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Mutational analysis of candidate genes
in 24 amelogenesis imperfecta families

Kim J-W, Simmer JP, Lin BP-L, Seymen F, Bartlett JD, Hu JC-C. Mutational analysis
of candidate genes in 24 amelogenesis imperfecta families. Eur J Oral Sci 2006, 114
(Suppl. 1): 3—12 © Eur J Oral Sci, 2006

Amelogenesis imperfecta (Al) is a heterogeneous group of inherited defects in dental
enamel formation. The malformed enamel can be unusually thin, soft, rough and
stained. The strict definition of Al includes only those cases where enamel defects
occur in the absence of other symptoms. Currently, there are seven candidate genes for
Al: amelogenin, enamelin, ameloblastin, tuftelin, distal-less homeobox 3, enamelysin,
and kallikrein 4. To identify sequence variations in Al candidate genes in patients with
isolated enamel defects, and to deduce the likely effect of each sequence variation on
protein expression and structure, families with isolated enamel defects were recruited.
The coding exons and nearby intron sequences were amplified for each of the Al
candidate genes by using genomic DNA from the proband as template. The amplifi-
cation products for the proband were sequenced. Then, other family members were
tested to determine their genotype with respect to each sequence variation. All subjects
received an oral examination, and intraoral photographs and dental radiographs were
obtained. Out of 24 families with isolated enamel defects, only six disease-causing
mutations were identified in the Al candidate genes. This finding suggests that many
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Inherited enamel defects that occur in the absence of a
generalized syndrome are collectively designated as
amelogenesis imperfecta (Al). For reviews of the clinical
features and classification of Al, refer to the classic
works of Witkop (1,2). Currently, there are five proven
candidate genes for Al: amelogenin (4 M ELX), enamelin
(ENAM), enamelysin (MM P20), kallikrein 4 (KLK4),
and distal-less homeobox 3 (DLX3). There are also two
unproven candidate genes: ameloblastin (AMBN) and
tuftelin (TUFTI). In the subsequent text, we review the
mutations that have been shown, to cause different forms
of AI. Then, we present our mutational analyses of the
Al candidate genes in 24 families with inherited enamel
defects, and discuss what the low success rate in finding
new mutations means in terms of our understanding of
the molecular participants in normal enamel formation
and the state of our understanding of the genetic etiol-
ogies of Al

X-linked Al

X-linked AI accounts for = 5% of all Al cases (3), and is
caused by defects in the amelogenin gene on the
X-chromosome (Xp22.3—p22.1). While there is a second
amelogenin gene on the Y-chromosome (AMELY), this
gene is expressed at low levels (4), does not appear to be
necessary for proper dental enamel formation, and does
not contribute to the etiology of Al. X-linked AI has a
distinctive pattern of inheritance: there are likely to be

twice as many affected females as males, and affected
males transmit the Al trait to all of their daughters but to
none of their sons. Potentially more diagnostic than the
pattern of inheritance (which may not be obvious in
small families with few affected members) is the distinc-
tive vertical banding pattern on the enamel of affected
females. These vertical bands are believed to be caused
by the presence of alternating bands of ameloblasts
secreting normal and defective amelogenin during
amelogenesis (1,5).

The X and Y chromosomal copies of the human
amelogenin genes do not undergo homologous recom-
bination, so, over time, their sequences have diverged (6).
The differences make AMELX and AMELY useful for
sex determination in forensics. For this purpose, oligo-
nucleotide primer pairs are used that give different-size
polymerase chain reaction (PCR) amplification products
for AMELX and AMELY (7). There is a small failure
rate for the amelogenin sex test, caused by the rare
deletion of AMELY (8), which can reach as high as 3.6%
in particular ethnic groups in Malaysia and India (9).
Two individuals with AMFELY deletions reportedly had
normal teeth (10).

As of the time of writing this report, 14 different dis-
ease-causing mutations have been identified in AMELX,
which are described by a standardized nomenclature
(11). The designations, based upon their predicted effect
on translation of the amelogenin protein, are: p.0 (12);
p-W4S and p.MIT (13); p.W4X (14); p.H129fs187 (15);
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p-I5-A8delinsT (16); p.T511, p.P158fs187, and p.E191X
(17); p.P52fsX53 (18,19); p.P70T (20-22); p.H77L (23);
p-Y141fs187 (24); and p.L181fs187 (23,25). Different
phenotypic patterns appear to correlate with mutations
affecting three different regions of the amelogenin pro-
tein (26).

Autosomal-dominant Al

An autosomal-dominant pattern of inheritance is easily
recognized by analysis of the pedigree. Men and women
are affected equally, and an affected person and an
unaffected person are likely to have an equal number of
affected and unaffected children. The candidate genes for
autosomal-dominant forms of AI (ADAI) are the genes
encoding enamel matrix proteins: enamelin and amelo-
blastin (4ql11—q21) (27,28), and tuftelin (1q21-31) (29).
Autosomal-dominant Al was first linked to chromosome
4q (30), in a region since shown to contain the amelo-
blastin (31,32) and enamelin genes (28). Subsequent
studies, however, only detected mutations in the
enamelin gene (33-39). Other genes besides enamelin are
certain to participate in the etiology of ADAI; as linkage
outside the 4q region (40), as well as outside the loci for
all of the known AI candidate genes (41), has been
established.

The enamelin gene (ENAM, 4q13) has 10 exons, eight
of which are coding (42,43). As of the time of writing this
report, five different disease-causing mutations have been
identified in ENAM, which are described by a stan-
dardized nomenclature (35). The designations of the
mutations are based upon their predicted effect on
translation of the enamelin protein: p.K53X (39); p.M71-
Q157del (33) and p.A158-Q178del (36); p.N197fsX277
(33,35,38); and p.P422fsX448 (34). Mutations in ENAM
produce a hypoplastic (thin enamel) phenotype. In its
mildest form, very minor pits are evident (34). Sometimes
there are horizontal lines of hypoplastic enamel, especi-
ally in the cervical third of the crown.

No disease-causing mutations have yet been found in
the ameloblastin gene (A M BN, 4q13). Ameloblastin (27),
which has also been referred to as amelin (44) and
sheathlin (45), is a proven constituent of the enamel
matrix of developing teeth (46). AMBN-null mice
develop severe enamel hypoplasia in the homozygous-
negative (Ambn") condition (47). There is little doubt
that AM BN mutations will one day be shown to cause
Al. We suspect that AMBN is normally secreted in suf-
ficient quantities so that a reduction in AMBN expres-
sion, as a result of haploinsufficiency, may not produce
an obvious dental phenotype. If so, AMBN mutations
would be part of the etiology of autosomal-recessive
forms of Al

Autosomal-dominant hypoplastic-hypomaturation Al
with taurodontism

The autosomal-dominant hypoplastic-hypomaturation
Al with taurodontism (AIHHT) form of Al is a variation
of tricho—dento—osseous syndrome (TDO), which is an
autosomal-dominant disorder named for the most com-

monly affected tissues: hair, teeth, and bones (48,49). The
genetic cause of TDO was linked to the DLX3 gene on
chromosome 17q21 (50), and mutational analyses identi-
fied a 4-bp deletion in DLX3 that caused the disease
(51,52). While the principal clinical features of TDO
include kinky or curly hair in infancy, enamel hypoplasia,
taurodontism, and increased thickness and density of
cranial bones, the most penetrant feature in some kindreds
may be the dental phenotype, as a 2-bp deletion in the
DLX3 gene has now been reported to cause ATHHT (53).

Autosomal-recessive Al

When a condition is inherited in an autosomal-recessive
pattern, the affected person must have two abnormal
alleles of the disease gene to manifest a phenotype.
Heterozygotes are phenotypically normal (even though
they usually express a reduced amount of the given
protein), but are carriers of the trait. Both parents are
usually normal phenotypically and one in four of the
children are likely to be affected. When one parent shows
the phenotype and the other parent is a carrier, half of
their children are likely to be affected. Consanguinity
(inbreeding) may be a factor as related persons are more
likely to share the same mutant allele. The diversity of
clinical enamel phenotypes observed in autosomal-
recessive Al (ARAI) is remarkable and may be indicative
of a large number of potential candidate genes (54).

Two proteinases — enamelysin (55) and kallikrein-4
(previously designated enamel matrix serine proteinase 1,
or EMSP1) — are normally secreted into the enamel
extracellular space during amelogenesis (56). Enamelysin
(MMP-20) is a matrix metalloproteinase that is primarily
expressed during the secretory or early stage of amelo-
genesis (57-59), while KLK4 is a serine protease that is
primarily secreted during the transition/maturation or
later stages (57,60). Mutations in the genes encoding these
‘enamel proteases’ form part of the etiology of ARAI.

In humans, enamelysin is expressed from the
MMP20 gene on chromosome 11q22.3—q23, which has
10 exons. All are coding (61-63). The dental phenotype
caused by a splice junction mutation (IVS6-2A >T),
affecting both MMP20 alleles, corresponded to an
autosomal-recessive pigmented hypomaturation type of
ATl (2). The teeth were normal in size, but pigmented,
showing an agar-brown discoloration. The enamel
surface was mottled and rough. Chunks of enamel had
fractured away from several teeth, and the enamel
layer was radiographically more opaque than the
underlying dentin, but not in all areas, and was never
as radiopaque as normal enamel. The proband had an
anterior open bite.

The human kallikrein 4 (KLK4) gene on chromosome
19q13.3—q13.4 has six exons, five of which are coding
(64,65). The AI subtype resulting from the nonsense
mutation (p.W153X) in both KLK4 alleles was the
autosomal-recessive pigmented hypomaturation type of
AT (66). The teeth were normal in size and morphology,
but had a generally yellow-brown color, were sensitive to
hot and cold stimuli, and were painful during chewing.
On dental radiographs the enamel was of normal thick-



Table 1

Primers for TUFT1, AMBN, and DLX3 gene characterizations
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Extension Extension
Name Oligonucleotide sequence Anneal temperature time
Primers used to amplify and sequence the TUFT1 gene
TUFTIxIF 5-GCCCCACCTTTGTGTAAATC 60°C 72°C 30s
TUFTI1x1R 5-CCAGGTGATGTCAGCCAAC 60°C 72°C 30s
TUFTI1x23F 5-GATAAGACCCGCTCCACAGA 60°C 72°C 60 s
TUFT1x23R 5-GGTCTGGTTCCTTCCATCAA 60°C 72°C 60 s
TUFTI1x23R1 5" TAGTGGGGGACTCCTCCTG Sequencing only 72°C 30s
TUFTI1x45F 5-GATCCGAATCACCAAATTCC 60°C 72°C 30s
TUFT1x45R 5-AGAGAAGCCAGCATCACCTC 60°C 72°C 30s
TUFTI1x45F1 5-ACAGTGCCTGACTCGCAGTA Sequencing only 72°C 30s
TUFTI1x45R1 5-ATGGTGGCATTTCAGAGACA Sequencing only 72°C 30s
TUFTI1x6F S-TGTCCTTCTCTTTCTAAGATTTGAGT 60°C 72°C 30s
TUFT1x6R 5-GAAAGCAATAAACAAAAGGATGG 60°C 72°C 30s
TUFTIx7F 5-TTCCTGGCTGCCTAAGGTAA 60°C 72°C 30s
TUFTI1x7R 5-CTTGCCTTTCCAGTTTGTGG 60°C 72°C 30s
TUFT1x89F 5’-CCCATCAGTGTCACCACCTT 60°C 72°C 60 s
TUFTI1x89R 5-GACATCAGCACCAGCTTCCT 60°C 72°C 60 s
TUFTI1x89F1 5-CCCATCAAACCAGCTCATCT Sequencing only 72°C 60 s
TUFTI1x89R1 5-GGGGAGGCTAATTCCTTGAA Sequencing only 72°C 60 s
TUFT1x10F 5-GAATCAGGCAAAGGGAATCA 60°C 72°C 60 s
TUFTIx10R 5-GAGCAACAGCAAGACATGACA 60°C 72°C 60 s
TUFTIx10F1 5-CACCCCTGGGATAATCAAGA Sequencing only 72°C 60 s
TUFTI1x10R1 5-CAGTAGGGGAAAGATGGGAGA Sequencing only 72°C 60 s
TUFTIx12F 5-GGTAGAGGCAACAGCAGCA 60°C 72°C 60 s
TUFTI1x12R 5-GTGCAGCCAGGGGACAGT 60°C 72°C 60 s
TUFTIx12F1 5-CCCCAAATCTTCCCCTAGTT Sequencing only
TUFTIx12R1 5-GGCAAACAGTGGGTCAGACT Sequencing only
Primers used to amplify and sequence the AMBN gene
AMBNxI1F 5-TGCCTTCCCTGCTATCAAGT 53°C 68°C 30s
AMBNx1R 5-TGAATGGGTGTTAGGCATGT 53°C 68°C 30s
AMBNXx2F 5-CGATGGAGGTTGTTCCTACA 53°C 68°C 30s
AMBNx2R 5-TCACCTCAGGTCATCCTCCT 53°C 68°C 30s
AMBNXx3F 5-ATGCAGGTGGGAGCAAAAT 53°C 68°C 30s
AMBNXx3R 5-TTGCTTTGGTTTGCATAGAA 53°C 68°C 30s
AMBNzx4F - TGGGGAGAAAGAGTCAATGAA 53°C 68°C 40 s
AMBNx4R 5-TTTCGTTTTGAGCTAGTCTGC 53°C 68°C 40 s
AMBNX5F 5-GTGGTGCGTGCCTGTAGAC 56°C 68°C 30s
AMBNx5R 5-TCCAGGATGTAGCCTGCTTT 56°C 68°C 30s
AMBNX5F1 5-CAAATATAACCAATGTTATATTTAAC Sequencing only 68°C 30s
AMBNx5R1 5-CTTCGATTTATTTGGCACGA Sequencing only 68°C 30s
AMBNXx6F 5-TCCTAGCCTCCCTTCCAGAT 53°C 68°C 30s
AMBNx6R 5-ATCCATGCCCTGTCTCTGAT 53°C 68°C 30s
AMBNXx7-9F 5-TTGGGTCATACCTCCCAAAA 60°C 68°C 40 s
AMBNx7-9R 5-ACAGGCACATCCCCATAACA 60°C 68°C 40 s
AMBNXx10-11F1 5-TTTCATTGTCCCATTTATCCA 52°C 68°C 30s
AMBNx10-11R1 5-GAGGCAAAGTGGAGAGGTGA 52°C 68°C 30s
AMBNXx12F 5-GGAGGCAAACTTCCTATTTGG 56°C 68°C 30s
AMBNxI12R 5-GCCTTTCAAGGGGAGTTTTC 56°C 68°C 30s
AMBNXxI12R1 5-GAGGCAAAGTGGAGAGGTGA Sequencing only 68°C 60 s
AMBNXx13F 5"-CCCCAAATCTTCCCCTAGTT 55°C 68°C 60 s
AMBNx13R 5-GGCAAACAGTGGGTCAGACT 55°C 68°C 60 s
AMBNx13F1 5-GAAGAAGGAGGTGCACAAGG Sequencing only
AMBNXx13R1 5-GGGGAGCAGGTTCTAGCTCT Sequencing only
Primers used to amplify and sequence the DLX3 gene
DLX3x1F 5-CAAGACTTGCAGCCAATCAG 58°C 72°C 30s
DLX3xIR 5-GGGAACCTTCCAGTGTCTCC 58°C 72°C 30s
DLX3x2F 5-AAGGCGTCGTGAGCGAAG 58°C 72°C 30s
DLX3x2R 5-AAAGGCAAGAGTTCCAGGAG 58°C 72°C 30s
DLX3x2F1 5-CTGGAGGGTCGCAGGAGT Sequencing only 72°C 30s
DLX3x3F 5-ATTGGGTTCTGGCCTTTCTT 58°C 72°C 30s
DLX3x3R 5-GCCTTCTGCCTGGTCCTG 58°C 72°C 30s
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ness, but had only slightly greater opacity than the
underlying dentin. The enamel tended to fracture from
the occlusal surfaces of the primary molars.

Material and methods

The human study protocol and patient consents were
reviewed and approved by the Institution Review Boards at
the University of Michigan.

Twenty-four families with isolated enamel defects were
recruited for mutational analyses. The coding exons and
nearby intron sequences were amplified for each of the seven
candidate genes for AI: amelogenin (AMELX, Xp22.3—
p22.1), enamelin (ENAM, 4qll-q21), ameloblastin
(AMBN, 4q11-q21), tuftelin (TUFTI, 1q21-31), enamelysin
(MMP20, 11q22), Kallikrein-4 (KLK4, 19q13.3—q13.4) and
distal-less 3 (DLX3, 17q21), using genomic DNA from the
proband as template. The amplification products were
characterized by DNA sequencing and then other family
members were tested to determine their genotype with
respect to each sequence variation, but, typically, the number
of people in each family was too few for haplotype analyses.
All subjects received an oral examination, and intraoral
photographs and dental radiographs were obtained.

In most cases, 15 ml of peripheral whole blood was
obtained from participating family members. Alternatively,
buccal swabs were performed. High-molecular-weight
genomic DNA was isolated using the QIAamp DNA Blood
Maxi Kit and protocol (Qiagen, Valencia, CA, USA). Ten
nanograms of genomic DNA from affected individuals was
amplified using Platinum PCR Supermix or Platinum Tag
High Fidelity (Invitrogen, Carlsbad, CA, USA). Polymerase
chain reaction amplification products were purified by using
the QIAquick PCR Purification Kit and protocol (Invitro-
gen). The concentration of purified amplimer was estimated
by the intensity of its ethidium bromide-stained band on a
1% agarose gel, adjusted to 1 ng ul™' for each 100 bp of
fragment size, and then a 3.2 pmol ul™' aliquot of oligo-
nucleotide primer was used in the sequencing reactions.
DNA sequencing was performed on an ABI Model 3700
DNA sequencer (Applied Biosystems, Foster City, CA,
USA) at the University of Michigan DNA sequencing
core (http://seqcore.bref.med.umich.edu/doc/dnaseq/
intro.html).

The primer pairs and PCR conditions for amplification of
the coding regions of AMELX (13), ENAM (33), KLK4
(66), and MMP20 (67) were as described previously. The
primers and PCR conditions for amplification of the coding
exons for AMBN, TUFTI, and DLX3 are provided in
Table 1.

Results

We recruited 24 families with inherited enamel defects.
Oral photographs of the proband’s dentition, and
pedigree drawings of the families, are shown in Figs 1
and 2, respectively. The dental phenotypes of the 24
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probands were highly variable and often did not cor-
respond strictly to the 14 classical Al subtypes (2). In
two cases the diagnosis of amelogenesis imperfecta was
questionable: a reviewer of this manuscript commented
that the oral photograph of the family 6 proband was
more suggestive of dentinogenesis imperfecta, and the
enamel phenotype of the family 3 proband was similar
to that observed in vitamin D-dependent rickets type I
(68).

In this study, a sequence variation was considered to
be disease-producing when the mutation correlated with
the enamel phenotype in the available family members
and the effects of the mutation on the enamel protein
structure or its expression level was predicted to be sig-
nificant. Two of the families showed an X-linked pattern
of inheritance, and disease-causing A M ELX mutations
(#1/p.MIT and #2/p.W4S) were identified in these kin-
dreds (13). Eleven families showed a dominant pattern of
inheritance (#6, 7, 8, 10, 11, 13, 17, 19, 21, 23, and 24).
Disease-causing ENAM mutations were identified in
three of these kindreds (#13, 17, and 19). Two of these
mutations (#13/g.8344delG and #17/g.4806A >C) we
reported previously (33). The third ENAM mutation
(#19/p.K53X) is identical to that identified in Sweden
(39). Our p.K53X proband showed linear horizontal
enamel defects concentrated at the cervical third of per-
manent incisors. Radiographically, his enamel had a
radiodensity that could be distinguished from the
underlying dentin; however, enamel formation fell short
of the cervical regions in many teeth. Enamel was miss-
ing from the cervical third of many anterior teeth (Fig. 1,
#19). On the permanent premolars and molars, enamel
covered only the coronal and middle thirds of the
crowns, although the patient did not report any
increased thermal sensitivity. The enamel phenotype in
the proband is very similar to that observed in the
Swedish family with the p.K53X defect in ENAM.

No disease-causing mutations were identified in the
other families with dominant forms of amelogenesis
imperfecta. One family (#15) had a pseudodominant
pattern of inheritance. This was shown to be a recessive
case, with both MM P20 alleles in the proband and his
father having the same disease-causing mutation
(2.30,561A >T) (67). Ten of the kindreds (#3, 4, 5, 9, 12,
14, 16, 18, 20, and 22) only displayed an enamel phe-
notype in a single generation, and the pattern of inher-
itance could not be assigned with certainty. Six of these
families had only one affected member. A number of
sequence variations were identified in these families, but
none met our criteria for being specified as disease-
causing.

In the text below we describe candidate gene sequence
variations that we identified in the 24 AI probands, but
concluded, after analysis, that were unlikely to cause the
disease.

Fig. 1. Clinical photographs of probands in each family. The amelogenesis imperfecta (Al) in families #1 and #2 was caused by
p-MI1T and p.W4S mutations in AMELX, respectively (13). The Al in families #13 and #17 was caused by p.N197fsX277 and IVS6-
2A > C mutations in ENAM, respectively (33). The Al in family #15 was caused by an IVS6-2A > T mutation in both MM P20 alleles
(67). Pattern of inheritance color key for kindred numbers: X-linked, yellow; autosomal dominant, white; pseudodominant, gray; not

discerned, black.
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Fig. 2. Pedigree drawings of each family. The proband, or the affected member who brought the family to the attention of the study,
is indicated by an arrow. Key: square, male; circle, female; a filled symbol indicates Al phenotype; a diagonal line indicates deceased;
a + identifies members recruited in the study.



AMELX

A g.-11A>G change in AMELX was identified in the
proband of family #21, but an X-linked pattern of
inheritance was ruled out by analysis of the pedigree.

TUFT1, DLX3 and ENAM

Several sequence variations were identified in TUFTI,
DLX3, and ENAM, but all were found in the SNP
database (http://www.ncbi.nlm.nih.gov/SNP). As the
mutations were not predicted to cause significant chan-
ges in protein structure or expression, and they are rep-
resented in the general population, they are unlikely to
be disease-causing.

KLK4

In family #4, a G to A change (c.476G> A, p.G159D)
was identified in KLK4 at the first nucleotide of exon 5.
The phenotype of the proband (III-1) was smooth
hypoplastic type and the mother (II-2) had pits in the
cusp tips of her maxillary canines and first bicuspids.
Another family member (III-2) had the same nucleotide
change but a normal dental phenotype. The previously
reported KLK4 disease phenotype (66), and the differ-
ence in phenotype between the proband and the other
members, argues against this sequence variation causing
the disease (i.e. showing a lack of penetrance and vari-
able expressivity).

MMP20

In family #24, a G to C change (¢.1313G > C, p.G438A) in
MM P20 was identified in the proband, but the unaffected
mother (III-2) also had the same sequence variation.

AMBN

Before the new version of the human genome (http://
www.ncbi.nlm.nih.gov/genome, Homo sapiens Build
35.1), there were two deletions in the AMBN genomic
sequence relative to its cDNA sequence (NM_016519):
¢.538-540delGGA (p.G180del) and c¢.634-636delCCA
(p.P212del). Now the new version of the genome has the
same sequence as the AMBN mRNA. In family #8,
¢.538-540delGGA (p.G180del) was identified in one
allele, but did not correlate with disease status in the
family. No family had c¢.634-636delCCA (p.P212del).

In family #7, a C to A change (c.882C > A, p.H294Q)
was identified in A M BN, but the substitution (glutamine)
is the normal amino acid at that position in mouse and
rat ameloblastin. If the rodent homologs can be func-
tional with a glutamine there, we assume that this is also
the case for human ameloblastin.

Discussion

Tooth development initiates as migratory neural crest
cells condense beneath the oral epithelium at specific sites
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along the developing dental arches (69), where cuboidal
cells at the base of the oral epithelium multiply and invade
the mesenchyme. In response to a series of epithelial—
mesenchymal interactions, the tooth organ advances
through bud, cap, and bell stages (70,71). Genetic dis-
turbances manifested early in tooth formation can arrest
tooth development. In humans, tooth agenesis occurs in
assorted patterns, and is caused by defects in regulatory
genes, usually transcription factors (72). Mutations in
MSX1 (73) and PAX9 (74) result in characteristic patterns
of oligodontia. When the affected regulatory gene is also
involved in developmental processes besides tooth for-
mation, the resulting familial tooth agenesis is a feature of
alarger syndrome, such as in ectodermal dysplasia (75,76)
or Rieger syndrome (77). It is only when genetic defects
are manifested during the later (matrix deposition and
calcification) stages of tooth development that isolated
malformations occur in the dental hard tissues. Thus, in
terms of the etiologies of Al, the principal focus has been
on the genes encoding enamel matrix proteins.

The recent discovery that a DLX3 mutation causes
AITHHT suggests that the above logic is flawed, but our
experience suggests otherwise. Clinical phenotypes and
their detection are variables in making a diagnosis.
Variable expressivity and penetrance may make the
dental phenotype the only one that is clinically evident in
some families, but the non-dental symptoms may be
subtle and remain undetected. Dental scientists tend to
focus on the teeth, while medical scientists tend to ignore
them. It is also possible that molecular redundancy may
allow relatively normal development to occur in the
many systems associated with DLX3 expression.

In our analyses of 24 families with inherited defects in
their enamel layer, we learned a number of important
lessons. We found that:

e the accepted clinical classification system for Al (2)
could not be readily applied to subtype the range of
clinical phenotypes we observed in our kindreds;

o the current list of Al candidate genes was insufficient
to identify the causative gene defect in most families;
and

e we were able to identify and recruit 24 families with
inherited enamel defects, but only 10 families with
inherited defects of dentin.

This experience gives us the impression that AT might be
more prevalent than dentinogenesis imperfecta/dentin
dysplasia.

It has been known for some time that defects in the
known and suspected candidate genes cannot explain all
Al cases (41). In this study, we show that the current list
of Al candidate genes is involved in less than half of all
cases. This suggests that we know less than we originally
thought about the genes/proteins that are specifically
critical for dental enamel formation. What might the
other relevant candidate genes be? We speculate that
additional constituents in the enamel extracellular matrix
remain unidentified. We also speculate that some genes/
proteins, which are specifically involved in ameloblast
cytodifferentiation and function, await discovery.
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We suspect that the recruitment of large Al kindreds
and their characterization by genome-wide searches, as
well as better characterization of the constituents in
the enamel matrix of developing teeth, will slowly add
to the list of AI candidate genes. How will we know
when we have identified all of the relevant genes and
proteins that collectively cause AI? The best indication
will be when genetic analyses of Al kindreds are
consistently able to demonstrate that a known AI
candidate gene is defective in each affected kindred.
Every newly discovered candidate gene will bring us
closer to this goal. Once all of the candidate genes
associated with AI have been identified, we will better
appreciate how the proteins expressed by these genes
work together to achieve the biomineralization of
dental enamel.
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