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The biochemistry of acetogenesis is reviewed. The microbes that catalyze the reactions that are
central to acetogenesis are described and the focus is on the enzymology of the process. These
microbes play a key role in the global carbon cycle, producing over 10 trillion kilograms of acetic
acid annually. Acetogens have the ability to anaerobically convert carbon dioxide and CO into
acetyl-CoA by the Wood–Ljungdahl pathway, which is linked to energy conservation. They also
can convert the six carbons of glucose stoichiometrically into 3 mol of acetate using this pathway.
Acetogens and other anaerobic microbes (e.g., sulfate reducers and methanogens) use the Wood–
Ljungdahl pathway for cell carbon synthesis. Important enzymes in this pathway that are covered
in this review are pyruvate ferredoxin oxidoreductase, CO dehydrogenase/acetyl-CoA synthase, a
corrinoid iron-sulfur protein, a methyltransferase, and the enzymes involved in the conversion of
carbon dioxide to methyl-tetrahydrofolate.
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Introduction

Some anaerobic microbes, including acetogenic
bacteria and methanogenic archaea, convert CO2

to cellular carbon by the Wood–Ljungdahl pathway
(FIG. 1).1,2 The global importance of acetogens is cov-
ered fully in Harold Drake’s chapter.3 Acetogenic bac-
teria use this pathway as their major means of gener-
ating energy for growth. Moorella thermoacetica, isolated
in 1942,4 is the model acetogen and is the organism
on which most studies of the Wood–Ljungdahl have
been performed; its genome was recently sequenced.
Methanogens growing on H2/CO2 use the pathway
for generating cell carbon; however, those that can
grow on acetate, essentially run the pathway in reverse
and generate energy by oxidizing acetate to 2 mol of
CO2.5 Acetoclastic methanogens also convert acetate
into acetyl-CoA for cell carbon synthesis through the
combined actions of acetate kinase6,7 and phospho-
transacetylase.8

The Wood–Ljungdahl pathway contains an Eastern
(in red) and a Western (in blue) branch (FIG. 1), as orig-
inally described.9 The Eastern branch is essentially
the folate-dependent one-carbon metabolic pathway
that is present from bacteria to humans and recapitu-
lated with methanopterin in methanogens. The West-
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ern branch is unique to acetogens, methanogens, and
sulfate reducers, and exhibits novel mechanistic fea-
tures. Acetogenic bacteria (e.g., acetogens or homoace-
togens) synthesize acetic acid as their sole or primary
metabolic end-product. Globally, acetogens produce
over 1013 kg (100 billion U.S. tons) of acetic acid an-
nually,10 which dwarfs the total output of the world’s
chemical industry.

FIGURE 1 depicts growth of acetogens on glucose.
However, these organisms can use a variety of sub-
strates, including the biodegradation products of most
natural polymers, such as cellulose, lignin (sugars, alco-
hols, aromatic compounds), and inorganic gases (CO,
H2, CO2). When acetogens grow on H2/CO2, car-
bon enters the Wood–Ljungdahl pathway at the CO2

reduction step, with H2 serving as the electron donor.
Acetogens are important in the biology of the soil, of
extreme environments, and of organisms that house
them in their digestive tract, such as humans, termites,
and ruminants.11–13

Pyruvate Ferredoxin Oxidoreductase

Pyruvate ferredoxin oxidoreductase (PFOR) was re-
viewed relatively recently.14 Catalyzing the oxidative
decarboxylation of pyruvate to form acetyl-CoA and
CO2, PFOR links heterotrophic metabolism to the
Wood–Ljungdahl pathway (FIG. 1). PFOR is also key
to cell carbon synthesis since, besides its catabolic func-
tion, PFOR catalyzes pyruvate formation by reductive
carboxylation of acetyl-CoA.15,16 Pyruvate can then
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FIGURE 1. The Wood–Ljungdahl pathway with the East-
ern and Western branches depicted in red and blue,
respectively. (In color in Annals on line.)

enter the incomplete tricarboxylic acid cycle17,18 to
generate intermediates for cell carbon synthesis. PFOR
is found in archaea, bacteria, and even anaerobic pro-
tozoa like Giardia.19

(1)

The structure of the Desulfovibrio africanus PFOR re-
veals seven domains.20 Thiamine pyrophosphate (TPP)
and a proximal [4Fe-4S] cluster (Cluster A) are deeply
buried within the protein, while the other two clus-
ters (B and C) lead to the surface (FIG. 2). The TPP
binding site consists of two domains that bear strong
structural similarity to those in other TPP enzymes21

and contains conserved residues that interact with
Mg++, pyrophosphate, and the thiazolium ring. Rapid
kinetic studies indicate that the initial steps in ox-
idative decarboxylation of pyruvate by PFOR are
similar to those of other TPP enzymes.22 Deproto-
nation of TPP yields the active ylide, which forms
an adduct with pyruvate. Then, CO2 is released,
forming the 2α-hydroxyethylidene-TPP adduct (HE-
TPP).23 In acetogens, the CO2 feeds into the Wood–
Ljungdahl pathway24,25 (FIG. 1) and, based on isotope-
exchange studies,26 may be channeled directly to CO
dehydrogenase/acetyl-CoA synthase (CODH/ACS).

After forming the HE-TPP intermediate, the nega-
tive charge on C-2 of HE-TPP promotes one-electron
reduction of a proximal FeS cluster, forming an HE-
TPP radical intermediate (FIG. 2). Based on the crys-
tal structure, this intermediate was proposed to be a
novel sigma-type acetyl radical27; however, recent stud-

ies show that it is a pi radical with spin density delo-
calized over the aromatic thiazolium ring, as shown in
the figure.28,29

In the next step of the PFOR mechanism, the
HE-TPP radical transfers an electron to the Fe-S
electron-transfer chain, presumably through the ox-
idized A-cluster (FIG. 2). The rate of this electron-
transfer reaction is CoA dependent.30 In the absence of
CoA, the half-life of the HE-TPP radical intermediate
is ∼2 min; however, in the presence of CoA, the rate
of radical decay increases 100,000-fold.22 By study-
ing various CoA analogues, it was shown that the thiol
group of CoA alone lowers the transition state barrier
for electron transfer by 40.5 kJ/mol. The final step
in the PFOR mechanism is electron transfer through
Clusters A, B, and C (FIG. 2) to ferredoxin,20 the termi-
nal electron acceptor for PFOR. This electron-transfer
reaction occurs extremely rapidly, with a second-order
rate constant of 2–7 × 107 M−1 s−1.22,31

CODH/ACS

CODH/ACS was recently reviewed,32 so this part
of the Wood–Ljungdahl pathway will be treated
rather briefly. As shown in FIGURE 1, when aceto-
gens are grown heterotrophically, the CO2 and elec-
trons generated by the PFOR reaction are utilized by
CODH/ACS and formate dehydrogenase to generate
CO and formate, respectively. When they are grown on
CO, CODH generates CO2, which is then converted
to formate in the Eastern branch of the pathway and
CO is incorporated directly as the carbonyl group of
acetyl-CoA. Both CO and CO2 are unreactive with-
out a catalyst, but the enzyme-catalyzed reactions are
fast, with turnover numbers as high as 40,000 s−1 re-
ported for CO oxidation by the Ni-CODH from Car-
boxydothermus hydrogenoformans at its physiological growth
temperature.33 Even the least active CODHs catalyze
CO oxidation at rates of ∼50 s−1.34 There are two ma-
jor classes of CODHs: the aerobic Mo-Cu-Se CODH
from carboxydobacteria and the Ni-CODHs. Found in
aerobic bacteria that oxidize CO with O2,35,36 the Mo-
CODH contains FAD,37 Fe/S centers, Cu, and 2 Mo
atoms bound by molybdopterin cytosine dinucleotide,
and its structure has been solved.38 This enzyme will
not be discussed further in this chapter, since only the
Ni-CODH/ACS is involved in the Wood–Ljungdahl
pathway. Ni-CODHs are divided into two classes:
the monofunctional nickel CODH, which catalyzes
the reaction shown in Equation 2, and the bifunc-
tional CODH/ACS, which couples Equation 2 (CO
formation) with Equation 3 (acetyl-CoA synthesis).



Ragsdale: Enzymology of Acetogenesis 131

FIGURE 2. PFOR state including the HE-TPP radical, with the structure based on spectroscopic results,
showing highly delocalized spin distribution (From Astashkin et al.29 Used with permission.), and the
distance from HE-TPP radical to coupled cluster. Location of the clusters is based on the structure (PDB
1KEK).

The monofunctional CODH functions physiologically
in the direction of CO oxidation, allowing microbes
to take up and oxidize CO at the low levels found in
the environment, while the CODH in the bifunctional
protein converts CO2 into acetyl-CoA.

CO2 + 2 H+ + 2 e− � CO + H2O

�E◦′ = −520 mV (2)

CO + CH3−CFeSP + CoA

→ acetyl − CoA + CFeSP (3)

The crystal structures of the monofunctional NI-
CODH and the CODH component of the bifunc-
tional enzymes are very similar.39–42 These mushroom-
shaped, homodimeric enzymes contain five metal
clusters per dimer: two C-clusters, two B-clusters, and
a bridging D-cluster. The C-cluster is the catalytic site
for CO oxidation and is buried 18 † below the surface.
This cluster can be described as a [3Fe-4S] cluster
bridged to a binuclear NiFe cluster. The Rhodospirillum
rubrum CODH structure with a bridging Cys between
Ni and a special iron atom called ferrous component II
(FCII), while the C. hydrogenoformans protein appears to
have a sulfide bridge between Ni and FCII.43,44 Fur-
thermore, there is evidence for a catalytically impor-
tant persulfide at the C-cluster.45 Issues related to the
different structures are discussed in a recent review.46

Cluster B is a typical [4Fe-4S]2+/1+ cluster, while Clus-
ter D is a [4Fe-4S]2+/1+ cluster that bridges the two
identical subunits, similar to the [4Fe-4S]2+/1+ cluster
in the iron protein of nitrogenase.

The CODH mechanism involves a Ping-Pong reac-
tion: CODH is reduced by CO in the “ping” step and
the reduced enzyme transfers electrons to an exter-
nal redox mediator like ferredoxin in the “pong” step.
The reduced electron acceptors then couple to other
reduced nicolinamide adenine dinucleotide phosphate
(NAD(P)H) or ferredoxin-dependent cellular processes
that require energy. Details of the CODH reaction
have been reviewed.32 Recent studies of CODH linked

to a pyrolytic graphite electrode show complete re-
versibility of CO oxidation and CO2 reduction; in fact,
at low pH values, the rate of CO2 reduction exceeds
that of CO oxidation.47

The association of ACS with CODH forms a bi-
functional CODH/ACS machine that is encoded by
the acsA/acsB genes, respectively, and plays the key role
in the Wood–Ljungdahl pathway.32,48,49 The CODH
component catalyzes the conversion of CO2 to CO
(Eq. 2) to generate CO as a metabolic intermediate.25

The CO2 comes from the growth medium or from de-
carboxylation of pyruvate.25,30 Then, ACS catalyzes
the condensation of CO,50 CoA, and the methyl group
of a methylated corrinoid iron–sulfur protein (CFeSP)
to generate acetyl-CoA (Eq. 3),25 a precursor of cellular
material and a source of energy.

CODH/ACS contains a 140-† channel that delivers
CO generated at the C-cluster to the A-cluster.40,51,52

The only metallocenter in ACS is the A-cluster, which
consists of a [4Fe-4S] cluster bridged to a Ni site (Nip)
that is thiolate bridged to another Ni ion in a thiolato-
and carboxamido-type N2S2 coordination environ-
ment.40,42,53 Thus, one can describe the A-cluster as
a binuclear NiNi center bridged by a cysteine residue
(Cys509) to a [4Fe-4S] cluster, an arrangement sim-
ilar to the Fe-Fe hydrogenases in which a [4Fe-4S]
cluster and a binuclear Fe site are bridged by a Cys
residue.87,88

Two mechanisms for acetyl-CoA synthesis have
been proposed that differ mainly in the electronic struc-
ture of the intermediates: one proposes a paramag-
netic Ni(I)-CO species as a central intermediate,2 and
the other proposes a Ni(0) intermediate.54,55 A generic
mechanism that emphasizes the organometallic nature
of this reaction sequence is described in FIGURE 3.

Step 1, as shown in the figure, involves the migration
of CO, derived from CO2 reduction, through the inter-
subunit channel to bind to the Nip site in the A-cluster.
The binding of CO to ACS forms an organometallic
complex, called the NiFeC species that has been char-
acterized by a number of spectroscopic approaches.2
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FIGURE 3. ACS mechanism emphasizing the organometallic nature of the reaction sequence and the
channel to deliver CO from the CODH active site to the A-cluster.

The electronic structure of the NiFeC species is
described as a [4Fe-4S]2+ cluster linked to a Ni1+ cen-
ter at the Nip site, while the other Ni apparently re-
mains redox-inert in the Ni2+ state.56 Lindahl’s group
has argued that the NiFeC species is not a true catalytic
intermediate in acetyl-CoA synthesis, that it may rep-
resent an inhibited state, and that the Ni(0) state is the
catalytically relevant one.54,55 See the recent review for
a discussion of these issues.32 Step 2 in the ACS mech-
anism involves methylation of the A-cluster,57 which
involves the conversion of one organometallic species
(methyl-Co) to another (methyl-Ni). There is evidence
that the methyl group binds to the Nip site of the A-
cluster.58–60 Carbon-carbon bond formation, Step 3
in the catalytic cycle, occurs by condensation of the
methyl and carbonyl groups to form an acetyl-metal
species. In the last step, CoA binds to ACS, triggering
thiolysis of the acetyl-metal bond to form the C-S bond
of acetyl-CoA, completing the reactions of the Western
branch of the Wood–Ljungdahl pathway. FIGURE 3 in-
dicates, for simplicity, that the ACS reaction sequence
is ordered with CO binding before the methyl group.
Conversely, Lindahl has argued for a strictly ordered
binding mechanism, with methyl binding first, then
CO, and finally CoA, as described in a recent review.55

In the author’s opinion, there is insufficient evidence
to exclude the 1991 proposal that the carbonylation
and methylation steps occur randomly61 (FIG. 4).

Tetrahydrofolate-Dependent Enzymes

Most of the work on the folate enzymes involved
in the Eastern branch of the pathway has been

performed in the Ljungdahl laboratory. The methyl
group of acetyl-CoA is formed by the six-electron
reduction of CO2 in the reactions of the Eastern
branch of the acetyl-CoA pathway (FIG. 1).2,62 First,
formate dehydrogenase converts CO2 to formate,63

which is condensed with H4folate to form 10-formyl-
H4folate.64,65 The latter is then converted by a cyclohy-
drolase to 5,10-methenyl-H4folate. Next, a dehydroge-
nase reduces methenyl- to 5,10-methylene-H4folate,66

which is reduced to (6S)-5-CH3-H4folate by a reduc-
tase.67,68

Methyltransferase (MeTr, AcsE)
and Corrinoid Iron Sulfur Protein

(CFeSP, AcsCD)

The methyl group of CH3-H4folate is transferred
to the cobalt site in the cobalamin cofactor bound
to the CFeSP69,70 to form an organometallic methyl-
Co(III) intermediate in the Wood–Ljungdahl pathway
(FIG. 1). This reaction is catalyzed by MeTr, encoded by
the acsE gene.24 MeTr belongs to the B12-dependent
methyltransferase family that includes methionine
synthase and related enzymes from methanogens.71

We have cloned, sequenced, and actively overex-
pressed MeTr72,73 and the CFeSP74 in E coli, making
them amenable for site-directed mutagenesis studies.
In collaboration with Cathy Drennan (MIT, Cam-
bridge, Massachusetts), we also have determined the
structure of MeTr and a site-directed variant in its
uncomplexed75 and CH3-H4folate–bound76 states.
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FIGURE 4. Random mechanism of acetyl-CoA synthesis.

FIGURE 5. Proposed conformers and interactions of the CFeSP. (Modified from Svetlitchnaia et al.79)

It was concluded that CH3-H4folate binds tightly
(Kd < 10 µM77) to MeTr within a negatively charged
crevice of the triose phosphate isomerase (TIM) bar-
rel.78 The structure of the CFeSP was also recently
solved.79

A key step in the MeTr mechanism is activation
of the methyl group of CH3-H4folate, since the re-
action involves displacement at a tertiary amine and
because the CH3-N bond is much stronger than the
product CH3-Co bond. Of the activation mechanisms
that have been considered, protonation at N5 of the
pterin seems to be most plausible.71 Generation of a
positive charge on N5 would lower the activation bar-
rier for nucleophilic displacement of the methyl group
by the Co(I) nucleophile. There is significant experi-
mental support for protonation at N5 of the pterin,
including proton uptake studies,77,80 pH dependen-
cies of the steady state, and transient reaction kinetics
of MeTr81 and methionine synthase,82 and studies of
variants that are compromised in acid–base catalysis.76

A question that has not been resolved is whether the
proton transfer takes place upon formation of the bi-
nary complex, as indicated by studies with MeTr from
M. thermoacetica,49,77 or the ternary complex (with the
methyl acceptor), as concluded from studies on E. coli
methionine synthase.80 Recent studies indicate that this
protonation step relies on an H-bonding network, in-
stead of a single acid–base catalyst and that an Asn
residue is a key component of that network.76

As shown in FIGURE 1, the CFeSP interfaces
between CH3-H4folate/MeTr and CODH/ACS.

This 88-kDa heterodimeric protein contains a [4Fe-
4S]2+/1+ cluster and a cobalt cobamide.70,74 The
Fe-S cluster plays a role in reductive activation of
the cobalt to the active Co(I) state.83,84 Svetlitchnaia
et al.79 proposed that the C-terminal domain (FIG. 5)
of the large subunit is a mobile element that interacts
alternatively with the A-cluster domain of ACS and
with MeTr. Three major conformers or complexes
are described: (1) a methylation complex, in which
the Co(I)-CFeSP binds MeTr and accepts the methyl
group of CH3-H4folate; (2) the methylated CFeSP; (3)
a complex between ACS and the methylated CFeSP. A
fourth conformation, which is not shown here, would
be a reductive activation conformer, in which the cor-
rinoid is in the inactive Co(II) state. This molecular
juggling proposed for the CFeSP shown in FIGURE 5
has precedent in the related mechanism involving the
various domains of methionine synthase, as shown by
the elegant structure–function studies of Matthews and
Ludwig.82,85,86

Summary

Studies of the enzymes involved in the Wood–
Ljungdahl pathway have elucidated new roles of
metal ions in biology (including the formation of
bioorganometallic intermediates, discovery of new
heterometallic clusters, and nucleophilic metal ions),
uncovered novel substrate-derived radical intermedi-
ates, and revealed channeling of gaseous substrates.
These new outcomes and mechanisms will likely be
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applicable to other currently less well-studied metal-
dependent enzyme systems. Now that detailed struc-
tures of PFOR, CODH/ACS, the CFeSP, and MeTr
are available to provide a structural framework for
these novel and important chemical reactions, mecha-
nistic hypotheses can be posed and tested at a deeper
level using a variety of biochemical and biophysical
methods.
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