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To understand the nature of structural defects that produce osteogenesis irnperfecta 
(01), the modes of inheritance of the several forms of the disease, and the effects of 
specific mutations on the behavior of the type I collagen molecule, we have developed 
a general strategy for analyzing the basic molecular defects which produce the phen- 
otype. The genes encoding the two chains of the type I collagen molecule are struc- 
turally complex,'.* and the proteins are large and internally repetitive?' making analysis 
of mutations at either the DNA or protein level difficult. The al( I )  and a2( I) chains 
which make up the type I collagen heterotrimer are encoded by the 18 kilobase (kb) 
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COLlAl’*’ and 38 kb COL1A26 genes, respectively. Many methods have been used 
in the analysis of mutations which produce osteogenesis irnperfecta, including a variety 
of genomic cloning strategies,’-’2 cDNA ~loning,’~~’‘ protein sequence determina- 
t i ~ n , ’ ~ ’ ’ ~  mRNA sequence determination,’ S1 nuclease cleavage,16 RNase cleavage,“ 
and R-loop analysis.’* In general, each study is tailored to the biochemical phenotype 
of the type I collagen molecules produced by the cell strain. Our goal has been to 
develop general strategies for analyzing mutations so that the same methods can be 
applied to the determination of the structure of mutations in many cell strains. 

We have developed strategies by which most or all of the genes of interest can be 
isolated. DNA sequence analysis by localization of a structural alteration in the type 
I collagen molecule determined at the protein level is used to characterize the mutation. 
There are several advantages to this approach. Because the DNA fragments isolated 
are large and carry most of the gene of interest, the basic strategy will be useful in 
analyzing a wide variety of mutations. The fragments contain polymorphic restriction 
sites, so alleles from heterozygotes can be distinguished after isolation. When the 
proper haplotypes are present, the parental origin of mutation can also be determined. 

THE COLlA2 GENE 

Most of the exons of the 38 kb COLlA2 gene are contained within a 27 kb BamHI 
restriction fragment. Patient DNA is digested with BamHI and size-fractionated. The 
DNA is ligated into the unique BamHI site of cosmid pRK311I9 and packaged into 
lambda phage heads in v i m z o  Recombinants carrying the COLlA2 gene are identified 
by colony hybridization.” Typically one positive clone per 3-15 x lo3 colonies is 
seen. 

The isolated BamHI fragment contains 4 common polymorphic restriction sites2”2’ 
that have been used to distinguish alleles from individuals heterozygous at one of the 
sites. The frequencies of the 4 polymorphisms are such that heterozygosity is likely 
in most individuals. In families with dominantly inherited 01, linkage of a particular 
allele to the phenotype can also be determined. 

From cDNA sequences,26.” genomic DNA sequences,6.28 and genomic restriction 
maps: we have developed a map that relates the linear arrangement of the protein 
(represented as cyanogen bromide (CB) cleavage fragments) to that of the exons in 
the gene (FIG. 1). The 27 kb BamHI fragment carries exons that encode the carboxyl- 
terminal 85% of a2(I)CB4, all of a2(I)CB3-5, and all of the C-propeptide. 

We used the strategy to isolate alleles from an infant with 01 type I1 carrying a 
4.5 kb deletion within one COLlA2 allele.” The alleles were isolated, distinguished 
by restriction analysis, and heterozygosity at the polymorphic EcoRI site was used 
to establish that the deletion occurred in the paternally-derived allele. DNA sequence 
determination indicated that the deletion removed the 7 exons that encode amino 
acids 586-765 of the triple-helical domain. There was no homology between the 
endpoints of the deletion, suggesting a nonhomologous recombination mechanism. 
The endpoints of the deletion were located in introns, indicating that the protein 
product of the deletion allele should have an intact Gly-X-Y repeat. Even so, type I 
collagen molecules containing the short chain had excessive posttranslational modi- 
fication (overmodification) amino-terminal to the deletion junction, were thermally 
unstable, and were poorly secreted, suggesting that elements of type I collagen primary 
structure beyond the Gly-X-Y repeat are important for triple-helix stability and mo- 
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lecular function. The characterization of this mutation also indicates that lethal mu- 
tations are not restricted to the COLlAl gene. 

We have also used this strategy to characterize a mutation which produces the 
mild to moderate 0 1  type IV phenotype." Linkage analysis using restriction fragment 
length polymorphic markers has demonstrated linkage of the phenotype to the 
COL 1A2 gene in several fa mi lie^?^.'^ Biochemical defects including small deletions in 
the a2(I) chains of affected  individual^^*^' have supported the linkage data. We studied 
a small family in which the phenotype was inherited in an autosomal dominant fashion. 
Skin fibroblasts from affected individuals produced a population of normal type I 
collagen molecules and a population of molecules in which overmodification extended 
along the entire triple-helical region. Isoelectric focusing of peptides of type I collagen 
prepared by digestion with mammalian collagenase and cleavage with cyanogen bro- 
mide demonstrated a basic charge shift in a population of the a2(I)CBSB peptide 
fragments in affected family members, linking the phenotype to the COLlA2 gene. 
Analysis of COLlA2 restriction fragment length polymorphisms indicated that the 
phenotype associated with the RsaI( - ) allele. Alleles were isolated from an affected 

FIGURE 1. COLlA2 restriction mapa2(I) cyanogen bromide cleavage map correlation. The 
bold urrow indicates the limits of the COLlA2 gene. Sites shown on the restriction map (top) 
are BamHI (B), EcoRI (E), and Hind111 (H). Shown below the restriction map is a linear 
representation of the triple helix of the a2(I) chain. The locations of the methionine residues 
separating the cyanogen bromide peptides are indicated by verticol fines and the numerical 
designations of the peptides are shown. Lines between the restriction map and the protein map 
indicate the region of the gene encoding each peptide fragment. 

individual, distinguished by restriction analysis, and the RsaI( - ) allele was selected 
for DNA sequence analysis. The a2(I)CBZB peptide fragment is encoded by a 3.0 
kb XhoI-XbaI restriction fragment which was subcloned into M13mp19. DNA se- 
quence determination showed that the basic charge shift resulted from a single nu- 
cleotide change which substituted an arginine for the last glycine (residue 1012) of 
the triple helix. This result indicated that substitutions for glycine in the a2( I) chain 
can have milder clinical consequences than analogous defects in the al(1) chain. 

THE COLlAl GENE 

The entire 18 kb COLlAl gene except for the last 12 codons and the 3' untranslated 
region is contained within a ca. 23 kb EcoRI fragment. Using a similar strategy to 
that developed for the COLlA2 gene, we have isolated this fragment using cosmid 
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vector pLAFRl .32 The fragment contains the only known intragenic polymorphic 
restriction site:3 which allows alleles from heterozygotes to be distinguished. We used 
cDNA sequences,)4 genomic DNA (D. H. Cohn, unpublished; R. E. 
Gelinas, unpublished), and genomic restriction to relate the COL 1Al gene 
structure to the al(1) protein structure (FIG. 2). The genomic DNA sequence in- 
formation known for the COLlAl gene has facilitated efficient strategies for DNA 
sequence analysis. We used the genomic sequence information to design and synthesize 
exon-specific primers for some regions of the gene.q The primers are a series of 2Omers 
which anneal to each intron near the intron-exon junctions. The primers are used in 
chain termination DNA sequence analysis to rapidly assay the exons encoding a 
particular region of the protein. As an example, for the 2 kb region of the gene 
encoding the 192 residues of al(I)CB6, 9 primers have been used to determine the 
sequence of each exon. 
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FIGURE 2. COLl A1 restriction map-al(1) cyanogen bromide cleavage map correlation. The 
bold urtww indicates the limits of the COLlAl gene. Sites shown on the restriction map (top) 
are BamHI (B), EcoRI (E), Hind111 (H), and XhoI (X). Shown below the restriction map is 
a linear representation of the triple helix of the a l (1)  chain. The locations of the methionine 
residues separating the cyanogen bromide peptides are indicated by vertical lines and the numerical 
designations of the peptides are shown. Lines between the restriction may and the protein map 
indicate the region of the gene encoding each peptide fragment. 

PERSPECTIVES 

We have developed general strategies to isolate the genes encoding type I collagen 
for use in determining the structures of mutations which produce osteogenesis im- 
perfects. Characterization of mutations has allowed us to test hypotheses relating to 
the determinants of triple-helix stability, the distinct functions of the al(1) and a2( I) 
chains, and the relationship between mutational structure and clinical phenotype. 

While exceedingly useful, the methods described here cannot be applied to cell 
strains from all 01 patients. Some cell strains do not show an obvious biochemical 
phenotype. In those that do, where mutations fall outside the identified fragment, 
alternative cloning strategies will be necessary. In sporadic cases of 01, assigning the 
mutation to COLlAl or COLlA2 may not be easy and there may be cases where 
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the mutation does not reside in either gene. Although all of the point mutations that 
result in 01 type I1 have been found in the COLlAl gene, too few have been 
characterized so far to know whether this is a general finding. Similarly, linkage 
analysis and biochemical data indicate that mutations in the COLlA2 gene account 
for many cases of 01 type IV, but there are individuals with the 01 type IV phenotype 
with COLlAl lesions (B. J. Starman and P. H. Byers, unpublished). There are 
examples of COLlAl and COLlA2 lesions in individuals with 01 type III.’6.39 

Several methods are available to make gene assignments for cells harboring ap- 
parent point mutations. At the protein level, isoelectric foc~sing’~*’~ of cyanogen 
bromide peptide fragments of type I collagen for those mutations which produce a 
charge change in a type I collagen peptide fragment’”“ is the best method. At the 
RNA level, cleavage with RNase at single base mismatches in mRNA-cDNA 
duplexes3* should also be useful. The RNase cleavage method will also detect deletions 
too small to be seen at the protein level. Where there is a family history of the disease, 
linkage analysis combined with analysis of type I collagens produced by cells from 
affected family members can be used. While none of these methods alone can be used 
to determine the exact nature of the mutations, in combination with the gene isolation 
and DNA sequence determination methods outlined above, they can provide a powerful 
and rapid method for the systematic characterization of a number of interesting 
mutations. 

As additional mutations are characterized, a relationship between the nature of 
the mutation and the clinical outcome is expected to emerge. The results should begin 
to dissect functional domains within the type I collagen molecule and allow us to 
derive new hypotheses regarding the roles this protein assumes in the extracellular 
matrix. 
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