Computer-Aided Civil and Infrastructure Engineering 24 (2009) 186-198

Algorithm for Accurate Three-Dimensional Scene
Graph Updates in High-Speed Animations
of Previously Simulated Construction Operations

Prasant V. Rekapalli, Julio C. Martinez*

School of Civil Engineering, Purdue University, West Lafayette, IN, USA

Vineet R. Kamat

Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, M, USA

Abstract:  Visualization of construction operations is
an important technique to communicate the logic of sim-
ulation models in detail. Early efforts resulted in a scene
graph and frame update algorithm that was capable of
converting discrete information from simulation models
into smooth and continuous 3D animations. That algo-
rithm did not account for high speed or concurrent ani-
mation because the need to do so was not anticipated. Re-
cent advances in computing power and an interest in us-
ing the technology for next generation applications now
demand accurate high speed and concurrent animations.
This article presents the design of the original algorithm
at a previously undocumented level of detail and speci-
ficity, and that allows for the analysis of its shortcomings
when used at high speeds or concurrently with simula-
tion. Two subsequent but still inadequate designs of the
algorithm are also presented and analyzed in detail so
that they can serve as an illustration of the path toward
the final design and place it in proper context. The ar-
ticle concludes with the final design and evaluation of
the algorithm, which is accurate at very high animation
speeds and supports concurrent animation of simulation
models.
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1 INTRODUCTION

Discrete-event simulation (DES) can add significant
value to the design of construction operations. How-
ever, this value is only realized if the insights gleaned
from the DES model are used in making decisions and
increase understanding (i.e., they are credible) (Law
and Kelton, 2000). In order for simulation models to be
credible, their internal logic must be presented clearly
to domain experts and decision makers. Animation in
3D is a very effective means of communication that
allows errors in logic to be easily identified and cor-
rected, and planning groups to participate in discussions
aimed at improving the plan (Biles and Wilson, 1987;
Cox, 1988; Robinson, 1997; Henriksen, 1998; Tucker
et al., 1998; Jain, 1999; Rohrer, 2000; Law and Kelton,
2000; Kamat and Martinez, 2003). Kamat and Martinez
(2002) present a very detailed and comprehensive liter-
ature review on the use of visualization techniques in
construction.

For 3D animation to be effective, it must (1) be
smooth and continuous to provide a good viewing expe-
rience, (2) maintain a constant ratio of animated time to
viewing time (hereafter called animation speed) to vali-
date the relative speeds of activities, and (3) be tempo-
rally and spatially accurate.



Algorithm for accurate three-dimensional scene graph updates 187

For basic effective use of 3D animation, it is only nec-
essary for these characteristics to hold when the anima-
tion is post processed (i.e., the animation takes place af-
ter the entire model has been simulated), and when the
animated speed is modest (“modest” here is subjective
and depends on many factors).

More forward-looking applications require these
characteristics to hold when animation is concurrent
with the simulation (i.e., both the simulation and anima-
tion take place in parallel and advance their simulated
and animated time simultaneously), and when anima-
tion speed is very high (e.g., to achieve an effect similar
to time-lapse photography).

The process of animation involves a scene graph
that organizes the elemental 3D objects that make up
the universe being visualized, and the rendering of
the scene-graph for presentation in a display device
(i.e., a frame update). To animate what happened in
the corresponding simulation, it is necessary to up-
date the scene graph to reflect the movements, rota-
tions, and transformations of the elemental 3D objects
that make up the scene; and to subsequently render
the scene graph. The continuous cycling of these two
steps at rates of 10 or more per second gives the il-
lusion of apparent motion (Anderson and Anderson,
1993). Kamat and Martinez (2002) explain in detail
how a scene graph is organized and modified to reflect
changes in position and orientation of elemental 3D ob-
jects. They also explain how a straight-line language, au-
thorable by end-user programmable applications (such
as a discrete-event simulation system), can describe the
movements and transformations with temporal and spa-
tial accuracy. Kamat and Martinez (2002) present at
a coarser level of detail an algorithm for scene graph
and frame update that enables effective 3D animation
at the basic level (see above) using the straight-line
language.

In DES, time advances in discrete, uneven time inter-
vals. It assumes that the state of the system being mod-
eled changes only at these points in time, and it is only
then that the simulation system can write animation in-
structions (statements) in the straight-line language. Be-
cause animation should be a continuous, smooth pro-
cess, the main task of the algorithm is to achieve this
from discrete, unevenly spaced information. Please re-
fer to Kamat and Martinez (2002) for an in-depth dis-
cussion of this topic.

This article first describes the algorithm presented in
Kamat and Martinez (2002) in finer detail, and then an-
alyzes its performance under the more demanding con-
straints that exist when animation is concurrent with
simulation and/or at very high speeds. What consti-
tutes as a “high” or “low” or “moderate” animation
speed is model and user dependent (i.e., the time units

used to develop the animation model, and the con-
tent/purpose of the animation model itself), and there-
fore these terms are not quantified. The article then
presents several successive refinements to the algorithm
(and their analysis) that were needed to enable effec-
tive 3D animation under the more stringent constraints.
It is important to describe how the algorithm evolved to
satisfy more demanding constraints because the lessons
learned from the process are valuable to others involved
in the design of similar algorithms.

2 PERFORMANCE OF SCENE GRAPH
AND FRAME UPDATE ALGORITHMS

The performance of a scene graph update algorithm is
judged in terms of (1) the frame rate achieved, (2) ani-
mation smoothness, (3) maintenance of a constant view-
ing time to animation time ratio, and (4) the ability to
maintain an accurate scene.

Frame rate refers to the number of still images that
make up a unit of time in a video/film, and is typically
measured in frames per second (fps). In computer an-
imation, frame rate is the number of animation loops
(where each animation loop results in an image being
drawn on the display device) achieved in one time unit;
and is also measured in frames per second.

Animation loop times directly affect the frame rate
that can be achieved. Smaller loop times result in higher
frame rates. An animation loop time depends on (1) the
computing resources available (CPU, graphics proces-
sor, memory), (2) the animation complexity, and (3) the
number of animation instructions processed.

As the capability of the computing resources in-
creases, the time required to process the animation,
update and render is shorter, and thus increases the
achievable frame rates.

Animation complexity is a function of (1) the num-
ber of objects in an animation scene, (2) the number
and type of simultaneous moving objects in the scene,
and (3) the level-of-detail of the elemental CAD mod-
els used in the animation. When animation complexity
increases, the time required to update and render the
scene increases, and consequently the achievable frame
rate goes down.

Periodically, the algorithm has to process a set of ani-
mation instructions. This is required to update the con-
tent of the animation (i.e., introduce new virtual objects
or remove existing virtual objects, define new object
motions, etc.). When this happens, the animation loop
times also increase. When and how many animation in-
structions are processed depends on the algorithm being
used.



188 Rekapalli, Martinez & Kamat

3 DESIGNITERATION 1

The initial algorithm was implemented and extensively
tested in pre-release versions of the dynamic construc-
tion visualizer (DCV) (Kamat and Martinez, 2001), and
its design evolution is presented in Kamat and Martinez
(2002). The algorithm contains four distinct processes
shown in Figure 1 and explained below: (1) trace file
parser process (TFPP), (2) animation time advance

TFPP

Parse & Execute Trace File
Statements until
Time-Stamp Value > Current
Animation Time

v

ATAP

A

Compute & Advance
Current Animation Time

v

POUP

Update Position & Orientation
of all
Object-MRTs
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Animation Time
NO >= Next Time
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TFPP

Parse & Execute Trace File
Statements until
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Animation Time

v

CDFP

Cull Draw & Frame

Scene Graph

Fig. 1. Scene graph and frame update algorithm from design
iteration 1 (Kamat and Martinez, 2002).

process (ATAP), (3) position orientation update pro-
cess (POUP), and (4) cull draw frame process (CDFP).
The TFPP, POUP, and ATAP processes control the
scene graph update, and the CDFP process controls the
frame update.

3.1 Trace file parser process

The scene graph and frame update algorithm is de-
signed to work with instructions that describe (1) the
creation or destruction of objects; (2) instantaneous
changes to their state, including position, orientation,
scaling, and appearance; (3) attachment and detach-
ment of one object to another; and (4) changes to ob-
jects that occur over a period of time such as movement
over a path, rotation, and transformation (scaling, bend-
ing). Every instruction is associated with a timestamp
value that indicates when, in simulated time, the instruc-
tion takes place. In DCV, for example, instructions are
represented by statements, and the “TIME” statement
defines the timestamp value for all the animation state-
ments that follow it (until a subsequent TIME statement
establishes a new timestamp).

The trace file parser process (TFPP) (hereafter re-
ferred to as the parser) interprets instructions. In-
structions that indicate instantaneous action result in
changes to the scene graph that take place immedi-
ately. For example, an instruction to place an object at
a specific position would immediately change the trans-
lation node of the scene graph that controls its location.
Instructions that indicate actions that take place over
time are registered with the POUP (see below). Instruc-
tions of this type include those that indicate noninstan-
taneous movement, rotation, or transformation. An in-
struction may indicate that the hook line of a crane, for
example, should reduce its length over a period of time
to animate the lifting of a load (the hook line may be
attached to a boom on one end, and the load may be
attached to the hook line at the other).

The parser interprets instructions sequentially until
it encounters a timestamp that is larger than the cur-
rent animation time. This new timestamp becomes the
next time value, and provides a reference point for re-
entry into the parser. The algorithm does not reenter
the parser unless the current animation time is greater
than or equal to the next time value.

3.2 Animation time advance process

The animation time advance process (ATAP) (hereafter
referred to as the timer) is responsible for advancing the
animation clock. The animation clock in theory is ad-
vanced by discrete amounts based on the time elapsed
since the last time advance (in real clock time units)
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and the animation speed. This animation time advance
mode results from the use of a variable frame rate. The
rationale for this is explained in great detail in Kamat
and Martinez (2002). The new animation clock time is
calculated using the formula:

NewTime = OldTime
+ (ElapsedTime * AnimationSpeed)

Animation speed is the user-controlled rate of in-
crease of the animation clock per unit of real time. For
example, an animation speed of 10 implies the anima-
tion clock will advance by 10 time units for every 1 time
unit of real time.

Elapsed time values are usually very small and there-
fore the animation time advances are also usually
small. This creates the illusion that time is advancing
smoothly.

3.3 Position orientation update process

The position orientation update process (POUP) (here-
after referred to as the updater) keeps track of the
various changes to objects that occur over a period
of time. This includes movements, rotations, transfor-
mations (referred to as object-MRT in the rest of the
article) or any other gradual change (e.g., an object
could change its color or transparency gradually over
some time period). When called, the updater updates
the scene graph to reflect the state of the objects reg-
istered with it. For example, if an object is registered to
move at constant speed from position (1,1,1) to position
(2,1,1) in 4 time units that started at time 50 (the time-
stamp in effect when the object was registered with the
updater), and the animation clock time is 51, its position
would be updated to (1.25,1,1). The updater also com-
pletes the changes indicated by instructions that have
expired and then de-registers them.

By design, the updater maintains only one object-
MRT instance per type per object. For example, an ob-
ject at any point in time can have only one vertical rota-
tion registered with the updater. This does not preclude
the same object from having other object-MRT's simul-
taneously registered with the updater. The implication
of this design feature is that when the parser registers a
new object-MRT with the updater, if the same object-
MRT (with different parameters) is already registered
in the updater, the new object-MRT overrides the old
one. This design feature was chosen for several reasons:

1. An animation scene is created by importing sev-
eral CAD models, some of which are static objects
(e.g., buildings, terrain features). The straight-line
language of DCV does not differentiate between

static and dynamic objects. It is computationally
inefficient to assume that all objects are dynamic
because this would require several more param-
eters to be maintained by each object. Instead,
all objects are initially assumed to be static, and
when an object-MRT is encountered, the algo-
rithm dynamically converts that object into a dy-
namic type. The dynamic object then maintains
the object-MRT’s details, while being registered
with the updater.

The algorithm must be capable of handling a sit-
uation where two partially overlapping object-
MRTs of the same type on the same object are
registered (i.e., a second object-MRT is registered
while another object-MRT of the same type on
the same object is already in progress). This is im-
portant when considering future applications. See
example below.

An application currently under design involves
the use of concurrent simulation-animation to en-
able interactive simulation control. In this ap-
plication, the concurrent animation must present
the current state of the DES; any changes imple-
mented into the simulation state must be captured
by the animation. For example, to reflect a change
in the duration of an ongoing activity, the anima-
tion must be capable of modifying the duration
of object-MRTs that reflect the process within the
simulation activity.

In other future applications, object-MRT infor-
mation available might be incorrect, incomplete,
or changing over time. This could be either by
desire or limitation. For example, when using this
algorithm to animate in real time a construction
work site, it would be impossible to obtain the
actual duration of any activity that is in progress
until after the fact. This can be overcome by us-
ing a prediction strategy where animation object-
MRTs (that represent an ongoing activity) are ini-
tially populated using predicted durations (e.g.,
using past data) and these durations can be up-
dated from time to time based on the actual
data obtained from the construction site in real
time.

Another advantage of this design feature is its
ability to capture errors produced in the simula-
tion model. For example, if the situation of two
partially overlapping object-MRTs of the same
type on the same object were to occur due to an
error in the simulation model, the current strategy
of handling the situation would provide a visual
notification of the error to the end user (because
the animation viewed would not conform with the
end user’s expectations).
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The authors believe this design feature is of impor-
tance and must be preserved.

3.4 Cull draw frame process

The cull draw frame process (CDFP) (hereafter re-
ferred to as the renderer) renders the scene graph to
the display device. Before rendering, the renderer first
calculates the position and/or orientation of the scene
camera, which determines the needed culling. Camera
position and orientation changes are the result of user
interaction during visualization (i.e., when the user nav-
igates) and/or when the camera is attached to an object
that is also moving.

3.5 Elapsed time length

The elapsed time values are the cumulative times used
by the updater, parser, and renderer between succes-
sive timers. The renderer times are influenced by the
complexity of the scene, the camera position processing
time, and the number of viewing windows. The parser
times depend on the number of statements that need to
be parsed and are usually negligible in comparison to
the renderer times; and therefore usually do not affect
the frame rate performance. The updater times depend
on the number of moving objects and are usually negli-
gible in comparison to the renderer times. The updater
times can be significant when modeling some complex
objects (e.g., fuzzy objects like concrete, water, etc.).

3.6 Testing, analysis, and limitations

The initial algorithm appeared to meet the performance
requirements while displaying an accurate scene at all
times when tested at relatively low animation speeds.
However, when higher animation speeds were used
and the animation ran for long periods of time, cer-
tain objects were displayed at incorrect positions and
orientations. These errors increased as the animation
continued.

The updater is a critical step in maintaining the accu-
racy of the scene. By design, certain object-MRTs may
be cumulative in nature (e.g., successive rotations). The
instructions that affect such movements assume that the
current state of the object is accurate, and simply indi-
cate how the object should change from that point on.

For illustration purposes, consider the boom of an ex-
cavator attached to a cabin. For animation purposes, the
boom may be rotated vertically up and then down in a
continuous fashion. A portion of a DCV trace file that
corresponds to one cycle may look as follows:

TIME 10;
VERTORIENT ExcBoom 45;

TIME 20;
ROTATE ExcBoom VERT -30 2;
TIME 22;
ROTATE ExcBoom VERT 30 2;
TIME 30;

ExcBoom’s (i.e., the excavator’s boom) current verti-
cal orientation is set to 45 degrees prior to the rotations.
The first “TROTATE” statement indicates that the boom
should rotate —30 degrees starting at animation time 20
and ending two time units later (at time 22). A call of
the updater at time 22 would thus calculate the vertical
orientation of the boom to be 45 — 30 = 15 degrees. Sim-
ilarly, and noting the second “ROTATE” statement, a
call of the updater at time 24 would calculate the vertical
orientation of the boom to be 45 degrees, the same as at
time 20.

This initial algorithm did not contemplate the possi-
bility of a situation in which a single call to the parser
would process instructions with more than one unique
timestamp. For example, the assumption was that the
next timestamp found during the parser would have a
larger value than the current animation clock. In other
words, the real time elapsed between successive calls to
the parser, multiplied by the animation speed would be
smaller than the difference between two unique time-
stamps.

Due to the laws of probability, however, it is possi-
ble for two events in a simulation to occur within a very
small time interval. The assumption was that anima-
tion instructions resulting from those very close events
would not involve the same object and the same type of
change.

However, when animation speed is high, and the
frame rate is low, this situation does happen. The conse-
quence is that errors take place in calculating the object-
MRT during the updater, and that these errors are
cumulative.

For illustration purposes, consider the above sample
case, and a situation where the animation speed is 100
and the frame rate is 25 fps. In this case, the elapsed
time is 1/25™ of a second, and the corresponding anima-
tion time increase is 100 times that value, or 4 seconds.
Assume that time advances from 19 seconds to 23 sec-
onds. Note that the next time value resulting from the
last parser is 20. The following is a walkthrough of the
parser process:

® The parser is called when the animation time is 23.

® The parser processes the first “ROTATE” statement
and registers with the updater that ExcBoom is rotat-
ing vertically at the rate of —15 degrees per second.

® Because the next timestamp encountered, 22, is less
than the current animation clock, the parser contin-
ues and processes the second “ROTATE” statement.
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Fig. 2. Scene distortion of an excavator model.

It registers with the parser that ExcBoom is rotating
vertically at a rate of +15 degrees per second. This
effectively overwrites the vertical rotation speed of
ExcBoom that was installed by the first “ROTATE”
statement.

® The parser ends when it encounters the “TIME 30”
statement.

® A subsequent updater will disregard the first “RO-
TATE” and will assume that at time 22 the vertical
orientation of the boom is 45 degrees instead of 15
degrees.

In practice, the errors are much smaller in magni-
tude, but do occur with some frequency when anima-
tion speed is high and frame rate is low. The accumu-
lation of the small errors becomes visible and results in
the scene looking distorted. Figure 2 shows the effect of
scene distortion on an excavator model (note how the
excavator’s boom, stick, and bucket are at such unreal-
istic angles).

During the early testing phase, because of the very
low frame rates achieved with the algorithm, viewing
animations at higher speeds caused a loss of apparent
motion (i.e., the changes in object-MRTs was so large
between each frame that the animation looked like a
series of still images). When the testing shifted to a bet-
ter computing platform, this effect of scene distortion
was observed. Increases in available computing per-
formance have made it possible to view animations at
higher and higher speeds without loosing the illusion of
apparent motion.

4 DESIGN ITERATION 2

To eliminate scene distortion, a time correction was in-
troduced as the first step in the parser. The role of the
time correction is to bring back the current animation
time to match the next time value (see Figure 3). This
limits the parser to parsing and executing statements

Enter TFPP

Time-Correction

Set
Current Animation Time =

Next Time Value

v

TFP Sub-Process

Y

Parse Next
Trace File Statement

Statement
Parsed has

Time-Stamp YES

TFP Sub-Process

Execute Parsed
Trace File Statement

Time-Stamp
Value <=

Current
Animation

TFP Sub-Process

Set
Next Time Value = Time-

Stamp Value

Exit TFPP

Fig. 3. TFPP of the scene graph and frame update algorithm
from design iteration 2.

that have the same timestamp value. Doing so elim-
inates the possibility of registering two object-MRTs
of the same type on the same object within the same
parser, at the expense of maintaining a constant ratio
of viewing time to animation time. The time correction
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effectively eliminates the chance for any scene distor-
tion to occur.

The algorithm from the second iteration was imple-
mented in DCV and in early versions of VITASCOPE
(Kamat, 2003) (an extension of DCV). This algorithm
has not been presented in detail in prior literature.

4.1 Testing, analysis, and limitations

The algorithm from design iteration 2 met the per-
formance requirements while maintaining an accurate
scene when used to view animations of construction op-
erations at low to moderate animation speeds. When
VITASCOPE, implementing this algorithm, was used
for animation at high speeds, two new limitations caused
by the time correction became evident: (1) animation
speed deviation and (2) animation speed variability.

4.1.1 Animation speed deviation. The time correction
within the parser causes the algorithm to deviate from
the user-defined animation speed. As noted earlier, the
time correction in the parser always reduces the anima-
tion time to the next time value. This causes an increase
in the total animation time actually viewed, which
causes a reduction in the animation speed achieved; and
can be calculated as follows:

T, Actual length of an animation model

T, Cumulative time correction incurred during a
given animation model’s run

A, User-defined animation speed

A, Effective animation speed achieved for a given
user-defined animation speed on a given anima-

tion model
., T+T A 1,
== r o= M
A, Ay A .+ 1

According to Equation (1), the effective animation
speed achieved (as a ratio of the user-defined anima-
tion speed) decreases as the cumulative time correction
incurred in an animation run increases (7). The cumu-
lative time correction for an animation model depends
on:

1. The number of unique timestamps. Time correc-
tion occurs only on entry to the parser, which oc-
curs for every unique timestamp in the animation
model. When using this algorithm, the minimum
number of animation loops required to visualize
the entire animation equals the number of unique
timestamps in the animation.

2. The user-defined animation speed. Higher user-
defined animation speeds produce larger time ad-
vances at the timer, which causes larger time cor-
rections in the parser. Importantly, T, increases

at a lower rate than A;. The relationship between
the rates of change of T, and A, depends on the
frame rate achieved. Hence, for a given anima-
tion model and frame rate, as A, increases, even
though the ratio of A, to A decreases, the magni-
tude of A, increases.

3. The frame rate achieved. Lower frame rates pro-
duce larger time advances at the timer, which
causes larger time corrections in the parser.

The magnitude of A,., however, has an upper limit
(i.e., a maximum achievable effective animation speed),
which can be calculated as follows:

N, Number of unique timestamps in an animation
model

T, Average elapsed times achieved for a given model
using given computing resources

—~ )
e * Ny

Hence, the maximum effective animation speed is
achieved when the algorithm enters the parser in ev-
ery animation loop. Equation (2) shows that an in-
crease in frame rate (i.e., lower T, values) increases

the maximum achievable effective animation speed
(A[max]).

Afmax] =

4.1.2 Animation speed variability. Animation speed de-
viation, by itself, is not a critical limitation. As men-
tioned earlier, an important performance measure is
the ability to maintain a constant animation time to
viewing time ratio (i.e., maintain a constant anima-
tion speed). Hence, animation deviation would have
been an acceptable limitation if the algorithm main-
tained a constant animation speed at the effective speed
achievable.

Further testing and analysis, which included collec-
tion of time correction data from sample models, re-
vealed that the algorithm failed to maintain a constant
animation speed. Instead, the algorithm produced vari-
ability in the animation speed experienced during the
animation run. This variability increased to unaccept-
able levels at higher animation speeds.

A constant speed implies that a plot of real time ver-
sus animated time should be a perfectly straight line
passing through the origin and with a positive slope.
This straight line, however, is disrupted at every time
correction (i.e., the plot deviates from being a straight
line). In other words, the plot maintains a straight line
(with a slope equal to the user-defined animation speed)
between consecutive time corrections.

The ratio of the number of animation loops re-
quired to visualize a model to number of animation
loops where deviation is encountered can serve as one
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measure of animation speed variability. The number
of animation loops where deviation occurs equals the
number of unique timestamps (N,,). The number of ani-
mation loops required to visualize the entire model can
be shown to be:

N, Number of animation loops required to visualize
an entire animation model

Ny = -
1. % A

A higher ratio of N,/N,, implies that a greater por-
tion of the real-time to animated-time plot maintains
a straight line. At the maximum effective animation
speed, this ratio reaches its lower limit value of 1, and
the corresponding real time to animated time plot at this
ratio no longer contains straight line portions.

Hence, animation speed variability depends on (note
Equation (3) and above discussion):

3)

1. The number of unique timestamps in the anima-
tion model (N,,).

2. The user-defined animation speed. Increase in the
user-defined animation speed increases the mag-
nitude of the effective animation speed, which re-
duces the number of animation loops required to
visualize the entire model.

3. The frame rate achieved. Lower frame rates re-
duce the number of animation loops required to
visualize the entire model.

250

193

4.1.3 Sample model analysis. To provide a better un-
derstanding of the effects of animation speed deviation
and variability, time correction data were collected from
an animation model of an earthmoving operation at dif-
ferent animation speeds. The data were collected for the
first 3,000 time corrections encountered when running
the model. The animation speeds used were as follows:

1. A range 10 to 100 in steps of 10
2. Ajgrange 100 to 1,000 in steps of 100
3. A, range of 1,000 to 10,000 in steps of 1,000

All animation runs used the same computing re-
sources, in this case a 3.73 GHz processor, 256 MB video
card, and 4 GB memory.

Using the data collected, for each animation speed,
the following results were obtained:

¢ The ratio of A, to A, (plotted in Figure 4 as a per-
centage).
The magnitude of A, (plotted in Figure 4).
The ratio of N, to N,, (plotted in Figure 5).
The “straightness” of the real time versus animated
time plot. For each plot (for each Ay) the square of
the Pearson product moment correlation coefficient
(RSQ) was calculated. Figure 5 also shows the plot
for the value of (1-RSQ)=*10"4 for the different A;.

Figure 6 shows the plot of real time versus ani-
mated time for the earthmoving model at an animation
speed of 300. The maximum effective animation speed
for the earthmoving model is 206 (calculated using

100%
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Fig. 4. Animation speed deviation results for sample earthmoving model.
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Fig. 5. Animation variability results for sample earthmoving model.

Equation (2) where N, = 3,000, T, = 0.0156, and T, =
9,666.61).

4.2 Critical animation speed

The earlier discussion notes that the second algorithm
presents certain problems as the animation speed used
to visualize the model increases. The critical animation

speed is the animation speed value at which animation
speed deviation and/or animation speed variability are
noticeable. This is a subjective value because people
have different capabilities in detecting/noticing anima-
tion speed deviation or variability.

As discussed earlier, there is an upper limit to
the effective animation speed achievable (206 for the
earthmoving model) for any given model. General
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Fig. 6. Actual and ideal animation time plots for the earthmoving model at animation speed of 300.
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observations show that when the maximum effective
animation speed is reached, animation deviation is
very noticeable. Hence, the minimum animation speed
at which the maximum effective animation speed is
achieved is one way to define the critical animation
speed (around 1,000 for the earthmoving model based
on this criteria).

The critical animation speed is dependent on the per-
formance of the algorithm, which is dependent on sev-
eral other factors (noted earlier). The critical animation
speed is also dependent on the time scale used in the an-
imation model. For example, an animation model with
its time value units in hours, an animation speed of 1
would imply for every 1 second of real time the anima-
tion clock is advanced by 1 hour (i.e., 3,600 seconds).
Hence, an animation speed of 1 in this case could be
well above the critical animation speed.

5 DESIGNITERATION 3

It is apparent that the time correction contained within
the parser is the cause for deviation and variability in
observed animation speed. At high animation speeds,
these issues become more noticeable as they occur with
greater magnitude. These problems cannot be avoided,
and hence there is a need to modify the existing algo-
rithm without the time correction while also preventing
the scene distortion problem.

This was achieved in the third design iteration, where
the scene graph and frame update algorithm and the
parser process within it were modified as shown in
Figures 7 and 8 respectively.

The updater was introduced into the parser such that
it takes place before the parser interprets instructions
with a new unique timestamp. Scene distortion is caused
when multiple object-MRTs of the same type on the
same object are parsed and executed within a single
parser. Scene integrity is maintained by ensuring that all
existing object-MRTs are updated before the parser in-
terprets instructions that have a new unique timestamp.

Consider the sample DCV statements presented ear-
lier, where the animation clock advances from 19 to 23.
The following is walkthrough of the algorithm (starting
with the parser):

1. The parser parses the “TIME 20” statement.

2. The updater is called from within the parser at
time 23.

3. The parser parses and executes the first “RO-
TATE” statement, which registers with the up-
dater that ExcBoom must rotate vertically by
—30 degrees with start and end times of 20 and 22,
respectively.

4. The parser parses the “TIME 22” statement.

TFPP

Parse & Execute Trace
File Statements Until
Time-Stamp Value >

A

Current Animation Time

v

POUP

N Update Position &

Orientation of All
Object-MRTs

v

CDFP

Cull Draw & Frame
Scene Graph

v

ATAP

Compute & Advance
Current Animation Time

Current
Animation
Next
Time Value

Time >=

Fig. 7. Scene graph and frame update algorithm from design
iteration 3.

5. The updater is called from within the parser at
time 23. Within the updater, the registered in-
struction about ExcBoom’s vertical rotation is up-
dated, and is calculated to be 15 degrees. Also,
because this instruction has expired, it is de-
registered from the updater.

6. The parser parses and executes the second “RO-
TATE” statement, which registers with the up-
dater that ExcBoom must rotate vertically by 30
degrees with start and end times of 22 and 24,
respectively.

7. The parser parses the “TIME 30” statement and
then exits.

8. The updater from the scene graph and frame al-
gorithm is called at time 23, which calculates and
updates ExcBoom’s vertical rotation to be 30 de-
grees (15 + 30/2).
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Fig. 8. TFPP of the scene graph and frame update algorithm
from design iteration 3.

Note that this algorithm version maintains the design
feature of the first algorithm in that a new object-MRT
overrides any existing object-MRT of the same type on
the same object that was previously registered with the
updater. The difference here is that the previous object-
MRT is partially updated before being overridden.

5.1 Testing, analysis, and limitations

By removing the time correction present in design itera-
tion 2, it was possible to maintain a near perfect constant
ratio of animated to real time. The term “near perfect”
is used because the animation time ultimately advances
in discrete uneven time steps (that depends on the frame
rate and animation speed); and therefore a plot of ideal
animation time to real animation time will never be an
exact match. This algorithm iteration, like the first iter-
ation, does not have any time correction and therefore
does not exhibit any animation speed deviation or vari-
ability, but unlike the first iteration, this algorithm does
not exhibit any scene distortion. Although the algorithm
at this stage was adequate, the frame rates achievable
when viewing complex animations were lower than with
the prior iterations when modeling complex objects that
significantly increased the updater time. The next itera-
tion in the design involved changes geared to improve
frame-rate performance.

6 DESIGNITERATION 4

The aim of any scene graph and frame update algo-
rithm is to achieve the maximum frame rate possible.
Better performance of an algorithm translates into the
ability to visualize larger and more complex animations
in a smooth and accurate manner, without having to
increase computing resources. This design iteration fo-
cused on optimizing the previous algorithm.

Optimizing the algorithm involved identifying unnec-
essary computing processes and eliminating them. The
updater within the new parser was identified as a source
of unnecessary computing because it is not necessary to
update the position and/or orientation of all moving ob-
jects at this stage.

Consider the sample VITASCOPE statements
shown below, which include two additional statements
(“PATH” and “MOVE”).

PATH HaulPath (0,0,0) (50,0,0);
TIME 10;
VERTORIENT ExcBoom 45;

TIME 20;

MOVE DumpTruck HaulPath 50;
ROTATE ExcBoom VERT —30 2;
TIME 22;

ROTATE ExcBoom VERT 30 2;
TIME 30;

The “PATH” statement defines a motion path named
HaulPath from coordinate (0,0,0) to coordinate (50,0,0)
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(i-e., a length of 50 units). The “MOVE” statement de-
notes that DumpTruck (refers to a dump truck object in
the animation) must travel on the HaulPath in 50 time
units (i.e., DumpTruck will move by (1,0,0) units for ev-
ery 1.0 animation time unit), with start and end times of
20 and 70, respectively.

Consider the previous algorithm walkthrough, in
which the updater is called three times (two times from
within the parser, and once from outside). All three
times, the updater is called at animation time 23. At
each of these updater calls, DumpTruck’s position will
be calculated to be (3,0,0). Here, a single update of
DumpTruck’s object-MRT would have been sufficient.

The previous algorithm was inefficient in that posi-
tion/orientation updates for all objects might be called
multiple times from within the same parser. Hence, it
was concluded that the updater within the new parser
was a source for unnecessary computing time. Because
the updater within the parser does not have to update
the position and/or orientation of all moving objects,
and instead performs the action selectively; the origi-
nal POUP was replaced by a selective-POUP (SPOUP)
(hereafter referred to as the selective-updater) (see
Figure 9).

The selective-updater is called after parsing an in-
struction but before executing it, and first checks if the
parsed statement will register an object-MRT. If so, the
selective-updater then checks to see if an object-MRT of
the same type and same object is currently registered
with the updater, and if so updates that particular regis-
tered object-MRT.

For the above example, at the selective-updater in
the optimized parser, ExcBoom’s vertical rotation is
the only object-MRT that is updated (as required); and
DumpTruck’s object-MRT is not updated (which is ac-
counted for in the updater call that follows the parser).

6.1 Critical animation speed

Previously (in iteration 2), the number of statements
parsed and executed in a single parser was limited to the
number of animation statements with the same time-
stamp. In contrast, there are no limitations placed on
the number of animation statements that can be parsed
and executed in a single optimized parser. Hence, as the
animation speed increases, the number of statements
that are parsed and executed in a single parser can
increase.

Larger animation speeds cause larger time advances,
and if the time advances are sufficiently high it can re-
sult in a parser having to parse statements from mul-
tiple timestamps, which increases parser times. Hence,
at very high animation speeds, parser times can become
so large that the algorithm no longer maintains an ad-
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Fig. 9. TFPP of the scene graph and frame update algorithm
from design iteration 4.

equate frame rate to produce a smooth and continuous
animation.

The animation speed at which the algorithm can no
longer maintain an adequate frame rate is the criti-
cal animation speed for the optimized algorithm. Ini-
tial testing showed that the critical animation speeds
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achieved with the fourth algorithm are very large
(greater than 10,000 for the earthmoving model). An-
imation speeds exceeding the critical value are not suit-
able for any use (even simulating time-lapse photog-
raphy) because at such speeds, it is nearly impossible
to clearly visualize any part of or the entire operation.
Note that this limitation is not present in the iteration 2
algorithm because the algorithm limits the number of
animation statements that are processed in a single
parser call.

7 CONCLUSIONS

To enable smooth and continuous 3D animations from
discrete-event simulation models, the scene-graph up-
date algorithm must be capable of converting discrete
time based animation instructions into continuous ani-
mation information. The scene graph and frame update
algorithm must achieve three basic performance goals at
all animation speeds: (1) a suitably high frame rate; (2)
accurate computations of articulations, movements, and
transformations of virtual objects during the animation
run; and (3) maintain the user-defined viewing ratio be-
tween viewing time and animation time throughout the
animation run.

At high animation speeds, any scene graph and frame
update algorithm will have to parse and execute anima-
tion instructions with different timestamp values (which
are sequential). If not accounted for, the execution
of multiple unique timestamped animation instructions
can lead to errors being encountered that ultimately re-
sult in a distorted animation scene.

The authors present the evolution of the algorithm’s
design to achieve all of the performance goals and
present the final algorithm that does so. The final algo-
rithm is capable of handling very high animation speeds,
which enables the algorithm to be suitable for future
adaptation/adoption for next generation applications
(e.g., concurrent simulation animation, real time anima-
tion of construction site work).

Future work in this area is needed to support more
advanced animation modeling requirements such as
animating preemption in simulated operations, and
constructing new object-MRTs that are dependent on
other existing object-MRTs. This work is currently in
progress.
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