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Leukocyte recruitment is a hallmark feature of the
inflammatory response. This review summarizes the
generally accepted paradigm of leukocyte recruit-
ment based on studies using intravital microscopy
to visualize the microcirculation. The role of
selectins and �4-integrin in rolling as well as inte-
grin-mediated adhesion is discussed. However, it is
becoming increasingly clear that the recruitment
cascade within organs differs and therefore the
review also attempts to highlight what is and is not
known regarding leukocyte recruitment into the
brain microvasculature. In the second part of this
review, we provide some discussion of mechanisms
by which the inflammatory response may be termi-
nated. Particular emphasis on nuclear factor Nf�B
and how IL10, IL13 and secreted leukocyte protease
inhibitor (SLPI) may impact upon the Nf�B-depend-
ent inflammatory response is presented.

Introduction
It is becoming increasingly clear that the acute

inflammatory response and specifically leukocyte
recruitment, although essential to survival, can also
severely harm the host. Most of the relevant information
supporting this conclusion derives from studies that
focus in organs other than the central nervous system
(CNS). Many of the principles so far learned can be at
least in part extrapolated to inflammatory responses in
the CNS. Nevertheless, as will be seen some critical dif-
ferences do indeed exist among organs. In this brief

review, we will summarize some of the work pertaining
to leukocyte recruitment and acute inflammation in var-
ious organs, but also comment on some of the informa-
tion pertaining to acute inflammation in the brain. Areas
that require further investigation will be highlighted.

Figure 1 demonstrates a schematic of the generally
accepted cascade of events that lead to leukocyte recruit-
ment. First, leukocytes moving at extremely high speed
in the mainstream of blood make initial transient contact
with endothelial cells lining the vessel wall and then roll
along at a greatly reduced velocity relative to red blood
cells. Only when leukocytes begin to roll can they firm-
ly adhere and finally emigrate out of the vasculature. It
should be noted that this is an interdependent series of
events inasmuch as inhibiting leukocyte rolling prevents
subsequent leukocyte adhesion and ultimately leukocyte
emigration out of the vasculature (see reviews 2, 81). A
number of cytokines and inflammatory mediators can
rapidly mobilize the inflammatory response as well as
induce various genes to further synthesize adhesive and
inflammatory proteins. Not shown are potential anti-
inflammatory systems which will be mentioned at the
end of this review.

Leukocyte Recruitment
Leukocyte rolling is dependent upon the selectin

family of adhesion molecules. P-selectin is induced in
minutes in response to histamine (and other mediators)
or following reperfusion of ischemic tissue and E-
selectin (4-6 hrs for maximal induction) is expressed on
LPS or TNF�-activated endothelium. L-selectin is
found constitutively expressed on leukocytes. Each of
these selectins contribute significantly to the rolling
event at overlapping but also distinct times during
inflammation (1, 9, 25, 35, 43 ,75). Although firm adhe-
sion is mediated by the integrins including �2-integrin
(CD11/CD18) and �1-integrin (see reviews 19, 8, 28),
the �1-integrin and more specifically, �4-integrin can
also mediate leukocyte rolling (3, 8) particularly in
eosinophils and monocytes (54, 69). The identified lig-
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ands for these adhesion molecules include ICAM-1 and
VCAM-1 respectively. Finally, PECAM-1 is thought to
be in part important in leukocyte emigration out of the
vasculature (60). 

Much of this work is derived from intravital
microscopy which is a technique that permits visualiza-
tion of very small post-capillary venules (20-40 �m
diameters). To date the mesentery and cremaster muscle
have been the primary tissues used because of their
translucent properties and using these tissues, the uni-
versal concept of leukocyte recruitment of selectin-
dependent rolling followed by integrin-dependent firm
adhesion was proposed. However, it is becoming
increasingly clear that this concept may not apply to all
tissues and in fact each tissue studied may have its own
profile of leukocyte recruitment. For example there is a
growing body of evidence that neither the liver nor the
lung always require selectins to recruit leukocytes (58,
89). Intravital microscopy of the liver revealed that
much of the leukocyte recruitment occurs in the sinu-
soids rather than post-sinusoidal venules (89). The space
constraints of these vessels do not allow leukocytes to
roll and instead leukocytes squeeze through the capillar-
ies. Not surprisingly, much of the adhesion occurs inde-
pendent of selectins and rolling (89). Similarly, in the
lung, in response to certain infectious agents, the three
selectins do not contribute to neutrophil recruitment
(58). This work underscores the importance of system-
atically examining leukocyte recruitment in the brain
microvasculature. It is surprising how relatively little
information is available regarding the adhesion mole-
cule profiles and associated leukocyte recruitment in the
brain microvasculature. 
P-selectin

P-selectin is a very likely mediator of the early phase
of leukocyte rolling and therefore leukocyte recruitment
in acute inflammation. Lawrence and Springer (48)
demonstrated that leukocytes exposed to shear forces,
rolled on artificial lipid bilayers containing purified P-
selectin but not with other adhesion molecules (ICAM-

1). This selectin is stored in Weibel-Palade bodies of
endothelial cells and is expressed within minutes on the
cell surface following activation by a variety of inflam-
matory mediators including histamine, thrombin, LTC4
and oxidants (25). Histamine and thrombin could induce
P-selectin-dependent leukocyte rolling on human umbil-
ical vein endothelial cells (HUVECs) under shear con-
ditions in vitro (35, 68) and similar results have been
reported in rat mesentery in vivo for histamine (35, 46),
thrombin (52, 93), LTC4 (41) and oxidants (70).
However, recent work has demonstrated that in the
hepatic microvasculature, histamine even at 1000 �M
did not induce leukocyte rolling whereas LTC4 induced
adhesion (no rolling) that was entirely P-selectin inde-
pendent (12). I raise this fact to simply highlight the het-
erogeneity of responses in two different tissues. This
raises the question as to what happens in the brain? The
data however, are not very clear. Barkalow et al., (6)
have cultured murine brain endothelium and have
reported that there is no pre-stored pool of P-selectin.
Moreover, the endothelium could not express P-selectin
in response to histamine or a far more potent activator
Ca2+ ionophore. However, we have reported that grow-
ing endothelium in culture dramatically reduces basal
levels of P-selectin suggesting that this may be an issue
of cell culture (44). Nevertheless, Barkalow and col-
leagues (6) also had difficulty demonstrating P-selectin
in the murine brain microvasculature in vivo, similar to
our own inability to induce rolling with histamine in
mice (13). 

In vivo, results by Yong et al., published last year,
suggested that histamine superfusion on the pial
microvasculature could induce P-selectin-dependent
leukocyte recruitment in SJL/J but not BALB/c mice
(91). As the former are a strain particularly susceptible
to autoimmune disease, it is conceivable that P-selectin
simply is not pre-synthesized in the brain microvascula-
ture of commonly used mouse strains. However, Weber
et al., (87) have reported in rat brain microvasculature
that the early rolling in pial vessels in response to bacte-
rial meningitis is dependent upon histamine and there-
fore a role for P-selectin may be inferred, suggesting
additional variables in addition to strain differences.
Other issues that need to be considered include 1) test-
ing of numerous other P-selectin inducers and 2) poten-
tial problems associated with intravascular versus
extravascular delivery of mediators across the blood-
brain barrier. Finally, and most importantly it will be
important to establish whether the P-selectin-dependent
leukocyte recruitment leads to firm adhesion and if so
which mediators is responsible.
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Figure 1.



Inhibition studies with anti-P-selectin therapy have
been used successfully to reduce leukocyte rolling in a
number of models of inflammation. For example, a role
for P-selectin in ischemia/reperfusion (I/R)-induced
leukocyte recruitment has been documented in many tis-
sues (18, 24, 45, 88) and recent work suggests that P-
selectin-deficient mice have no rolling in response to
ischemia/reperfusion in striated muscle for at least 3 hrs
(42). P-selectin expression has been shown to increase
in the brain microcirculation following an ischemic
episode (65) but only one study to date has examined a
functional role for P-selectin. Connolly et al., reported
that isolated, purified, radiolabeled neutrophils accumu-
lated in postischemic brain and that there were fewer
neutrophils accumulating in P-selectin-deficient mice
(16). Although there was a subtle increase even at 30
min of reperfusion whether this was due to P-selectin-
dependent rolling and subsequent adhesion, whether
this was due to neutrophil plugging in capillaries or
whether it was a result of trapped platelet-neutrophil
aggregates was not determined. The issue of platelets is
not trivial in light of the fact that platelets express P-
selectin and may tether leukocytes to injured or activat-
ed endothelium (67, 86).

Initial work suggested that thrombin, histamine and
LTC4 all induce P-selectin expression for only a brief
30-60 min period (25, 46). However, functional evi-
dence that P-selectin recruits leukocytes for many hours
in response to antigen, TNF�, IL-4 and oncostatin M
both in mouse and human now exists (33, 40, 53). P-
selectin is thought to be dependent upon protein synthe-
sis and is significantly increased at 8 hrs in the brain
microcirculation of mice and remains elevated for at
least 24 hrs in response to LPS (21). However, the role
for P-selectin appears to diminish in more chronic
inflammatory models. Although, leukocyte recruitment
is important in 4-24 hr cytokine-induced meningitis it
does not contribute to experimental autoimmune
encephalomyelitis (20). 

E-selectin
Minimal or no E-selectin is expressed on endotheli-

um in non-inflamed tissue. De novo synthesis of E-
selectin expression on the surface of endothelium occurs
at 2-4 hrs following exposure to LPS, IL-1, or TNF� and
lasts for at least 4-8 hours (1, 9). E-selectin expressed on
transfected L-cells (fibroblasts), cytokine-treated
endothelial cells, or substrates bearing purified E-
selectin all support neutrophil rolling (1, 49). The role of
E-selectin dependent leukocyte-endothelial cell interac-
tions in vivo is somewhat controversial in part due to the

profound, overlapping role of P-selectin in some tissues.
Olofsson et al. (66), reported that prolonged IL-1 treat-
ment of rabbit mesenteries supported leukocyte rolling
via an E-selectin-dependent mechanism and TNF�
causes E-selectin-dependent leukocyte rolling in mouse
cremaster (47). By contrast, TNF� and LPS did not
induce E-selectin dependent rolling in the cat mesentery
(31) nor the rat mesentery (38) respectively potentially
due to contribution from other selectins. Recently, a role
for E-selectin in skin but not muscle was demonstrated
for leukocyte recruitment in response to antigen chal-
lenge (30). Using a radiolabeled antibody system in this
study it was demonstrated that E-selectin was only
expressed in skin but not muscle. These data clearly
demonstrate that different stimuli in the same tissue and
the same stimuli in different tissues will evoke very dif-
ferent adhesion molecule profiles. 

Only a limited number of studies have examined a
role for E-selectin in cerebrovascular inflammatory
models. E-selectin contributed to the recruitment of
leukocytes in cytokine-induced meningitis (83) but not
bacterial infection (59) or experimental autoimmune
encephalomyelitis (20). 

L-selectin
L-selectin is expressed constitutively on most leuko-

cytes, and is involved in lymphocyte recirculation (22)
and leukocyte-endothelial cell interactions at peripheral
sites of inflammation (71, 80, 85). For example, leuko-
cyte infiltration into the inflamed peritoneum is signifi-
cantly reduced by intravenous (i.v.) administration of a
mAb or soluble recombinant L-selectin (71, 85). In
addition, L-selectin blockade by antibodies provides
partial protection from acute inflammation in the heart,
lung and other organs (55, 62, 73). L-selectin-deficient
mice show a significant impairment in migration to the
inflamed peritoneum, to non-specific skin irritants, as
well as resistance to lipopolysaccharide induced septic
shock (5, 14, 84). Additionally, these mice have an
impairment in contact hypersensitivity responses to
reactive haptens (84), an observation confirmed by oth-
ers (14, 90). Whether the observed reduction in hapten-
induced inflammation is due to early events in antigen
sensitization or more delayed effector mechanisms
remains unclear. One complicating factor in the study of
this molecule is the lack of identity of the L-selectin lig-
and in the periphery. Bovine brain endothelium did
appear to express an L-selectin ligand and lymphocyte-
endothelium interactions were reduced with an L-
selectin antibody in that study (39). However, to date,
only one paper has attempted to examine a role for L-
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selectin in a stroke model. In acute thromboembolic
stroke an L-selectin antibody in the presence of tPA
reduced some of the brain injury. No mention of leuko-
cyte recruitment was made (7). Therefore, a more sys-
tematic role for L-selectin is warranted under acute con-
ditions, following ischemia/reperfusion as well as in
delayed leukocyte recruitment associated with
cytokines. A caution here is that L-selectin likely has
significant overlapping functions with the other
selectins requiring assessment of the role of multiple
selectins simultaneously (36, 43).

�-integrin/VCAM-1 interactions
Although it is generally accepted that leukocyte

rolling and tethering are mediated by the selectin fami-
ly of adhesion molecules and their carbohydrate ligands,
there is at least one other pathway which is capable of
supporting leukocyte rolling. Recently, a number of
reports have suggested that the �4-integrin (�4�1, VLA-
4) known to be involved in leukocyte adhesion, is also
capable of mediating leukocyte rolling (3, 37, 82). Alon
et al. (3) illustrated that the �4-integrin on lymphocytes
was capable of mediating tethering, rolling and firm
adhesion on its ligand VCAM-1. It should be noted,
however, that the entire sequence of events in this study
occurred at a shear stress of less than 1 dyn/cm2. At
higher shear stresses where selectins can clearly tether
leukocytes and support rolling, the �4-integrin may not
support leukocyte tethering to VCAM-1. On the other
hand, �4-integrin-dependent tethering and rolling may
occur in vivo in the presence of red blood cells, which
can facilitate leukocyte-endothelial cell interactions
(76). 

Indeed VCAM-1 was able to recruit monocytes,
eosinophils and even some neutrophils from whole
blood at relatively high shear forces in vitro (74).
Another critical difference between in vitro and in vivo
systems may be the site density and distribution of
VCAM-1 for the �4-integrin. The use of various in vitro
substrata instead of microvascular endothelium may
greatly underestimate the site density of ligands (eg.,
vascular cell adhesion molecule-1 [VCAM-1]) for �4-
integrins. Therefore, it is conceivable that under inflam-
matory conditions, �4-integrin ligands may be expressed
in sufficient numbers to gain the capacity to mediate
leukocyte tethering, rolling and adhesion independent of
selectins. In the rat mesentery it was shown that �4-inte-
grin could indeed support rolling, but the initial catching
or tethering to the endothelium did not appear to be
dependent on this pathway (37). Using mice deficient in
both E- and P-selectin confirmed that either P-selectin

or E-selectin were required for the initial tether after
which �4-integrin can mediate subsequent rolling in
response to antigen (40). Recently, it was reported that
IL-4 induced recruitment could be mediated via �4-inte-
grin in the absence of the other 3 selectins in cremaster
muscle (29). Although the role of �4-integrin has not
been assessed in acute brain inflammation, in no organ
has �4-integrin therapy been more successful than in the
brain raising the possibility that in this microvasculature
the �4-integrin pathway may dominate. Indeed, in the
EAE model, neither E-selectin nor P-selectin were
important in blocking leukocyte recruitment (20) and
yet �4-integrin dramatically reduced leukocyte recruit-
ment (57) suggesting that at least endothelial selectins
may not be required for �4- integrin function in the
brain. Nevertheless, a potential role for L-selectin can-
not be dismissed. These data raise sufficient questions to
investigate the importance of the �4-integrin/VCAM-1
pathway in the brain in the different cytokine models
and in ischemia/reperfusion. Indeed, since this is an
important pathway for monocyte recruitment and mono-
cytes have been shown to infiltrate postischemic brain
this is a reasonable hypothesis to test. 

Other adhesive pathways
Probably the best documented pathway is the ICAM-

1/�2-integrin pathway for leukocyte recruitment. In fact
this pathway has been shown to be important in neu-
trophil recruitment in the brain microvasculature.
ICAM-1 has been shown to increase in ischemia/reper-
fusion of the brain and antibodies directed against the
�2-integrin pathway or ICAM-1 have revealed signifi-
cant inhibition as early as 1-2 hrs as well as in delayed
reperfusion models (10, 56, 92). Moreover, the ICAM-1
and CD18 deficient mice also protected from cerebral
ischemia/reperfusion (17, 72, 79). 

A final pathway of leukocyte recruitment that has
received limited attention in vivo is the leukocyte-
endothelium interaction where platelets function as a
bridging mechanism. The platelet attaches to endotheli-
um via vW factor and numerous other adhesion mole-
cules (see reviews 11). The platelets may then express
P-selectin and tether leukocytes to their surface. In addi-
tion the platelets express numerous pro-inflammatory
molecules including PAF which then cause neutrophils
to tether and firmly adhere (67). In vivo work has impli-
cated platelets as a potential “other” source of P-
selectin-dependent leukocyte recruitment, however a
systematic assessment of the importance of this pathway
remains unknown. This pathway may be quite important
in light of the fact that 1) platelets have been reported to
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accumulate in significant numbers in cerebral ischemia
(23) and 2) there is a significant amount of platelet adhe-
sion in the inflamed brain circulation (4, 23). Clearly,
investigating this pathway in thrombin and
ischemia/reperfusion-induced leukocyte recruitment
will be extremely important.  

Finally, to date almost all leukocyte recruitment has
been observed in small postcapillary venules. At this
stage, the exception is the liver and lung which recruit
leukocytes in capillaries/sinusoids (32). Whether physi-
cal trapping contributes to recruitment of leukocytes in
capillaries and small venules of the brain remains entire-
ly unknown. 

Turning off the inflammatory response
Although much attention has been given to the mech-

anisms that activate their acute inflammatory reaction
and the adhesion molecule profiles, the genes activated
to reduce inflammation have not been studied in detail.
We will limit this discussion to a single organ and use
the lung as an example. When the acute inflammatory
response is triggered in lung following airway deposi-
tion of IgG immune complexes (36), intensive gene acti-
vation occurs in a manner that is NF�B-dependent (51).
The first wave of mediators generated includes the pow-
erful pro- inflammatory cytokines, TNF� and IL-1. The
chief function of these cytokines is to bring about upreg-
ulation of vascular adhesion molecules such as E-
selectin and intercellular adhesion molecule-1 (ICAM-
1) (15, 63), both of which react with “counter-receptors”
on neutrophils to bring about both intermittent and sus-
tained adhesive interactions between blood neutrophils
and the activated endothelium as already summarized.
Transmigration of neutrophils subsequently occurs,
leading to release of toxic oxygen products and proteas-
es from the infiltrating neutrophils (and from activated
tissue macrophages), causing damage to cells and to
extracellular matrix components.

The acute inflammatory response also triggers gene
activation that results in production by tissue
macrophages of IL-10 and IL-13. Both of these Ig’s are
powerful anti-inflammatory products which, when pro-
duced in adequate amounts, very efficiently down regu-
late the inflammatory response (64). IL-10 and IL-13
are known to have the ability in vitro to reduce
macrophage production of pro-inflammatory mediators
such as TNF� and IL-1. In the context of acute inflam-
matory responses in vivo, the endogenous release of IL-
10 and IL-13 acts as a “brake” on the inflammatory
responses, causing a rapid turn-off of in vivo production
of TNF� and IL-1. This leads to a curtailment of the

inflammatory response, including a rapid drop in tissue
levels of TNF�, cessation in any additional recruitment
of neutrophils, no further increase in expression of vas-
cular adhesion molecules, and abrogation of any addi-
tional vascular damage (as reflected by extravascular
leak of 125I-albumin) (77). If blocking antibodies to IL-
10 or IL-13 are employed in vivo, the inflammatory
response becomes more intense, higher tissue levels of
TNF� occur, more neutrophils are recruited, and tissue
injury is magnified, supporting the concept that IL-10
and IL-13 function as endogenous regulators of the
acute inflammatory response.

There is now information that explains how IL-10
and IL-13 function in vivo to suppress the inflammatory
response. This can be understood by the information in
Figure 2. When macrophages are activated in vitro or in
vivo, this results in activation of NF�B, this process
requiring phosphorylation of a protein, I�B�, which
form a complex with NF�B and prevents the ability of
NF�B to translocate into the nucleus where it binds with
promoter regions of DNA (26). Phosphorylation of I�B
sets the stage for its intracellular hydrolysis by a cyto-
plasmic 26S proteasome enzyme. Once accomplished,
NF�B then translocates to its binding sites on DNA.
This process of degradation is blocked by the presence
of either IL-10 or IL-13, resulting in a sustained
NF�B•I�B complex that prohibits translocation of
NF�B into the nucleus (51). Thus, IL-10 and IL- 13
interfere with gene activation that is critical for initial-
ization the acute inflammatory response.

A second class of factors is produced during the
acute inflammatory response and has anti-inflammatory
effects. These products include the protease inhibitors,
tissue inhibitor of metalloprotease-2 (TIMP-2) and
secreted leukocyte protease inhibitor (SLPI) (27, 61). As
indicated above, proteases are incriminated as factors
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that are released from phagocytic cells and cause tissue
damage during the acute inflammatory response. TIMP-
2 has its targets metalloproteases (MMP), 2 and 9,
which are abundant in neutrophils and macrophages.
Introduction into lung of blocking antibody to TIMP-2
significantly enhances the intensity of lung injury in a
manner associated with increased recruitment of neu-
trophils (27). Precisely how the enzyme targets of
TIMP-2 are involved in fitting into events of the acute
inflammatory response is not clear.

The naturally occurring protease inhibitor, which
inhibits serine proteases, is SLPI, which is also upregu-
lated during the acute inflammatory responses (27, 34).
Exogenous administration of SLPI depresses neutrophil
accumulation tissues, caused reduced levels of TNFa
and diminishes the extent of ensuing tissue injury (50).
In vivo blockade of endogenous SLPI intensifies the
intensity of the inflammatory response in lung and the
degree of tissue injury. The key to understanding how
SLPI regulates the acute inflammatory response is the
observation that, like IL-10 and IL-13, SLPI impairs
NF�B activation. Unlike IL-10 and IL-13, SLPI pre-
vents in some unknown manner breakdown of I�B�,
another in the family of proteins that bind to NF�B and
prevent its translocation to DNA binding site in the
nucleus (50). Thus, IL-10, IL-13 and SLPI function as
intrinsic regulators of the acute inflammatory response.
Their involvement in regulation of acute inflammatory
events in the CNS awaits definition.

The hope remains that once a full understanding is
gained of what we term inappropriate inflammation,
therapeutic intervention may become a real possibility.
Although the adhesion molecules per se may become a
therapeutic target, another very reasonable approach
may be to suppress the genes that induce adhesive inter-
actions. The latter may be possible using the body’s own
anti-inflammatory defense mechanisms.
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