PRODUCTION AND OPERATIONS MANAGEMENT

Vol. 16, No. 4, July-August 2007, pp. 495-509
15sN 1059-1478 | 07 | 1604 | 495$1.25

© 2007 Production and Operations Management Society

Market-Based Allocation with
Indivisible Bids

L. Julian Schvartzman e Michael P. Wellman

University of Michigan, Computer Science & Engineering, Ann Arbor, Michigan 48109-2121, USA
{Ischvart, wellman}@umich.edu

We study multiunit double auctions accepting bids with indivisibility constraints. Modeling the
auction problem as a Multiple Choice Knapsack Problem and using dynamic programming, we
show that incremental computations during bid processing can speed the handling of key auction
operations such as clearing and quoting. We propose different price-quote policies and study their
influence on the efficiency of market-based allocation. Using a reconfigurable manufacturing scenario
where agents trade large quantities of multiple goods, we demonstrate potential benefits of supporting
indivisibility constraints in bidding. These benefits are highly sensitive to the form of price quote
provided, indicating interesting tradeoffs in communication and allocation efficiency.

Key words: auction algorithms; price quotes; indivisible bids; AON auctions; incremental multiple-choice
knapsack problem
Submissions and Acceptance: Received March 2005; revisions received January 2006, June 2006, and

August 2006; accepted August 2006.

1. Introduction

Consider a scenario with N manufacturing facilities
with capabilities to produce various industrial parts.
The facilities are controlled by different agents (e.g.,
firms, or profit-center divisions within the same large
firm), and may vary in capacity, fixed and variable
costs for producing the different part types, time for
reconfiguring to switch between parts, transportation
costs, and perhaps other factors. Each facility also has
a set of customer orders, each representing a promise
to pay a fixed amount contingent on delivery of a
specified quantity of a particular type of part in the
current period.

Since the facilities face heterogeneous cost struc-
tures, they stand to achieve potentially significant
gains in efficiency by exchanging orders among them-
selves. We can formulate the order allocation problem
as a global optimization, but of course, the agents may
not have the appropriate incentives to reveal their
private information about costs and orders, or comply
with the resulting order exchanges. Economic mecha-
nisms such as combinatorial auctions (Cramton et al.
2006) can address these incentive problems, and pro-
vide an elegant solution when in fact they can be

495

instituted. However, there are several organizational
and computational impediments to holding large-
scale (measured in numbers of goods and agents, and
units per good) two-sided combinatorial auctions, and
these are as yet uncommon in practice. It is substan-
tially simpler to deploy individual two-sided multi-
unit auctions for each of several goods, and these more
ad hoc markets can address the allocation problem to
a useful degree. Idealized models of such configura-
tions as general-equilibrium systems demonstrate the
potential of computational markets to achieve efficient
allocations in convex, competitive environments
(Cheng and Wellman 1998; Ygge and Akkermans
1999). Although the auctions in these markets operate
independently, agents themselves account for good
interactions and attempt to build bundles of multiple
goods by conditioning their activities in one auction
on the state of others. Designers of the US Federal
Communications Commission (FCC) spectrum auc-
tions similarly rely on bidders to account for prefer-
ence dependencies in their pattern of bidding across
simultaneous ascending auctions (McMillan 1994).
Realistic configurations of multiple interacting mar-
kets differ from the idealized general-equilibrium

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

496 Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society

model in several ways. One particularly important
characteristic of this application domain is nonconvex-
ity in preferences and production technology, as man-
ifest (for example) in fixed costs, reconfiguration
switching costs, and preset order sizes. The most
straightforward multiunit auction mechanisms as-
sume divisibility of offers: an agent willing to buy g
units at some unit price would also be willing to
accept g = ¢q units at that price. This assumption will
not generally hold given nonconvex preferences and
costs, and therefore, agents with these characteristics
may be hesitant to bid at all unless assured that their
offers be accepted in whole or not at all.

Motivated by this manufacturing scenario, we in-
vestigate the design of multiunit auctions accommo-
dating such indivisibility constraints. Our focus is on
how such auctions can be operated in a computation-
ally efficient manner, and on the auctions’ price quote
policies for revealing information to agents to guide
their bidding. We evaluate our designs experimen-
tally, employing a version of the manufacturing sce-
nario sketched above. Our main finding is that sup-
porting indivisibility constraints can indeed improve
the quality of global allocations achieved through
trading, but actually realizing this improvement and
to what degree depends pivotally on the form of the
price quote. We also show how the computational
costs of optimizing bid matching and producing
meaningful quotes can be amortized over the auc-
tion’s operation, calculated incrementally throughout
the dynamic bidding process.

In the next section, we present abstract examples
illustrating the technical problems that divisibilities
can cause for price-based allocation. We then describe
in turn our auction mechanism, its incremental com-
putation scheme, the model of our manufacturing sce-
nario, and experimental results.

2. Examples

We present three examples showing some of the prob-
lems caused by divisible bidding. Our only assump-
tion is that agents behave competitively, taking mar-
ket prices as given, and deciding their optimal
allocation assuming they can buy or sell arbitrary
number of units at the given prices.

ExamrLE 1. Imagine a simple economy with two
competitive agents, A and B, and a single traded good
g, which provides agents with a monetary utility as
shown in Table 1.

Assume that A initially holds ten units of ¢ and B
holds none. In this scenario, A would be willing to sell
five units of ¢ for more than $5, or ten for more than
$10. At the same time, B would be willing to buy one
unit for $v (b < 3). If we used a standard auction
accepting divisible bids, agents would trade one unit at

Table 1 Utility for Agents A and B (U, and Ug), as a Function of

Holdings of Good g (H,)

H, U, Uy
1 0 3
5 5 3

10 10 3

some price between $1 and $3, reducing the social
benefit from $10 to $8. At this point, if trading were
allowed to continue, A would be willing to buy back
one unit for less than $5, and B would be willing to sell
one unit for more than $3. Trade would occur again,
bringing the social surplus back to $10. The process
could continue indefinitely, reducing the net profit
(i.e., utility plus cashflow) of A and increasing that of
B. After each transaction, the social surplus would
alternate between $10 or $8.

In order to avoid those undesired exchanges, A
could refuse to trade, or simply hedge the risk of a
divisible trade by demanding arbitrarily more cash.
However, A cannot decide (with certainty) whether
such actions would prevent a profitable trade. Just
imagine a third agent, C, interested in buying four
units for less than $b each but a total payment higher
than 5 — b. If C made its offer, A could engage in a
profitable trade. Without C, however, trading would
not be profitable for A.

The simplest solution would be to have the auction
accept bids with indivisibility constraints. In this case,
A would either sell five units for a total payment
greater than $5, or ten units for a total payment greater
than $10, or else no trade would occur. In this exam-
ple, indivisibility constraints would always keep the
social utility at its maximum possible value.

ExamPLE 2. We have an economy with two agents,
A and B, and two goods, g; and g,. Agents behave in a
competitive manner. Their utility is shown in Table 2.

Assume that A initially holds three units of g, and B
holds three units of g;. In this scenario, each agent gets
a utility of $3. If we allowed agents to trade using a
standard auction for each good and divisible bids,
agents could trade one unit of each g, and g,. Prices
supporting such trades are shown in Figure 1(a). Once
such exchange occurs, agent A holds two units of g,

Table 2 Utility for Agents A and B as a Function of Holdings of
Goods g, and g,
U, Ug

Hg\Hg, 0 1 2 3 Hg\Hg, 0 1 2 3
0 0 0 0 3 0 0 2 2 2
1 2 2 2 4 1 0 2 2 2
2 2 2 2 4 2 0 2 2 2
3 2 2 2 4 3 3 4 4 4

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society 497

Figure 1

C Agents willing to trade good 1
% Agents willing to trade good 2 |

P E0.00600600000006660)

P 0000000000000 0000 1
) 0006000600000 ¢
1

*

Price of 2
N

XX XX XK XX KX
XX XX XK XXX
XX XX XK XX KX
XX XK XX XX XX
XX XX XK XX XK
XX XX XK XX XX
XX XX XX XX XX
XX XK KK XK XX
XX XX XK XX KK
XX XX XX XX XX
XX XK XX XX XX
XX XK XX XX KK
XX XX XK XX KX
XX XK XX XX XX
XXX XX XX XX
XX XX XK XX KK
XX XX KK XX KX
XX XX XX XX XX
XX XK XK XX XX
KX XK KK XX KX
*

T T
XXX X
XXX X
XXX X
XXX X
XXX X
XXX X

Price of 1

(a) Given initial holdings and prices, agents are willing to
engage in the transactions shown (graph shows potential
trades of one or more units.) The intersection shows prices

at which both goods are traded.

and one unit of g, and B holds two units of g; and one
unit of g,, each agent getting a utility of $2. The
problem with this scenario is not only that both agents
abandoned an optimal allocation and reduced their
utility due to an undesired trade, but also that they
cannot further change their new (lower) allocation
(nor return to the previous one). Based on their de-
mand curves and new holdings, there is no set of
prices for g; and g, that would allow agents to engage
in further trading. Prices at which A and B would be
willing (but unable) to trade are shown in Figure 1(b).
Note that agents could refuse to bid in the first place to
avoid undesired trades, but they would face obstacles
similar to those explained in the previous example. If
we had just used bids with indivisibility constraints,
however, the original (undesired) transactions would
never have occurred, always keeping the utility at $3
per agent.

ExamPLE 3. Imagine an agent A with the utility
function provided in Table 3. Assume that A holds
two units of g. This agent would be willing to buy two
units at a price below $2 each and sell two units at a
price above $1 each. However, a divisible bid express-
ing such intentions would be inconsistent (the bid is

Table 3 Utility as a Function of Holdings of g
Hy, U
0 0
2 2
4 6

Prices at which Transactions can (a) and cannot (b) Occur, as Described in Example 2.

S

w

B willing
2 |to buy

Price of 2
N

(=

o

F'ricze of 1 3 F'ricze of 1 3

=

w

Price of 2
N
Price of 2

1

A willing to buy
o] 0

F'ric2e of 1 3 F'ric2e of 1 3

(b) Regions show willingness to trade given a set of
prices, after agents traded one unit of both goods. Since
regions do not intersect, there is no set of prices that would

make agents trade either good.

required to have buy prices lower than sell prices). Of
course, we could set a cutoff price at say, $p (1 < p
< 2), and determine that A will buy below such price,
or sell if the price is higher. The problem is that such
a bid could prevent A from engaging in profitable
trades, for instance, if there were an offer from another
agent to sell at $p’ (p < p’ < 2). An indivisible bid
would avoid this problem, because it allows the ex-
pression of arbitrary valuations.

3. Auction Mechanisms

We consider separate two-sided auctions for multiple
units of a single good. The auctions clear periodically
at predefined intervals, and thus implement a call
market. We distinguish two major versions of this auc-
tion, differing in their treatment of offer quantities. In
the first (called “standard” for purposes of this paper),
quantities appearing in bids are assumed divisible,
and so the bidder effectively expresses a willingness to
trade any amount up to the specified quantity at the
associated unit price. In the second, offers are consid-
ered “all-or-none” (AON), and so agents explicitly
specify the payment at which they would be willing to
trade any acceptable discrete quantity. We refer to this
version as the “AON” auction henceforth.

In both auctions, agents may submit bid schedules,
indicating the prices offered to trade various quanti-
ties (with negative quantities indicating amounts of-
fered to sell). The points on the schedule are exclusive
(i.e., treated as “XOR” (Nisan 2000)), in that the result-
ing allocation will employ at most one of them. For

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

498 Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society

divisible (standard) bids, the prices are per unit, and
consistency requires that unit prices be nonincreasing
in quantity. For indivisible (AON) bids, the prices
represent total payments for the associated quantity,
and these totals (not the per unit payments) must be
nondecreasing in quantity. Assuming only free dis-
posal, with AON bids, agents can express arbitrary
valuations for the good (Kelly 2004; Nisan 2000). Stan-
dard divisible bids can express only convex valua-
tions.

Operation of the standard auction is relatively sim-
ple, as described, for example, by Wurman et al.
(1998). Mechanisms resembling the AON auction have
been described in the literature, and employed in
practice. For example, van Hoesel and Miiller (2001)
consider the special case of combinatorial auctions
where all goods are the same, and point out that
optimal allocations can be found by dynamic pro-
gramming. This corresponds to a one-sided, one-shot
version of the AON auction. Kothari et al. (2003)
present a one-sided, one-shot auction that supports
AON bidding in the form of a minimum trade quan-
tity, but then assumes divisibility for quantities be-
yond this minimum. Several other authors have con-
sidered indivisibility constraints in multiunit auctions
(Kalagnanam et al. 2001; Kellerer et al. 2004; Kelly
2004), and have also identified the connection to knap-
sack methods for matching bids. Our understanding is
that practical trading mechanisms admitting AON
bids typically handle them in an ad hoc manner
(Miller 2002). For example, such bids might be
matched in a greedy manner, as in common electronic
stock trading systems, which just pass over AON bids
if the entire quantity cannot be fulfilled. We describe
details of the allocation algorithm, as well as other
AON auction policies, in the sections below.

3.1. Winner Determination Algorithm

As pointed out most explicitly by Kelly (2004), optimal
winner determination for single-good, two-sided,
multiunit auctions with indivisible XOR bids (i.e., our
AON auctions) reduces to the Multiple Choice Knapsack
Problem (MCKP). MCKP is described thoroughly by
Kellerer et al. (2004); we present a formulation special-
ized (slightly) to the auction setting.

Consider a set of N agents, with agent 7 submitting bid
B;. Each B; is comprised of m; bid points, (p;;, q;), specify-
ing a payment p;; offered to exchange quantity ¢;. Each
bid includes a dummy point (0, 0). Offers to buy are
expressed as positive payment-quantity pairs, and offers
to sell as negative payment-quantity pairs. Because the
standard MCKP requires positive coefficients, we define
transformed bid points (pj;, q7) = (p;; + P;, 4;; + g:), where
p; = —minjcpp;;, and g; = —minjepq;. (Note that this
transformation affects only bids with sell points; for buy-
only bids, §; = p; = 0.) We then define the knapsack

capacity ¢ = 2,g;. Conceptually, the capacity c is the total
number of units that are being offered for sale at any
given time. We denote by C the maximum possible
capacity (i.e., number of units that could possibly be
traded). To ensure that C is bounded, we assume that
agents have a limited ability to take short positions in the
goods traded.
The MCKP is formulated as:

N m;

maximize: », D, piiX;
i=1j=1

N m;

subject to: >, > qix;=c,

i=1j=1

i

Exi]-=1,i6{1,---,N}/xije{of 1}-
j=1

We assume free disposal of units, reflected in allow-
ing the auction to match bids with more sales than
purchases. Excess units are allocated arbitrarily
among sellers. Note that formulating and implement-
ing the same problem without the assumption of free
disposal is straightforward.

Solving MCKP is NP-hard, which is shown by re-
duction to a basic knapsack problem (Kellerer et al.
2004, p. 318). Using dynamic programming, however,
the problem can be solved in pseudopolynomial time
(Dudzinski and Walukiewicz 1987). Let Z,(d) be the
value of the optimal solution to the MCKP defined to
include only the first [agents, 1 = [= N, and with
restricted capacity 0 = d = c. We further define Zy(d)
=0for0=d=c and Z(d) = —» for d < 0.

We can characterize Z/(d),1 = = N,0=d = ¢, using
the following recursion:

Z,(d) = max Z\(d = gj) + pj. (1)
=j=m

The optimal solution is obtained when [= N and d
= c. Given N bids of maximum size m = max; m;, the
running time to solve MCKP using dynamic program-
ming is O(mNc) (Kellerer et al. 2004). In the worst case,
agents submit demand curves over the full range ¢
= O(C) at the finest grain (m = O(C)), so this running
time is O(NC?).

Many different methods exist to solve MCKP, in-
cluding branch-and-bound techniques and hybrid al-
gorithms with diverse properties (see Kellerer et al.
(2004) for an extensive review). Our implementation is
customized for the dynamic auction context, which
may call for repeated solution of the MCKP for small
changes in the set of bids. Since these computational
issues are separable from the policy implemented by
the auction mechanism, we defer discussion of this
algorithm to Section 4.

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society 499

3.2. Clearing and Pricing

Clearing the auction is the process of identifying the
subset of bids that match and produce the highest
possible surplus. The result of a clear operation is to
determine the deals resulting from this matching, and
removing the matched bids from the order book.
Given the incremental calculations described in Sec-
tion 4, most of the work is performed when bids are
inserted into the order book. Once this is done, iden-
tifying the match takes constant time. Extracting the
deals takes time linear in the number N’ of bids
matched. Modifying the order book to include only
unmatched bids requires N’ deletion or (N — N')
insertion operations, which are described below.

For a fixed allocation of goods, monetary transfers
do not affect overall efficiency. Therefore, since we are
not addressing strategic issues in this work, the pric-
ing choice is not pivotal for our experimental analysis.
Nevertheless, to fully specify the mechanism one must
identify a pricing rule. Ours starts with Vickrey prices
and adjusts them proportionally to ensure budget bal-
ance. The Vickrey calculation requires that we com-
pute the total surplus with each agent’s bid excluded,
for which O(N’) deletion and insertion operations
need to be performed.

3.3. Quoting

After each bid, the auction issues a price quote, provid-
ing to the agents some information regarding the state
of the order book, intended as a guide to future bid-
ding. In the standard auction, the quote comprises a
BID-ASK pair, representing the prices at which an agent
could successfully trade at least one unit. The BID
quote defines the price at which an agent could sell
one unit, and the Ask quote the corresponding price to
buy. For standard (divisible-bid) auctions, we can in-
crementally maintain the order book so that price
quotes can be provided in constant time once the bids
are inserted (Wurman et al. 1998).

For the AON auction, it is not immediately apparent
how the auction should define its price quotes. We
identified four candidate quoting policies, described
here and compared experimentally in Section 6 below.

3.3.1. Standard Quote. One possibility is for the
AON auction to provide a “standard” quote, defined
as the BID-AsK pair reflecting the order book inter-
preted as if the bids were divisible. Constructing this
interpretation requires some care, since simply treat-
ing each bid point as a divisible offer may violate the
standard auction’s consistency condition requiring
that quantity be nonincreasing in unit price. To ensure
this monotonicity, we transform each bid B; by first
sorting the bid points (p;, g;) (not including the
dummy point with p;; = ¢;; = 0) in decreasing order of
unit price. We then traverse the list, translating each to
a unit-price bid point, skipping any that would violate

the monotonicity condition with respect to those al-
ready seen.

These translated bids can then be handled by the order
book and quoting algorithm of the standard auction.

3.3.2. Marginal Unit Quote. A second quote can-
didate attempts to maintain the interpretation of the
standard quote as a price threshold sufficient to trade
one unit, but respecting the indivisibility constraints of
AON bids. Calculating this quote requires solving the
MCKP for the bids in the order book. Under this
interpretation, the Ask quote is always defined as long
as there is any sell offer in the order book. The same is
not true for the BID quote, however, because it could
be the case that no existing offer or combination of
offers can be satisfied by contributing a single addi-
tional unit. The marginal unit quote takes the same
form as the standard quote, but provides more con-
servative values. Indeed, it is even possible (and con-
sistent) for the Asx price to be lower than the BID price,
something that cannot happen in the divisible case.

Given the incremental computation scheme discussed
in Section 4, these quotes can be extracted from the order
book in constant time. It would also be possible to define
this quote with any particular quantity defined as “mar-
ginal” (e.g., ten units instead of one).

3.3.3. Anonymous Full Schedule Quote. The third
quote we consider provides to all agents a full sched-
ule of payments that would be required to exchange
any feasible quantity given the current state of the
order book. This can be viewed as a collection of
marginal unit quotes, one for each feasible quantity.
The quote is anonymous because the same values are
provided to every agent. Note that only relevant pay-
ment-quantity pairs need to be communicated to an
agent: for a given payment, a quote for the minimum
number of units the agent needs to sell to get such
payment, and the maximum number of units the agent
can buy with such payment. As for the marginal unit
quote, the schedule may not be monotone: the unit
price to exchange various quantities may be increasing
or decreasing or mixed along the schedule.

Also, like the marginal unit quote, the full schedule
quote can be extracted directly from the order book
given our incremental computation scheme, though,
of course, extracting and communicating it will take
time proportional to its size, O(C).

3.3.4. Nonanonymous Full Schedule Quote. The
final quote we consider is similar to the previous one,
but each agent is provided with personalized values
based on its existing bid. More specifically, the quote
provides agent i the schedule of payments calculated
by excluding from the order book the bid sent by i.

This quote generalizes the “shortfall” idea devel-
oped for the US FCC combinatorial spectrum auction
number 31 (see Federal Communications Commission

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

500 Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society

(2000) and subsequent FCC Notices). In this auction,
bid increments are a function of the difference, or
shortfall, between the revenue of a provisional winning
bid and the maximum total revenue of a particular pack-
age. The nonanonymous full schedule quote we employ
provides agents with the shortfall for any possible mul-
tiunit (and single good) indivisible bundle.

3.3.5. Quote Discussion. The four candidate
quotes present distinct tradeoffs. The standard and
marginal-unit quotes are compact, but may provide
inaccurate guidance for trading particular quantities.
The full schedule quotes provide high-fidelity infor-
mation, but may be too large to be reasonably com-
municated in some applications.

We explore the implications of the various quote
policies in our experiments below. Of course, the worth
of a quote is intimately tied to how the agents use this
information in their bidding. We discuss our assump-
tions about agent behavior in Section 6.2 below.

4. Incremental Clearing Algorithm

In a periodic auction, the basic operations of clearing
and quoting may be invoked many times, often with
bidding states only slightly different from previous
states that have already been solved. We therefore
developed an incremental version of the clearing al-
gorithm, designed to minimize the average solution
time over a sequence of auction operations.

Our method builds upon the algorithm DP-with-Lists
proposed by Kellerer et al. (2004, p. 50), exploiting a
separability property identified by Horowitz and Sahni
(1974). DP-with-Lists does not change the worst-case
running time of the standard dynamic programming
procedure, but improves computation in practice by
considering quantity sparseness and by pruning for
dominance. The algorithm considers each pair (d, Z,(d))
of the dynamic programming table as a state (g, p) where
g denotes the capacity and p denotes the profit obtain-
able for such capacity when considering the subproblem
on the first / bids. Lists of states, one corresponding to
each bid, are consecutively pruned for dominance (in-
stead of considering all possible quantities) and merged
with one another to get a solution. The partitioning
technique of Horowitz and Sahni (1974) divides a prob-
lem into two equally sized parts, solves each using dy-
namic programming, and combines the results in linear
time by keeping the sets sorted. Their approach pro-
vided a square root asymptotic improvement over a
complete enumeration of O(2"). Other authors have fo-
cused on issues related to our problem, for instance
Bassamboo et al. (2001) consider online bid processing in
a single-good multiunit auctions with indivisibility con-
straints but only for prices that are nonincreasing in
quantity, and others conducted probabilistic analysis of

online knapsack problems (Marchetti-Spaccamela and
Vercellis 1995; Lueker 1998).

The most straightforward approach to incremental
MCKP computation using dynamic programming
would be to add one bid at a time and store the
solution up to that point (i.e., using DP-with-Lists).
Each new bid arrival would simply be added to the
existing solution. In the worst case, however, the first
bid that got inserted could later get replaced or de-
leted, and thus the knapsack solution would have to
be recalculated for the entire order book. Then, each
bid insertion would take O(NC?).

The algorithm we present improves significantly
such worst-case running time to O(C log N), as shown
below. Our implementation is inspired by the two-
part decomposition of Horowitz and Sahni (1974), but
differs from existing methods in that we partition the
knapsack solution by N, the number of bids in the
order book, and arrange these partitions in a binary
tree structure merging them pairwise from leaves to
root. This partition arrangement is the key feature
enabling incrementality in our auction setting.

4.1. Algorithm

The basic solution method remains a form of dynamic
programming, in order to provide pseudopolynomial
time guarantees on the auction operations. The idea is
to maintain a binary tree with N leaf nodes, one for
each bid inserted into the order book. A leaf node for
bid i stores a list of states with pairs (g, p;;), where p;;
= Z(q;), the maximum profit that could be achieved
for the given capacity when considering the subprob-
lem defined for bid i only. Upon insertion of a new
bid, a leaf is added to the tree, and its list of states is
simply the set of m; bid points in the bid (suitably
transformed as specified in Section 3.1).

Once a new leaf is added, all O(log N) parents are
(re)calculated from bottom to top. Conceptually, each
parent stores a merge of the lists of its successors, equiv-
alent to all undominated pairs (g; = C, p;)) resulting from
the cross sum of the children (a state (g, p) dominates (7',
prif@<g ap=p)or(G=qg ~Ap>p')). Dominated
states can never be part of the optimal solution (Kellerer
et al. 2004). Upon merging, each state stores pointers to
all the bid points that were added to create it, which are
used later to determine bid matchings. In addition, a
node stores the cumulative capacity of its subtree and
bid transformation p;, as defined in Section 3.1.

Calculation proceeds up to the root of the tree, which
stores a list of states with the maximum profit achieved
for every capacity and every bid in the tree. The root,
thus, provides the solution to MCKP by consolidating all
the lists of every bid. Figure 2 shows a sample insertion.

Given two nodes with lists L, and L;, with k, and k;,
states each, the following algorithm merges them to
create a parent node:

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society 501

Algorithm Merge (L., L)

similar to the one provided by Kellerer et al.

(2004)

1: M = () {an empty list}
2: for £t = 1 to k, do
3: L) := L, ® (Qu., Dpe)
{add state t from list L, to each element in L,}
4: delete all states (q, p) € L, with @ > C
5: M = Merge-Lists (M, L.)
6: end for
7: return M
Procedure Merge-Lists (L, L'),
(p. 52)
add the state (®©, 0) to the end of both lists L, L'
L" := ((», 0))
repeat

choose the state (g, p) with the smallest quantity in L and L' and delete it from the

corresponding list
if @ # © then
assume that (g", p")
if (p > p”’) then
if (g = @’) then
delete (¢", p") from L”

is the largest

end if
add (g, p) to the end of list L”
end if
end if
until q = ®

return L”

The algorithm begins with an empty list M. In every
iteration (line 2), it picks a state t from the second list
L, and adds it to the first list L, (line 3). This compo-
nentwise addition, denoted with the symbol @, creates
a new list L, which includes the set of undominated
states that could be reached by combining all the states
in L, with state f from list L,. All the states in L, with
a capacity greater than C are eliminated, because they
do not contain a feasible solution. Then, the algorithm
merges L, with M, the list that will ultimately be
returned. Once all k; states in L, got chosen and the for
loop ends, M effectively contains the list of undomi-
nated states that can be obtained by merging all the
states of both L, and L,. The procedure Merge-Lists sim-
ply merges two sorted lists, keeping undominated states
only. It is explained in detail by Kellerer et al. (2004).

4.2. Analysis

Lines 3 and 4 are both linear in the number of states in
a list. Since the lists are kept sorted, line 5 is also linear
in the number of states in a list. Given that the for loop
in line 2 iterates over every state in a list, each merge
of two lists takes a computation time proportional to
the length of the lists, squared. Given N bids and a
maximum number of bundles per bid m, the maxi-
mum length of any list in the tree is given by min(C,

(last inserted)

state in L”

m"). Thus, the computation for each bid insertion is
bounded by O(min(C, m")* log N). Note that lists of
states in nonleaf nodes are kept sorted in the proce-
dure Merge-Lists without incurring an additional cost.
Only states stored in leaf nodes require sorting, which
does not change the asymptotic time. When requiring
a MCKP solution on every bid update—typically to
calculate a quote—our algorithm provides an im-
provement over a nonincremental DP-with-Lists ap-
proach from linear to logarithmic time in the number
of bids in the order book.

Bid replacement is analogous to bid insertion, with
the difference that no new leaves are added to the tree,
but the old one corresponding to the agent doing the
update gets overwritten. The time taken for a replace-
ment is the same as the one needed for an insertion,
given that a similar number of nodes needs to be
recalculated. We currently treat a deletion as a replace-
ment with an empty bid. If we needed to truly elimi-
nate a bid, the updates to the structure of the tree
would not change the worst-case running time.

If we had N bids, our tree would include N leaves.
Space requirements are given by O(N’C) to store in
every node a list of up to C states, each of which stores
pointers to up to N bid points that were merged to
create such state. Note that we could reduce storage to

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

502 Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society
Figure 2 Each Node in a Tree Stores a List of States, Capacity, and Bid Transformation p;, = —min,.z p; as Defined in Section 3.1.
Node 5 Node 5
(0,0)(1,8)(5,15)(6,23) (0,0)(1,8)(3,15)(4,23)(8,30)
(15,25)(16,33)(25,34) (9,38)(18,40)(19,48),(28,49)
c=15,p=24 c=15,p=24
Node 3 Node 3 Node 7
(0,0)(5,15)(14,16) (0,0)(5,15)(14,16) (0,0)(1.,8)
(15,25)(24,26) (15,25)(24,26) (3,15)(4,23)
c=14,p=16 c=14,p=16 c=1,p=8
Nodel Node2 Node4 Nodel Node2 Node4 Node6
(0,0)5,15) (0,0) (0,0 0,0)5,15) (0,0) (0,0) (0,0)
(15,25) 9.1) (1,8) (15,25) O.1) (1,8) (3,15)
c=5p=15 c=9,p=1 c=1,p=8 c=5p=15 c=9,p=1 c=1,p=8 c=0,p=0
Bid 1 Bid 2 Bid 3 Bid 1 Bid 2 Bid 3 Bid 4
(10@10) (-9%@-1) (-1@-8) (10@10) (-9%@-1) (-1@-8) (@l15)
(=5@—15) (=5@—15)
Tree built by our algorithm upon insertion | Upon insertion of bid 4, nodes 6, 7, and 5 are
of Bids 1, 2, and 3. All three bids match | (re)calculated. Bids 2 and 4 match with root state
with state (15,25) in the root node, (9,38), providing a net surplus of 38 — p = 14.
providing a net surplus of 25— p = 1. ¢ — 9 = 6 units remain unmatched (free disposal).

Pointers corresponding to each state, which are also stored in the tree, are not shown. The solution is found in the root of the tree, in the state with highest ¢ = ¢

(largest state that fits in the knapsack).

O(NC), by storing in each state pointers to the children
states that were merged to create it (instead of pointers
to each bid point). This, however, would increase the
time to extract matching points.

We evaluate the performance of our incremental algo-
rithm in a series of experiments described in Section 6.6.

4.3. Extracting Matched Bids

As noted above, once all the bids are inserted into the
tree, clearing takes constant time and extracting the
deals takes O(N'). Given a set S of states in the root of
the tree, the solution is in state ¢, where p, = p, for all
s € S, and g, = c. Such state has direct pointers to the
matching bid points of each agent. The solution state
can be identified upon merging both children of the
root at no additional cost. In order to change the order
book to include only unmatched bids, we could either
remove N’ matched bids from the order book in time
bounded by O(C? log N) for each bid, or discard the
entire order book and reinsert the remaining N — N’

bids. Note that reinserting N — N’ bids in batch takes
only O((N — N’)C?), to calculate a number of parent
nodes bounded by N — N’, each of which involves
a merge that takes O(C?), as explained above. The
time complexity to adjust the order book is then
O(min(N'C? log N, (N — N")C?).

4.4. Calculating Quotes

Once bids are inserted into the tree, the information
required to generate quotes that take into account
indivisibility constraints is readily available in the root
node. Given root-node states S and a solution state ¢
with p, = p, for all s € S and g, = ¢, a quote for the
marginal v units, 1 = v = C, is given by:

BID = max (p,— p,),
sES|gs=c+v

ASK = min (p; — p,).
sE€S|gs+o=c

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society 503

Conceptually, BID is equivalent to the incremental
profit obtained if we sold v additional units (i.e., assum-
ing we increased the capacity of the knapsack by v units),
and Ask is equivalent to the additional profit required to
match the current maximum surplus if we bought v
additional units (i.e., fit v additional units into the knap-
sack). We can perform the calculation upon creating the
root node with no additional asymptotic cost.

Similarly, when calculating an anonymous full
schedule quote, each state in the root node provides a
quote point with either a BID or a Ask payment, as
follows:

QUANTITY, = |g, — |

BID, = (p, — p;) if g,>c

AsK, = (p,—p,) if g, =c.

Since we have up to C states in the root node, the
extraction of this quote takes time O(C).

The nonanonymous version of the full schedule
quote requires a temporary deletion of the bid of each
agent in the order book, in order to calculate a per-
sonalized quote that excludes the agent’s own bid. If
quotes are calculated upon bid insertion, the compu-
tation of each insertion is increased to O(C*N log N),
while extraction remains O(C).

5. Manufacturing Domain

We evaluate the AON auction in a market-based allo-
cation problem based on the manufacturing scenario
sketched in the Introduction. The setting comprises a
set of N manufacturing modules, defined as arrange-
ments of (possibly reconfigurable) manufacturing ma-
chines, with capabilities for producing a variety of
parts. Each module is controlled by an agent, whose
objective is to maximize profit by fulfilling customer
orders over an L-day production period. In our mar-
ket-based model, agents may increase their individual
and collective profit by exchanging orders among
themselves, thus exploiting their comparative advan-
tages and configuration decisions.

We provide a full specification of the model below,
describing the goods traded, utility and cost functions
of the manufacturing modules, and the market config-
uration. Specific parameter settings for the model, and
trading policies implemented by agents in our simu-
lations, are described in Section 6.

5.1. Goods Traded

The core allocation problem in this domain is deciding
which manufacturer will produce what quantity of
each of M types of parts in the current period. The
total quantity demanded of part type r is D,, and
initially each agent is given orders for some share of
that demand. Producing part » entitles the manufac-

turer to a fixed income of I, per unit, up to the number
of units for which it holds orders.

The purpose of the market is to enable trading of
orders among manufacturing modules. The goods
traded are the rights to produce parts for orders. A unit
of good r, therefore, entitles the holder to produce a unit
of the corresponding part and receive the corresponding
payment I, from the customer. The parameter D, bounds
the maximum quantity of good r that can be exchanged
at one time, and thus plays the role of C in the definition
of the AON auction in Section 3.1.

5.2. Agent Objectives
Agents aim to maximize profit, defined as

income — production costs + trading cash flow.

Income is simply the total payment for producing
parts. Trading cash flow represents the balance of
payments from trading orders with other agents. Pro-
duction costs include several components, depending
on the quantity and types of parts produced. These are
defined by a set of agent-specific parameters:

e F;: Fixed cost, a one-time payment if module i

produces one or more parts.

* B;: Labor cost, paid for every day in which the
module is in production.

* V, . Variable cost, paid for each unit of part r that
gets produced.

* G;: Set of possible configurations. Each manufac-
turing configuration provides distinct production
capabilities. Only one configuration can be used
in any given day. For each configuration f € G;,
each module has:

— Pg,: Production capacity per part type: a bound
on the units of type r produced per day.

— Ryt Reconfiguration cost to be paid if the con-
figuration is used.

— Ty Reconfiguration time (in days) that takes
the agent to set up configuration f, during which
no part can be produced.

The configuration capacities and times, along with
the period length L, define the production possibilities
for module i. The various cost parameters define the
total cost for any feasible production plan.

Although complicated, the foregoing determines
well-defined optimization problems for the agent:

* Determining an optimal production plan given

holdings of goods r.

* Determining optimal demand for goods r given

current holdings and market prices.

5.3. Market Game Configuration

The overall market system comprises the agents rep-
resenting manufacturing modules, plus one auction
for each part type. The simulations are implemented
using our configurable market game server, AB3D

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

504 Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society

(Lochner and Wellman 2004), developed at the Uni-
versity of Michigan. AB3D provides a flexible bid-
processing architecture, with a rule-based scripting
language to specify particular auction policies and
temporal control structure. The standard call market
was already supported by AB3D. The handle indivis-
ible bidding, we added a new bid language specifying
quantity-payment schedules, and new matching, pric-
ing, and quoting modules.

We simulate an instance of this setup by generating
parameter values from prespecified probability distri-
butions, and communicating these values to the re-
spective agents. Each agent is initially allocated cus-
tomer orders corresponding to equal shares, D,/N, of
the overall demand for each part r.

Each game instance lasts twenty minutes, with each
auction clearing periodically every 48 seconds. The
auctions are staggered, so that the initial clear occur at
multiples of 48/M seconds.

The agents operate asynchronously, submitting bids
to the auctions iteratively according to the policy de-
scribed in Section 6.2. Agents can request price quotes
reflecting the latest auction state, and retrieve notices
of any transactions from prior bids.

At the end of a game instance, the server calculates
final holdings based on cumulative transactions, and
determines a score for each agent. The score depends
on an agent’s production plan given its total available
orders, which entails solving an optimization problem
for each agent. AB3D solves these using a commercial
optimization package (AMPL/CPLEX), given an inte-
ger linear programming (ILP) formulation specified as
part of the game description.

The overall value of the resulting allocation is sim-
ply the sum of the scores over the N agents. For
comparison, we can also calculate (offline if necessary)
the global optimum of the system without trading,
assuming a central planner that can allocate orders
across manufacturing modules.

6. Experiments

We conducted a series of experiments in order to
compare allocation performance using standard or
AON auctions, and to measure the computational sav-
ings obtained with our incremental algorithm.

In order to compare allocation performance using
both standard and AON auctions, we ran a set of 58
and 216 paired trials with 4-agent and 8-agent games,
respectively. For AON auctions, we tested standard,
marginal, and full schedule (both anonymous and non-
anonymous) quotes. The following sections describe
the specific problem instance we chose for our manu-
facturing scenario, the behavior of the agents, and the
results obtained.

Table 4 Settings of the Manufacturing Scenario Used for our
Experiments
Values
Parameter 4-agent games 8-agent games
General
agents (M) 4 8
parts (M) 4 4
Public information
I [1000, 2000] [1000, 2000]
D, [2000, 6000] [4000, 12000]
L [250, 300] [250, 300]
Private information for agent /
F; [300000, 400000] [300000, 400000]
B [15000, 20000] [15000, 20000]
V; [250, 350] [250, 350]
configs (|G 2 2
For each f € G;
P2 [20, 60] [20, 60]
R, [400000, 800000] [400000, 800000]
T [5, 15] [5, 15]

Parameters specifying a range are drawn from a uniform distribution.
2 Parameter specifies total for all parts in a configuration, each part getting a
random proportion.

6.1. Manufacturing Problem Setting

For each trial, we obtained a new set of randomly
chosen parameter values, as specified in Table 4. Each
paired trial used the same set of parameter values, and
compared all five alternatives, namely, standard auc-
tions and AON auctions with the four quoting alter-
natives discussed. Note that these parameter values
were chosen not to explore the resulting space exhaus-
tively, but to provide an interesting range of problems
for our experiments.

6.2. Agent Bidding

Our design maintains the assumption of competitive-

ness, modeling agents essentially as price takers in

defining their bidding policies. Each agent refines its

bid incrementally (Cheng and Wellman 1998), accord-

ing to the following procedure.
Main loop:

1: repeat

2: Get price quotes.

3: Get transactions (i.e., matching bids).

4: for each auction g (an auction g

corresponds to a different good r) do

5: Select a new point to be added to the
bid in g (see 6.3).

6: Fix inconsistencies in bid.

7: Submit updated bid to g.

8: end for
9: until Timeout {allocation process is
over}

Fixing inconsistencies after adding a new bidding
point requires making the smallest possible changes to
the old points in the bid in order to maintain divisible

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society 505

prices nonincreasing in quantity and indivisible pay-
ments nondecreasing in quantity.

The results described in Section 6.4 were obtained
by using the same agent structure, with some varia-
tions in terms of selection of new bidding points
which are explained below.

6.3. Selection of New Bidding Points

In each iteration a of the main loop, an agent updates
its bid for the good in auction ¢ with one new point
(4g,ar Pga), taking into account current holdings and
assuming that other goods (not in auction g) could be
freely bought or sold at the most recent quote. This
key assumption allows an agent to account for the
existing interactions among the different goods, which
trade in auctions that function independently.

We used two different methods for picking incre-
mental points, one for dealing with divisible bids and
another for indivisible ones.

DivisiBLE: For divisible bids, an agent selects a new
bidding point for the good in auction g by picking a
price p,, and calculating the quantity q,, the agent
would be willing to buy or sell at such price in order
to maximize its profit. Calculation is done using an
ILP model that encodes the agent’s utility function as
explained in Section 5.2. Prices p, , are selected in the
following arbitrary order:

1. pg. = BID

2. pga = ASK

3. If the bid in g already contains prices for 1 and
2 above, Pea 18 selected from a normal distribution

N(p, 1),

(Wb + ask)/2 if g,.1 >0V (g1 =0Apr<.25)
_J(Us+Bm)/2 if 4,1 <0V(g,1=0Apr<.5)
K= if (9,1 =0Apr<.75)

hs otherwise

where hb (hs) and Ib (Is) are the highest buy (sell) and
lowest buy (sell) offers already in the bid and pr is a
random value uniformly distributed between 0 and 1.
(Note that BID and Ask refer to the most recent quote
obtained by the agent.)

The basic idea behind the approach described above
is to help agents find feasible trades by gradually
making them place their highest buy and their lowest
sell offers. We empirically tested other alternatives to
ensure that our comparison of divisible versus indi-
visible bidding was not biased by an unreasonable
point-selection approach. Specifically, we compared
the procedure described with a random selection of
points analogous to the one described by Cheng and
Wellman (1998) in their incremental bidding, and also
with another in which prices are picked by finding the
maximum possible gap between any two consecutive
pairs of (sorted) prices already in the bid and selecting
their average. Our results indicated that the approach

chosen provided the best average performance among
the alternatives we evaluated.

InDrvisiBLE: For indivisible bidding, the agent se-
lects a new bidding point for the good in auction g by
picking a quantity g, ,. The payment p, , is given by
the maximum (minimum) value at which the agent is
willing to buy (sell) g,, units, which is calculated
using an ILP model that encodes the agent’s utility
function as explained in Section 5.2. Quantities g, , are
selected in the following order:

1. 9., = —H,, (sell all holdings available in itera-
tion a)

2. 4., = Dy = H, (buy all available items, i.e.,
demand minus holdings)

3. g, = random value uniformly distributed in the
range [-H,,, D, — H,] (excluding 0)

4. If the bid already contains quantities for 1, 2, and
3 above:

Gga =
—H

g
Dy — H,

average between any two
consecutive (sorted) quantities

that are further apart

with probability .1
with probability .1

with probability .8

The method described gradually fills the largest
gaps in the bid being constructed, and “refreshes”
each extreme occasionally with a 0.1 probability.

6.4. Allocation Results

The average efficiency relative to a global optimal
allocation (i.e., assuming an offline central planner) as
calculated from our 58 and 216 trials is given in Table
5. Results show that AON auctions quoting full sched-
ule provided the highest efficiency, and that AON
auctions using either a standard or marginal unit
quote performed worse than standard auctions with
divisible bids. The nonanonymous version of the full
schedule quote appears to provide a slightly higher
efficiency than its anonymous counterpart, although

Table 5 Results of Paired Trials Calculated as Average Efficiency in
Terms of a Global Optimal
Average efficiency

4 agents— 8 agents—
Auction Quote 58 trials (@) 216 trials (b)
1 AON Nonanonymous full schedule 92.8% 87.8%
2 AON Anonymous full schedule 91.3% 87.2%
3 Standard Standard 79.2% 75.2%
4 AON Marginal unit 70.7% 47.0%
5 AON Standard 61.7% 49.7%

Differences between 1a and 2a are significant at the .06 level, 2a and 3a at
the 107 level, 3a and 4a at the .03 level, 4a and 5a at the 0.07 level, 1b and
2b at the .23 level, 2b and 3b at the 10~ '° level, 3b and 5b at the 10722 level,
5b and 4b at the .12 level.

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

506 Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society

such difference appears to decrease when more agents
participate in a game. This decrease is to be expected,
as the anonymous and nonanonymous quotes tend to
be more similar when more agents are bidding. Using
AON auctions with standard quotes and marginal
units provided the lowest average efficiency.

We are not suggesting based on this particular ex-
periment that the differences shown in Table 5 will be
an indicator of the differences to be found under any
possible parameter configuration of our manufacturing
scenario or other settings. Before we ran the systematic
paired tests described above, we informally experi-
mented with other parameter settings. Even though we
observed that AON auctions quoting full schedules al-
ways provided the best average efficiency, in several
settings, the differences detected were not as stark.

6.5. Influence of Quoting

Quoting marginal prices with standard auctions
makes sense from two perspectives. First, it provides
an accurate value for marginal units in order for
agents to construct their bids. Second, it provides a
lower (upper) bound on both the unit price and total
payment to be paid (received) when bidding to buy
(sell) an arbitrary number of units. On the contrary,
marginal values for AON auctions do not contain the
same valuable information. By assuming divisibility
with AON auctions (i.e., using a standard quote), the
marginal value provided is neither accurate for the
marginal nor a bound on the price of or total payment
for additional units. In this case, the quote provides a
very loose approximation of value. Similarly, if we
take into consideration indivisibility constraints when
quoting marginal values with AON auctions, the re-
sulting quote turns out to be very conservative. The
reason is that this quote can very often be undefined
for the BID (in practice we need an agent or combina-
tion of them who value and intend to buy a single
unit), and the Ask can often be excessively high (i.e.,
when the auction matches bids with sell quantities
much larger than the marginal). Moreover, little infor-
mation is provided by this quote regarding additional
units beyond the marginal: we know nothing about
the unit price of additional units, and we only know
that the total payment for more units will be no less
than the price for a single unit (which is a very loose
bound or almost like having no bound at all).

The effects described above were confirmed in part
by measurements applied to our 4-agent simulation
results. We define a trade as desired (A) with respect to
agent i if, once executed, it increases or maintains the
profit (i.e., income minus costs plus cashflow) of this
agent, assuming that no further trades occur. We iden-
tified three possible reasons for agent i to engage in
undesired trading: outdated information (B1), misleading
nonanonymous quotes (B2), or misleading anonymous

quotes (B3). A bid can contain outdated information
because its points were calculated incrementally or
due to the asynchronous nature of the bidding pro-
cess. Outdated information (B1) thus refers to the case
in which i engaged in a trade that it would have
rejected had it reevaluated its bid using the most
up-to-date information. Such up-to-date information
includes most current holdings and nonanonymous
quotes (i.e., quotes calculated by excluding from the
order book the bid sent by 7). Misleading nonanony-
mous (B2) or anonymous (B3) quotes are those that
made i believe that it could buy or sell goods at the
quote, when that was actually not possible. Finally,
every transaction that decreased utility and cannot be
explained by outdated information or misleading
quotes must have occurred because of dependency on
other auctions (C). Such dependencies exist because
agents construct their bids in an auction assuming
they could trade in other auctions at the quote. Since
communication is asynchronous and auctions clear at
different times, some intermediate decreases in utility
are normal and expected.

Suppose we had T transactions, and transaction f (1
=t = T) occurred in auction ¢ for quantity g, and
payment p,. We perform two different optimizations
for each agent i (see Section 5.2):

* R*(H) is the profit achieved by i when calculating
its optimal production plan based on holdings H,
assuming that i cannot trade further.

* P*(H, Q) is the highest payment that i is willing to
offer to trade quantity g, in auction g, assuming it
holds goods H and that it could freely trade goods
in auctions other than g at the prices given by
quotes Q.

We further define Q, as the most up-to-date non-
anonymous quotes for agent i, and Q as the most
up-to-date anonymous quotes. Holdings H' are the
goods held by i in all auctions right after ¢ occurred;
holdings H° are based on initial endowments; hold-
ings H'and H" are the goods held right after ¢ and an
hypothetical clear of all auctions other than g oc-
curred, assuming that 7 bid to achieve optimal hold-
ings as calculated for P*(H'™', Q,) and P*H'"', Q),
respectively; and p; is the lowest hypothetical pay-
ment that i could have bid in order to trade g, in g.
Negative coefficients for payments and quantities are
used for sell offers.

Given these definitions, we can classify transaction ¢
for agent i as follows.

* (A) Is desired If R(H'™') = R(H")

e (B1) Occurred due to outdated information
If PHH', Q) < p|

* (B2) Occurred due to a misleading nonanony-
mous quote If R(H") < R(H')

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids
Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society 507

* (B3) Occurred due to a misleading anonymous
quote If R(H") < R(H'™)

* (C) Was necessary due to auction dependencies
Ift ¢ A Bl, B2, B3

Using the same data obtained for the experiments
reported in Table 5, we measured the percentage of
transactions in (A), (B1), (B2), (B3), or (C) for the
different quoting mechanisms we tested with AON
auctions. The results are shown in Table 6.

We notice that the best performance was provided
by the nonanonymous full schedule quote, which can-
not be misleading and provided the highest propor-
tion of desired trades. The second least misleading
was the anonymous full schedule quote. Finally, the
marginal unit and standard quotes were similarly mis-
leading, providing comparable results regardless of
whether the quote was anonymous or not. Thus,
personalizing these two quotes for decision making
does not seem to help. Marginal unit quotes ap-
peared to provide a relatively high percentage of
desired trades, which is somewhat expected given
such a highly conservative quote. The overall results
provided by this quote, however, were relatively poor
(see Table 5).

6.6. Performance of the Incremental Algorithm
In order to evaluate the performance of the incremen-
tal algorithm described in Section 4.1, we conducted a
series of experiments comparing it against a nonincre-
mental straightforward implementation. The two
methods tested shared most of their Java code, imple-
menting an adaptation of DP-with-Lists. Our incre-
mental algorithm arranged lists of undominated states
in a binary tree structure, whereas the nonincremental
approach arranged these lists sequentially for each bid
inserted into the order book, as in a standard MCKP
solution. Replacing a bid using the nonincremental
approach required recalculating the entire MCKP so-
lution starting from the bid getting replaced.

We based our experiments on the 216 8-player
games described above. Each of these games con-
tained four order book histories (i.e., sequence of bid

insertions), one per auction. We randomly picked for
our analysis 300 out of the 4 X 216 = 864 order book
histories available. The chosen histories provided an
average of 557.6 bid submissions or replacements. Our
experiments measured time spent on bid insertion as
well as number of merge operations for each of the
chosen histories. We simulated bid insertions for mul-
tiples of N = 8 agents, up to 80, by considering three
different ways of assigning the insertions to agents.
The first treated the sequence of bids in the order book
as if each agent had submitted bids taking fixed turns,
ie,agents1,2,..., N, 1,2, The second assign-
ment randomly picked an agent to submit each bid.
Finally, we considered the original sequence of bids
sent by the actual 8 agents involved in each game, and
simulated more agents by randomly assigning bids by
agent i to either i or i + 8 (for 16 agents), toiori + 8
or i + 16 (for 24 agents), etc. Our overall approach was
quite conservative because we kept the total number
of bids fixed. In an actual game, more agents would
typically generate more bids, making the performance
difference between the incremental and nonincremen-
tal approaches even larger.

All these experiments were run on Dell OptiPlex
GX620 (3.4 GHz) computers under RedHat Linux, and
the results are shown in Figure 3. The experiments
showed that our incremental algorithm provided sub-
stantial computational savings when compared to a
nonincremental approach, regardless of the sequence
of bid insertions tested. This gain became more rele-
vant when more agents were involved, as we had
expected.

It is important to note that the time taken by our
incremental approach, given more agents, increased at
a faster than logarithmic rate. This is explained by the
fact that our 8 agents (individually and combined)
submitted bids smaller than C (see Section 3.1), and
thus more agents created more undominated states to
join. If the bound C were reached, the rate of increase
of computation time given more agents would actu-
ally be logarithmic.

Table 6 Classification of Transactions in AON Auctions Based on 4-Agent Simulations
Classification of transactions
Desired Not desired Necessary

Quote A (B1) (B2) (B3) (B)® (9] Total?
1 Nonanonymous full schedule 65.8% 20.1% 0% N/A 20.1% 14.1% 100.0%
2 Anonymous full schedule 62.1% 20.7% N/A 17.8% 21.8% 16.1% 100.0%
3 Marginal unit 64.8% 17.6% 26.2% 25.2% 31.7% 3.5% 100.0%
4 Standard 57.4% 22.8% 24.8% 23.1% 35.5% 71% 100.0%

Nonanonymous Marginal unit and Standard quotes were simulated offline and were not available for decision making during the actual experiments.

2Union of disjoint categories (A), (B) and (C).
b Union of nonexclusive categories (B1), (B2) and (B3).

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

508 Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society

Figure 3

a0

Time /Log,(Agents)
Lists merged Log, (Agents)

(a) Fixed turns

Time ILog,(Agents)

Performance of the Incremental and Nonincremental Algorithms.

Time /Log,(Agents)
Lists merged Log, (Agents)

|
Lists merged Log,(Agents)

,

(c) Original sequence

Solid lines (left axes) show total time (in seconds) required to insert all the bids in an order book history divided by log,(agents), averaged over 300 histories. Dotted
lines (right axes) show average number of lists of undominated states merged for each bid insertion divided by log,(agents).

7. Discussion and Future Work

Our study of the AON auction provides evidence for
the viability and potential benefits of accounting for
indivisibility constraints in market-based allocation,
without resorting to fully combinatorial auction de-
signs. Whether one should adopt an AON auction or
standard divisible auction depends on the specific
setting. Relevant factors include:

1. Expressivity. Divisible bids allow expressing
only convex valuations, whereas indivisible ones do
not have such a limitation. Would agents with non-
convex valuations refrain from participating in auc-
tions with mandatory divisibility?

2. Undesired trades. If agents with nonconvex val-
uations do participate in a divisible auction, they risk
loss-producing transactions. How much they suffer as
a result depends on the degree of nonconvexity.

3. Computation. Our incremental algorithms pro-
vide a relatively efficient way to operate AON auc-
tions, which should be fast enough for several practi-
cal applications. Standard auctions, however, are still
faster to operate, and more predictable since perfor-
mance is less dependent on the number of units of-
fered for sale.

4. Quote communication. Our experiments showed

that the level of detail in price-quote information can
play an important role in overall efficiency, and in
particular that simple marginal quotes were not
enough for AON auctions to improve on the perfor-
mance of a standard auction. Even though much work
remains to be done in this area, it is obvious that the
communication burden of the quote used should be
evaluated when choosing an auction mechanism over
the other.

Further work will refine our comparisons and eval-
uate additional quoting policies. For example, it
would be interesting to measure the potential benefit
of providing full schedule quotes in standard auc-
tions, as we have for the AON auction. It would be
particularly beneficial to identify intermediate quoting
policies for AON auctions that provide much of the
benefit of full schedule quotes without the full ex-
pense. Understanding this tradeoff remains an impor-
tant goal. Finally, we are quite interested in exploring
the strategic bidding issues posed by indivisibility
constraints as well as alternative price quote policies.

Acknowledgments
We thank Terence Kelly for useful discussions, suggestions,
and review of our paper, Kevin Lochner for assisting in the

Schvartzman and Wellman: Market-Based Allocation with Indivisible Bids

Production and Operations Management 16(4), pp. 495-509, © 2007 Production and Operations Management Society 509

development of our AB3D extensions, and the anonymous
reviewers for their constructive comments. This work was
supported in part by the Engineering Research Center for
Reconfigurable Manufacturing Systems at the University of
Michigan under Award EEC-9529125 of the National Science
Foundation.

Parts of this work appeared in the Seventh International
Workshop on Agent-Mediated Electronic Commerce (AMEC,
2005).

References

Bassamboo, A., M. Gupta, S. Juneja. 2001. Efficient winner determi-
nation techniques for Internet multi-unit auctions in First IFIP
Conference on E-Commerce, E-Business, and E-Government. Klu-
wer, B. V., Zurich, pp. 417-430.

Cheng, J. Q.,, M. P. Wellman. 1998. The WALRAS algorithm: A
convergent distributed implementation of general equilibrium
outcomes. Computational Economics 12 1-24.

Cramton, P., Y. Shoham, R. Steinberg, editors. 2006. Combinatorial
auctions. MIT Press.

Dudzinski, K., S. Walukiewicz. 1987. Exact method for the knapsack
problem and its generalizations. European Journal of Operational
Research 28 3-21.

Federal Communications Commission. 2000. Public Notice DA 00-
2404 on auction no. 31. Available at http://wireless.fcc.gov/
auctions/31/releases/da002404.pdf.

Horowitz, E., S. Sahni. 1974. Computing partitions and applications
to the knapsack problem. Journal of the ACM 21 277-292.

Kalagnanam, J. R., A. J. Davenport, H. S. Lee. 2001. Computational
aspects of clearing continuous call double auctions with assign-
ment constraints and indivisible demand. Electronic Commerce
Research 1(3) 221-238.

Kellerer, H., U. Pferschy, D. Pisinger. 2004. Knapsack Problems.
Springer Verlag.

Kelly, T. 2004. Generalized knapsack solvers for multi-unit combi-
natorial auctions. Analysis and application to computational
resource allocation in AAMAS-04 Workshop on Agent-Mediated
Electronic Commerce (AMEC-VI), New York.

Kothari, A., D. C. Parkes, S. Suri. 2003. Approximately-strategy-
proof and tractable multi-unit auctions in Fourth ACM Con-
ference on Electronic Commerce, San Diego, California, pp.
166-175.

Lochner, K. M., M. P. Wellman. 2004. Rule-based specification of
auction mechanisms. Third International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS-04), New
York, pp. 818-825.

Lueker, G. S. 1998. Average-case analysis of off-line and on-line
knapsack problems. Journal of Algorithms 29(2) 277-305.

Marchetti-Spaccamela, A., C. Vercellis. 1995. Stochastic on-line
knapsack problems. Mathematical Programming 68(1) 73-104.

McMillan, J. 1994. Selling spectrum rights. Journal of Economic Per-
spectives 8(3), 145-162.

Miller, R. M. 2002. Paving Wall Street: Experimental Economics and the
Quest for the Perfect Market. Wiley.

Nisan, N. 2000. Bidding and allocation in combinatorial auctions in
Second ACM Conference on Electronic Commerce. Minneapolis,
Minnesota, pp. 1-12.

van Hoesel, S., R. Miiller. 2001. Optimization in electronic markets:
Examples in combinatorial auctions. Netnomics 3 23-33.

Wurman, P. R., W. E. Walsh, M. P. Wellman. 1998. Flexible double
auctions for electronic commerce: Theory and implementation.
Decision Support Systems 24 17-27.

Ygge, F., H. Akkermans. 1999. Decentralized markets versus central
control: A comparative study. Journal of Artificial Intelligence
Research 11 301-333.

