available data may yield

valid instruments:

~v1ij ¼ ðyij � �yÞðxij � �xÞ
~v2ij ¼ ðyij � �yÞ2 ð5Þ
~v3ij ¼ ðxij � �xÞ2

The results in Table 8 illustrate the internal instrumental variable approach for

model (2) and compare it with the external instrumental variable approach in the

previous section. The same simulation data as in Table 7 was used, where the

endogenous regressor was generated as xij ¼ c + vij + /ij, with q/,g ¼ 0.3 and vij is
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the exogenous instrument. We compare Lewbel’s approach with the benchmark,

where we assume that the vij are observed instruments. Thus the results from the

multilevel IV estimator in Table 8 are the same as in Table 7, and were obtained by

using vij as ‘observed’ instruments, whereas the Lewbel approach uses the constructed

instruments in (5) instead. Table 8 indicates that the Lewbel IVs may yield approxi-

mately unbiased results. Using these IVs is less efficient than using the true observed

IVs, which is not surprising as the former uses less information. Nevertheless, the

Lewbel approach appears to be quite promising since it provides a method to con-

struct instruments from the available data. These instruments can either be used

alone, or to augment a set of existing instruments in order to improve efficiency.

6 Discussion and future research

Although the previous discussion may suggest that regressor and random

components dependencies can be adequately addressed in multilevel models, much

care is required in using these methods in actual applications. First, the estimation

methods and test procedures to solve and test for Xa-dependencies rely critically on

the independence of X and g. Second, methods that rely on IVs are known to be

biased in small samples and standard asymptotic results break down when

instruments are weak (i.e. they are poorly correlated with X). This holds in

particular for the IV-based methods to solve for Xg-dependencies and for the

Hausman–Taylor estimator to solve for Xa-dependencies.

Although the issues about the validity and the number of instrumental variables

have primarily been investigated in cross-sectional applications, it is clear that they

are relevant for multilevel applications as well. For instance, when for the simulation

study in Table 4 the instrument �x1i: is weakly correlated with the endogenous

regressor z2 as z2i ¼ 0:01 	 �x1i: þ 0:01 	 z1i þ fi, where fi is a random component

correlated with ai, and with all other input parameters unchanged, the Hausman–

Taylor estimator yields ĉ2 ¼ 3:45ð21:72Þ and r̂2
a ¼ 238:01ð2611:22Þ. Similar obser-

vations can be made for the ‘external’ multilevel IV estimates concerning Table 7. To

deal with these problems, BOUND et al. (1995) suggest that the R2 or the F-statistic of

the regression of the endogenous regressors on the instruments serve as rough guides

Table 8. Results of multilevel and Lewbel’s internal IVs for cases (iii) and (iv)

compared with (i). True values: b0 ¼ 10, b1 ¼ 2 and r2
a ¼ r2

g ¼ 1.

Case

(i) (iii) (iv)

Multilevel IV b0 10.00 (0.21) 9.98 (0.14) 9.98 (0.20)

b1 1.99 (0.07) 2.00 (0.07) 2.01 (0.07)

r2
� 1.99 (0.12) 1.98 (0.14) 1.99 (0.15)

Lewbel IV b0 10.05 (0.75) 9.86 (0.61) 9.81 (0.58)

b1 1.98 (0.28) 2.05 (0.23) 2.07 (0.22)

r2
� 2.04 (0.16) 2.00 (0.17) 1.97 (0.21)
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to the quality of the instruments and should routinely be reported. The HAHN and

HAUSMAN (2002) test or the method suggested by DONALD and NEWEY (2001) to

choose the number of instruments could potentially be extended to serve as a guide

for identifying and selecting ‘valid’ instruments for the Hausman–Taylor estimator

or multilevel IV estimators.

Further, it is often suggested in cross-sectional applications to use the ‘limited

information maximum likelihood’ (LIML) estimator instead of least squares

estimators, since it is found to be less sensitive to ‘weak’ instruments (e.g. DAVIDSON

and MACKINNON, 1993; STAIGER and STOCK, 1997). To the best of our knowledge,

this issue has not been addressed for multilevel models, but perhaps it should be

because it may lead to improved results for the Hausman–Taylor estimator or the

multilevel IV estimators discussed in Section 5.

Finally, the Lewbel approach has been shown to yield consistent results for a simple

multilevel model withXg-dependency. This method deserves more attention and could

potentially be powerful in situations where no or weak instruments are available. The

performance of this method depends critically on its underlying assumptions as is

shown in LEWBEL (1997) and WANSBEEK and MEIJER (2000). Most importantly, the

method may be sensitive to outliers as it relies on third-order moments. Furthermore,

the constructed instruments are weak when the distribution of the endogenous

regressor is not strongly skewed. It is well known that in this case IV estimators can be

seriously biased (STAIGER and STOCK, 1997; BOUND et al., 1995; WANSBEEK and

MEIJER, 2000). As a result, additional work is needed to determine the exact conditions

under which this approach can be used effectively in multilevel applications.

In some applications where endogeneity arises, however, the nature of the data

generating process itself suggests suitable instruments. This holds in particular for

measurement error models, autoregressive models, and simultaneous equation

models. Possible approaches for measurement error models are discussed by WANS-

BEEK and MEIJER (2000), CARROLL et al. (1995) and BOWDEN and TURKINGTON

(1984). These models can be estimated using IV techniques, for instance by using

other (potentially) mismeasured variables (see WHITE, 2001). Another method is

based on WALD (1940), which assumes that the observations can be divided into

groups. This classification should be independent of the error terms and discriminate

between high and low values of the unobservable true construct (see also MADAN-

SKY, 1959). LEWBEL’s (1997) idea presented in Section 5.2 was originally proposed to

solve for measurement error problems. We showed however that that approach can

be fruitfully applied in the analysis of the general IV problems as well and deserves

more attention. In autoregressive models one can often use lagged dependent or

independent variables as instruments (see for instance WHITE, 2001; WOOLDRIDGE,

2002). Similarly, in simultaneous equations models instruments for each equation

can be obtained from the set of excluded exogenous variable for that equation (see

for instance GREENE, 1997).

Our discussion of various methods did not address estimation methods in

(general) random coefficient and non-linear models (like probit- or logit models)
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having endogenous regressors. In both cases, however, a similar reasoning applies as

for linear (random intercept) models. BOWDEN and TURKINGTON (1984) discuss IV

approaches for nonlinear models with additive disturbances (i.e. y ¼ g(h, x) + �).

Techniques developed for linear models, in particular (generalized) method of

moments (GMM) techniques, can be used to estimate these models. BLUNDELL and

POWELL (2000) investigate endogeneity issues in several generalizations of the linear

model. These authors discuss the extent to which commonly used methods in linear

models can be applied to the generalized models and show that the methods’

applicability depends on the structural form.

Random coefficient models assume that differences between the level-2 objects are

not only reflected by different intercepts as in model (1) but also by different slope

coefficients. These models can be written as yi ¼ Xibi + gi, where bi ¼ b + lb,i, with

lb,i a random component having mean zero, Eðlb;il
0
b;iÞ ¼ D and Eðlb;il

0
b;jÞ ¼ 0

for i ¼ 1,…,n, and j „ i. As for random intercept models, the question whether to use

a fixed-effects approach (in fact a seemingly unrelated regression framework), or a

random-effects approach (a random-effects framework), depends on potential

correlation between the random coefficients and the explanatory variables. If

dependencies are present, which is sometimes referred to as ‘heterogeneity bias’, the

random-effects estimator of b is biased and a fixed-effects approach should be used.

PUDNEY (1978) provides a test for the null hypothesis that the explanatory variables

are not correlated with the random coefficients. This test is based on the sample

covariance between the (standard) least-squares estimators for bi and the means of the

explanatory variables for each individual (see also CHAMBERLAIN, 1982).

In general, we conclude that much needs to be done before problems of

endogeneity in multilevel models can be adequately addressed. We showed that even

small violations of the independence structure result in biased estimates for

parameters of interest. In Table 1 we distinguished four cases of (in)dependence

relations among the level-1 regressors and the random components. No distinction

was made between level-1 and level-2 regressors. If this distinction is introduced,

fifteen instead of three possible cases of violations of the independence assumptions

emerge. Each of these combinations could lead to different biases in the estimators

discussed in this article. Although it is possible to apply the methods presented here

to address the various cases, detailed studies are necessary to assess their

performance in practice. Clearly, endogeneity problems require much more attention

than they receive in current applications of multilevel models.

Appendix 1: Classical instrumental variables estimation

The (single level) standard linear regression model for n observations is given by

y ¼ Xb þ �; ð6Þ

where X 2 Rn·k are the regressors, � ¼ (�1,…,�n)¢ are the (unobserved) and identically
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independently distributed errors with mean 0 and variance r2
� In, and y is an n · 1 vector

of dependent variables. The ordinary least-squares (OLS) estimator is BLUE and is

given by b̂OLS ¼ ðX 0X Þ�1X 0y. If E(�|X) ¼ 0, b̂OLS is unbiased (e.g. WHITE, 2001).

In large samples instrumental variables techniques can be used when this

assumption is not met. Instrumental variables (IVs), collected in matrix V 2 Rn·m,

should be uncorrelated with the error term �, i.e. E(�|V) ¼ 0, meaning that the

instruments cannot have a direct effect on y (external instruments). Furthermore,

the instruments should explain part of the variability in the endogenous

regressors. Once instruments are available (and m ‡ k), two-stage least-squares

techniques, for example, can be used to obtain better estimates of b. The

‘classical’ IV estimator for model (6) is computed as b̂IV ¼ ðX0PVXÞ�1X0PVy,

where PV ¼ V(V¢V))1V¢ (BOWDEN and TURKINGTON, 1984; WHITE, 2001;

GREENE, 1997).

When ‘valid’ instruments are available, a Hausman test (HAUSMAN, 1978) can be

used to test for regressor error dependencies in model (6). Under H0 : E(�|X) ¼ 0,

the Hausman test-statistic computed as H ¼ ðb̂IV � b̂OLSÞ0R�1ðb̂IV � b̂OLSÞ, where

R ¼ varðb̂IVÞ � varðb̂OLSÞ, has a v2 distribution. For a more detailed discussion on

how to obtain an estimate for R and how to determine the degrees of freedom (d.f.),

see e.g. GREENE (1997).

Appendix 2: Estimation for the hierarchical linear model

The parameters b in the multilevel model given in (1), can be estimated by either

fixed-effects (assume ai to be fixed parameters for i ¼ 1,…,n) or random-effects

(assume the ai to be drawn from a distribution) methods. The fixed-effects estimator,

also known as the within-groups- or the covariance-estimator, for b can be computed

as a simple regression on the transformed equation (7) which is obtained by

averaging (1) across j for every i, and subtracting the result from (1), resulting in

yij � �yi ¼ ðXij � �XiÞb þ ðgij � �giÞ; ð7Þ

where �yi ¼ ð1=njÞ
P

j yij and similarly for �Xi and �gi. Now ai and Zic drop out, and

thus c is not identifiable from (7). An alternative would be to replace all group

variables by dummy variables and apply OLS on the equation yij ¼
P

iaidij +

Xijb + gij, where dij ¼ 1 if i ¼ j and 0 otherwise. The resulting estimator for b is

known as the least-squares dummy variable (LSDV) estimator and is exactly iden-

tical to the fixed-effects estimator for b from (7). For consistent and unbiased esti-

mation in (7) the ordinary least-squares (OLS) estimator can be used, if the

constructed regressors Xij � �Xi are independent of the constructed error gij � �gi. This

implies that E(Xijgil) ¼ 0 for all i, j, l.

The random-effects estimator provides an important alternative under the

assumption that the ais are i.i.d. random variables. Now �ij ¼ ai + gij in (1) is the
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composite (random) error term. The OLS estimator for b and c is consistent and

unbiased, but not fully efficient. Combining all observations we can rewrite model (1) as

y ¼ Xb þ Zc þ � ¼ W d þ �; ð8Þ

where W ¼ [X : Z] and d ¼ (b¢,c¢)¢, and the other symbols defined accordingly

to stacking. For known X, where X ¼ var(�i), �i ¼ (�i1,…,�inj)¢, the generalized

least-squares (GLS) estimator for b and c, given by d̂GLS ¼ ðW 0ðIn 
 X�1ÞW Þ�1

W 0ðIn 
 X�1Þy is efficient. However, when X is not known, it needs to be estimated,

yielding a feasible GLS estimator. A feasible GLS estimator can be obtained in

several ways. We use the method explained in VERBEEK (2000, p. 317). The GLS

estimator is shown to be equal to a weighted average between the fixed-effects

estimator computed from (7) and the so-called- between estimator, which is the OLS

estimator in the model

�yi ¼ �Xib þ Zic þ ai þ �gi ð9Þ

for i ¼ 1,…,n. The latter estimator ignores the within-group information and ex-

ploits only differences between groups. For more details on the computation of the

weighting matrix, see VERBEEK (2000), HSIAO (1986) and BALTAGI (2001). Several

other random-effects estimation procedures for model (1) are available that include

the iterative GLS (IGLS) approach, (restricted) maximum likelihood (REML), or

Bayesian procedures (see e.g. GOLDSTEIN, 1995; LONGFORD, 1993).

From standard OLS results, it follows that the between estimator for b and c from

(9) is consistent and unbiased when the constructed regressors �Xi and Zi are

independent of ai and �gi. The fixed-effects estimator from (7) is consistent and

unbiased when E(Xijgil) ¼ 0 for all i, j, l. When both conditions hold, the random-

effects estimator for b and c is consistent and unbiased.

In the simulations studies, the variance for gij was estimated as the sum of the

squared residuals from model (7) divided by n(m ) 1) ) (k + l), where nj ¼ m for

all j in our case. The variance for ai is estimated as r̂2
a ¼ r̂2

B � 1
m r̂2

g, where r̂2
B is

estimated from the squared residuals divided by n from (9).

Multilevel instrumental variables estimators

Two IV estimators that yield unbiased estimation of the parameters in model (8) in

the presence of Xg-dependencies, are the multilevel 2SLS estimator, given by

d2SLS ¼ ðW 0PVW Þ�1W 0PVy; ð10Þ

where PV ¼ V(V¢V))1V, and the multilevel 3SLS estimator, given by

d3SLS ¼ ðW 0~PVW Þ�1W 0~PVy; ð11Þ

with ~PV ¼ V ðV 0ðIn 
 X̂ÞV Þ�1V 0 and where X̂ can be estimated from the residuals

from a 2SLS estimation. As in appendix 1, V is a set of (external) instruments. For

more details, see e.g. WOOLDRIDGE (2002), IM et al. (1999) and BOWDEN and

TURKINGTON (1984).
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