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ABSTRACT: Estimating stream temperatures across broad spatial extents is important for regional conservation
of running waters. Although statistical models can be useful in this endeavor, little information exists to aid in the
selection of a particular statistical approach. Our objective was to compare the accuracy of ordinary least-squares
multiple linear regression, generalized additive modeling, ordinary kriging, and linear mixed modeling (LMM)
using July mean stream temperatures in Michigan and Wisconsin. Although LMM using low-rank thin-plate
smoothing splines to measure the spatial autocorrelation in stream temperatures was the most accurate modeling
approach; overall, there were only slight differences in prediction accuracy among the evaluated approaches. This
suggests that managers and researchers can select a stream temperature modeling approach that meets their level
of expertise without sacrificing substantial amounts of prediction accuracy. The most accurate models for Michigan
and Wisconsin had root mean square errors of 2.0-2.3�C, suggesting that only relatively coarse predictions can be
produced from landscape-based statistical models at regional scales. Explaining substantially more variability in
stream temperatures likely will require the collection of finer-scale hydrologic and physiographic data, which may
be cost prohibitive for monitoring and assessing stream temperatures at regional scales.
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INTRODUCTION

Water temperature is an important characteristic
influencing stream ecosystems (Allan and Castillo,
2007). Water temperature regulates biological pro-
cesses of aquatic ectotherms (Brett, 1971; Hokanson
et al., 1977; Taniguchi et al., 1998; Gillooly et al.,
2002) and plays a major role in regulating biological

communities (Vannote and Sweeney, 1980; Rahel and
Hubert, 1991; Lyons, 1996; Hawkins et al., 1997;
Sponseller et al., 2001; Steen et al., 2008). Thus,
water temperature is an essential habitat feature
that should be considered in stream conservation
efforts. At regional scales, however, stream tempera-
ture measurements are typically available for rela-
tively few locations and models capable of predicting
temperature at unsampled locations can be of great
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management value. For example, broad-scale temper-
ature predictions have been used to map species dis-
tributions to identify gaps in conservation efforts
(McKenna et al., 2006; Steen et al., 2008), assess
human impacts (Eaton and Scheller, 1996; Rahel
et al., 1996; Nelitz et al., 2007), and classify stream
reaches based on their potential to support different
species assemblages to guide fisheries management
(Seelbach et al., 2006; Brenden et al., 2008).

Models for predicting stream temperature have
been developed using both deterministic and statisti-
cal approaches. Deterministic or physical-process
models are based on energy budget equations and use
inputs such as solar radiation, evaporation, and con-
duction to calculate thermal exchange between the
atmosphere and streams. Deterministic models are
typically developed for individual stream reaches and
require extensive data inputs (e.g., stream geometry,
state hydrology, and meteorology) to calibrate.
Although deterministic models can provide very accu-
rate estimates of stream temperature (Sinokrot and
Stefan, 1993; Kim and Chapra, 1997; Gu et al., 1998;
Younus et al., 2000; Horne et al., 2004; Caissie et al.,
2007), the reach-specific data inputs and predictions
make them impractical for use at regional scales
(Mohseni et al., 1998; Risley et al., 2003), particularly
when the goal is to estimate water temperature at
hundreds of unsampled locations. In contrast, statis-
tical models do not directly account for sources of
heat flux but instead rely on variables that are corre-
lated with water temperature such as air tempera-
ture and landscape characteristics (Caissie, 2006;
Webb et al., 2008). Statistical models based on air
temperature explain much of the variation in water
temperature when developed for specific locations or
for a limited number of locations having similar char-
acteristics (Crisp and Howson, 1982; Mackey and
Berrie, 1991; Stephan and Preud’homme, 1993;
Mohseni et al., 1998). However, as more types of
streams are considered in model development, the
strength of the air-water temperature relationship
diminishes (Stephan and Preud’homme, 1993; Caissie,
2006). Statistical temperature models that include
multiple stream types typically incorporate geomor-
phic, riparian, and catchment characteristics (Hawkins
et al., 1997; Isaak and Hubert, 2001; Sponseller et al.,
2001; Abell and Allan, 2002; Scott et al., 2002; Risley
et al., 2003; Wehrly et al., 2006; Nelitz et al., 2007).

Most statistical temperature models have used rel-
atively simple methods, such as simple and multiple
linear regression (MLR) and nonlinear regression
techniques (reviewed in Caissie, 2006 and Webb
et al., 2008). Recently, a number of new modeling
approaches have been used to predict water tempera-
ture such as kriging (KRIG) (Gardner et al., 2003;
Gardner and Sullivan, 2004), wavelet analysis (Steel

and Lange, 2007), evolutionary polynomial regression
(Giustolisi et al., 2007), and artificial neural networks
(Risley et al., 2003; Roehl et al., 2006; Stewart et al.,
2006; Karacor et al., 2007; Sivri et al., 2007). Addi-
tional statistical approaches such as generalized addi-
tive modeling (GAM) and linear mixed modeling
(LMM) may improve temperature prediction accuracy
by accounting for nonlinear relationships between
response and predictor variables and by accounting
for spatial autocorrelation among sampling sites.
Despite a growing list of analytical techniques, little
information exists to aid in the selection of a particu-
lar modeling approach because few comparative stud-
ies have been published (Caissie, 2006; Webb et al.,
2008). The purpose of this study was to compare the
accuracy of MLR, GAM, KRIG, and LMM for predict-
ing July mean stream temperatures for streams
located across Michigan and Wisconsin. Such an
assessment of model performance is aimed to provide
knowledge of model accuracy, bias, and model selec-
tion to aquatic resource managers and researchers
who are interested in developing their own statistical
temperature models.

MATERIALS AND METHODS

Data Collection

We based our evaluation on data from 820 wade-
able stream sites in Michigan and 311 wadeable
stream sites in Wisconsin (Figure 1). Streams in
these states primarily drain low-elevation landscapes
of glacial origin. Climate, topography, and land use
are relatively similar between the states. Addition-
ally, ground-water loading plays an important role in
shaping stream temperature and flow regimes in both
states (Wehrly et al., 2006). Summer water tempera-
tures for the study streams were measured using con-
tinuous-recording temperature loggers that were
deployed between 1989 and 2005 by the Michigan
and Wisconsin Departments of Natural Resources.
July mean water temperature for each stream site
was computed from the logged temperatures. July
mean temperature is a useful predictor of fish assem-
blage structure (Wehrly et al., 2003; Steen et al.,
2008) and July is the time in northern latitudes when
temperature differences among streams are most pro-
nounced (Caissie et al., 2006; Kevin E. Wehrly,
unpublished data). Of the 820 sites in Michigan
where stream temperature measurements were col-
lected, 64 sites had more than one year of tempera-
ture measurements. Similarly, of the 311 sites
in Wisconsin, 31 sites had more than one year of
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temperature measurements available. Because we
were interested in characterizing the ‘‘typical’’ tem-
perature regime experienced by biota at each site, we
averaged temperatures across years so that only one
temperature measurement per stream occurred
within the datasets. Alternatively, we could have ran-
domly selected a single year of measurement for the
sites that had multiple years of measurement to be
used in our evaluations. Ultimately, we found that
the relative performance of the modeling approaches
that we evaluated in this study was the same regard-
less of whether we used average temperatures or ran-
domly selected a single year of temperature
measurements. Consequently, we only report the
results in which we averaged temperatures for sites
with multiple years of data. The study streams were
a diverse set of stream types encompassing a range of
thermal conditions (Figure 2).

Model Development

Stream temperatures were modeled as a spatial
random field that could be represented with the equa-
tion

Z sð Þ ¼ X sð Þbþ e sð Þ; ð1Þ

where Z(s) is a vector of stream temperatures
(response variable) observed at locations s1, s2,…sn;

X is a matrix of model covariates (predictor variables)
measured at the locations; and e(s) is a vector of ran-
dom model errors (Schabenberger and Gotway, 2005).
For generality, it was only assumed that e(s) had a
mean of 0 and a variance-covariance matrix denoted
by R.

The first approach that we used to predict stream
temperature was ordinary least-squares MLR. With
the MLR approach, it is assumed that stream temper-
atures at different locations have the same variance
and are uncorrelated. By uncorrelated, we mean that
temperature at one stream conveys no information
about temperatures at other nearby streams. In other
words, R is assumed to equal r2I, where I is an n · n
identity matrix. With this model structure, all vari-
ability in stream temperatures, apart from random
white-noise error, is associated with changes in the
mean function (Schabenberger and Gotway, 2005).
We modeled the mean function as a linear combina-

FIGURE 2. Histograms of Observed July Mean Water
Temperature in Michigan and Wisconsin Streams.

FIGURE 1. Michigan and Wisconsin
Stream Temperature Sampling Sites.
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tion of six landscape characteristics that were
summarized for the study stream sites: percent forest
land use in local catchments, percent water land type
in network catchments, July mean air temperature
(�C), loge transformed network catchment surface
area (km2), mean network catchment slope (%), and
mean soil permeability in network catchments
(cm ⁄ 100 h) (Table 1). These predictor variables were
chosen because preliminary analyses revealed they
were correlated with water temperature. Network
and local catchments differ with respect to drainage
area boundaries. We defined local catchments as only
those areas that drain directly to a particular stream
reach and we defined network catchments as all
areas that drain to a stream reach either by overland
or waterway routes (Figure 3). Predictor variables for
the study streams were summarized using a previ-

ously developed stream attribute database for upper
Midwest United States (U.S.) states (Brenden et al.,
2006). Land use ⁄ type for study streams were summa-
rized using 30-m resolution land cover ⁄ use Geo-
graphic Information System (GIS) themes for the
states (MCGI, 2004; WDNR, 2004). Air temperature
was summarized from Oregon State University ⁄ Spa-
tial Climate Analysis Service datasets (OSU ⁄ SCAS,
2004). Mean network catchment slope for stream
reaches was calculated using the U.S. Geological Sur-
vey National Elevation Dataset (USGS, 2004a). Mean
soil permeability was calculated from U.S. Geological
soil survey database (USGS, 2004b). The MLR models
were fit in SAS (SAS Institute, 2004) using the
GLIMMIX procedure.

Our second approach for predicting stream temper-
atures was GAM. GAM is a semiparametric modeling

TABLE 1. Descriptive Statistics for Predictor Variables Used to Develop Temperature Models for Michigan and Wisconsin Streams.

Predictor Variable

Michigan Wisconsin

Minimum Median Maximum Minimum Median Maximum

AREA 0.0 4.7 9.6 )0.1 4.1 10.2
FOREST 0.0 37.6 97.9 0.0 22.4 97.0
JULAIR 14.6 20.8 25.4 17.0 21.9 25.8
PERM 73.6 636.6 1,300.0 63.0 263.3 1,242.1
SLOPE 0.0 1.2 7.4 1.0 5.3 16.1
WATER 0.0 0.9 16.8 0.0 0.4 30.4

Notes: See Brenden et al. (2006) for a description of how the stream attributes were calculated. [AREA = loge network catchment surface area
(km2), FOREST = percent forest land use ⁄ type in local catchments, JULAIR = July mean air temperature (�C), PERM = mean soil perme-
ability in network catchments (cm ⁄ 100 h), SLOPE = mean network catchment slope (�), and WATER = percent water in network catch-
ments.]

FIGURE 3. Illustrated Differences Between Local and Network Catchments, Which Were Spatial Scales Used to
Summarize Land Use ⁄ Type for Stream Reaches to Predict Stream Temperatures. Local catchments (left panel)

included only those upstream areas that drained directly to a particular stream reach. Network catchments
(right panel) included all upstream areas that drained to a stream reach either by overland or waterway routes.
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approach for identifying nonlinear regression effects
between response and explanatory variables (Hastie
and Tibshirani, 1990). Whereas the MLR approach
assumed that there was a linear relationship between
stream temperature and model covariates, the GAM
approach only assumed that there were smooth rela-
tionships between stream temperature and the model
covariates; the exact nature of these smoothed rela-
tionships were estimated as part of the model fitting
process. To our knowledge, GAM has not previously
been used to predict stream temperatures, but may
be advantageous for doing so because of its ability to
account for nonlinearities between response and pre-
dictor variables without requiring explicit specifica-
tion of model equations. Like the MLR approach, the
GAM approach assumed that streams had the same
variance and were uncorrelated (i.e., R = r2I), and
that all variability in stream temperatures (apart
from random, white-noise error) was due to changes
associated with the mean function. As with the MLR
approach, we modeled the mean function for the
GAM approach as a linear combination of the six
landscape characteristics listed in Table 1. We fit the
GAM models in SAS using the GAM procedure. We
used cubic smoothing splines to estimate the relation-
ships between stream temperature and the model co-
variates. The amount of smoothing for the model
covariates was determined through generalized cross
validation.

Our third approach for predicting stream tempera-
ture was ordinary KRIG. KRIG is an interpolation
technique that predicts information at unsampled
locations from measurements at sampled locations.
From a prediction standpoint, KRIG can be repre-
sented with the equation

Z sð Þ ¼ lþ e sð Þ; ð2Þ

where l indicates that there is a constant (and
unknown) mean at all locations. Whereas with the
MLR and GAM approaches it was assumed that
most variability in stream temperature was due to
changes in the mean function, with KRIG it is
assumed that most variability in stream tempera-
tures is associated with spatial dependency among
streams. Thus, with the KRIG approach, it is no
longer assumed that R = r2I. Ordinary KRIG predic-
tions of stream temperature at unobserved locations
are calculated using KRIG weights, which determine
the influence of neighboring observations on pre-
dicted values. KRIG weights are affected by R and
the covariances between stream temperatures at pre-
dicted and observed locations (Schabenberger and
Gotway, 2005). It is typical with the KRIG approach
to use some parametric model to capture the spatial

dependence among observations (Schabenberger and
Gotway, 2005). Based on the empirical semivario-
grams that were calculated from the Michigan and
Wisconsin datasets, we chose to use a spherical semi-
variogram model to model the spatial dependence
among streams. Although Gardner et al. (2003)
found that KRIG using the shortest stream length
between sampling locations yielded the most accu-
rate stream temperatures for a river network, for
many watersheds in our dataset only a few stream
temperature measurements occurred within the
same upstream and downstream network. For exam-
ple, in a hypothetical stream network, temperature
measurements may be available for a site in the
headwaters and for a site located tens of kilometers
downstream. Because thermal regimes typically vary
as a function of network position (Caissie, 2006), the
temperature of the headwater site in our hypotheti-
cal stream would be more similar to other headwater
streams in adjacent river networks than to the
downstream site in the same network. We thus felt
that the sparse temperature data available within
each network were inadequate to use in-water path
distance as the basis for assessing spatial depen-
dence among observations. Instead, we used Euclid-
ean distance, or the shortest distance between two
sampling locations regardless of whether the path
was overland or instream, as the basis for assessing
spatial dependence among observations. We used the
MIXED procedure in SAS and restricted maximum
likelihood to estimate the parameters of the spherical
semivariogram model. Ordinary KRIG of the stream
temperatures for the Michigan and Wisconsin data-
sets was conducted using the KRIGE2D procedure in
SAS.

Our fourth and fifth approaches for predicting
stream temperatures were based on LMM. The
LMM approaches differed from the other approaches
used in this study in that the spatial structure in
stream temperatures was incorporated as part of
both the mean function and error process, rather
than as part of the mean function or error process
separately. Based on the relative performance of the
GAM and MLR approaches, we chose only to con-
sider linear relationships between stream tempera-
ture and the model covariates, although, with LMM,
nonlinearities between response and predictor vari-
ables could also have been considered. For the LMM
approaches to predicting stream temperature, the
random error [e(s)] in Equation (1) gets separated
into two components, a component that includes
smooth-scale and micro-scale variation in stream
temperatures and a white-noise measurement error
component (Schabenberger and Gotway, 2005). Thus,
Equation (1) for the LMM approach can be decom-
posed to
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Z sð Þ ¼ X sð Þbþ t sð Þ þ e sð Þ; ð3Þ

where t sð Þ represents the smooth-scale and micro-
scale variation component and e sð Þ represents the
white-noise measurement error component [the KRIG
approach assumes a similar decomposition of e(s)].
With Equation (3), it is assumed that t sð Þ has a mean
of 0 and a variance-covariance matrix of

P
S, and that

e sð Þ has a mean of 0 and a variance-covariance matrix
of r2

eI. From a mixed models standpoint, t sð Þ forms
the random effects component of the model (Schaben-
berger and Gotway, 2005). As with the MLR and
GAM approaches, we modeled the mean function in
Equation (3) as a linear combination of the six land-
scape characteristics listed in Table 1. The fourth and
fifth approaches differed in respect to how the spatial
dependence among streams was modeled. For the
fourth approach (hereafter referred to as LMM-
Spherical), we predicted stream temperature by
assuming t sð Þ was a zero mean random field with
spherical covariance structure. Thus, the fourth
approach combined elements of both the MLR and
KRIG approaches. For the fifth approach (hereafter
referred to as LMM-Smooth), we used low-rank radial
smoothing splines to model t sð Þ. This approach
entailed placing ‘‘knots’’ at various locations through-
out the study area. Smoothing splines were then used
to model the spatial autocorrelations in stream tem-
peratures based on distances of streams to knots
(Ruppert et al., 2003; Schabenberger and Gotway,
2005). This approach is computationally efficient as
only stream-to-knot rather than stream-to-stream dis-
tances need to be calculated (Schabenberger and
Gotway, 2005). We used the MIXED procedure in SAS
to fit the models for the LMM-Spherical approach. We
used the GLIMMIX procedure for the LMM-Smooth
approach. Restricted maximum likelihood estimation
was used to fit both the LMM-Spherical and LMM-
Smooth approaches. The placement of knots for the
LMM-Smooth approach was based on a space filling
design, which involves placing knots at locations
within the study area such that the sum of the
minimum distances from each knot to the locations of
the original data are minimized (Ruppert et al., 2003).
We used the OPTEX procedure in SAS to determine
exact knot placement. A total of 60 knots, which is
intermediate to the minimum and maximum numbers
of knots recommended by Ruppert et al. (2003), were
used as part of the LMM-Smooth approach.

Model Evaluation

We evaluated the accuracy of the five modeling
approaches for predicting stream temperatures by

fitting the models to a random selection of 75%
(Michigan: n = 615 and Wisconsin: n = 233) of the
study stream sites and then calculating the accuracy
in stream temperature predictions for the remaining
(Michigan: n = 205 and Wisconsin: n = 78) study
streams (validation dataset). Accuracy was deter-
mined by calculating the mean absolute error (MAE)
and root mean square error (RMSE) in temperature
predictions for the validation dataset (Power, 1993).
We chose to use both metrics to assist in identifying
variability in model errors for the modeling
approaches. We repeated the process of randomly
selecting streams, fitting the models, and evaluating
accuracy of the temperature predictions 500 times.
This method for validating models has been given
several names, including repeated random subsam-
pling validation and delete-d validation (Good, 2006),
and is beneficial for ensuring that results are not
affected by a single aberrant selection. We averaged
the MAE and RMSE across all 500 model runs to
evaluate overall accuracy of the different modeling
approaches.

Prediction of Statewide July Mean Temperatures

To evaluate the utility of landscape-based models
for predicting stream temperatures across large
regions, we used the best performing modeling
approach to predict statewide stream temperatures
for Michigan and Wisconsin using a previously
developed stream attribute database for the states
(Brenden et al., 2006). In fitting these models, we
used the full set of stream temperatures measure-
ments for the states. To determine how well these
models predicted stream temperature, we regressed
predicted vs. observed stream temperatures using
simple linear regression and tested whether the
slopes and intercepts for the regression models
equaled 1 and 0, respectively. The results of such
tests can gage whether the prediction model is con-
sistent and unbiased (Smith and Rose, 1995; Piñeiro
et al., 2008). We also calculated Theil’s partial
inequality coefficients for the Michigan and
Wisconsin stream temperature datasets, which
separates total error of model predictions into three
components: Ubias, Uslope, and Uerror (Smith and
Rose, 1995; Piñeiro et al., 2008). Ubias represents the
proportion of total error associated with mean differ-
ences between observed and predicted values. Uslope

represents the proportion of total error associated
with deviance of the slope from the 1:1 line. Uerror

represents the proportion of total error associated
with the unexplained variance (Smith and Rose,
1995; Piñeiro et al., 2008).
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RESULTS

Comparison of Modeling Approaches

For Michigan streams, the mean MAE for the five
modeling approaches ranged from 1.55�C to 2.07�C,
while the mean RMSE for the approaches ranged
from 2.00�C to 2.64�C (Figure 4). The similarity in
RMSE and MAE for the modeling approaches sug-
gested that each avoided large outliers in predicted
temperatures (Figure 4). The most accurate approach
for predicting stream temperatures was the LMM-
Smooth approach. The mean MAE for this approach
was 1.55�C, while the mean RMSE was 2.00�C. The
second best performing modeling approach was the
LMM-Spherical approach, although it performed only
slightly worse than the LMM-Smooth approach. The
mean MAE and RMSE for the LMM-Spherical
approach equaled 2.03�C and 1.56�C, respectively.
The next best performing modeling approaches were
the MLR and GAM approaches. The mean MAE and

RMSE for the MLR approach equaled 1.66�C and
2.11�C, respectively; the mean MAE and RMSE for
the GAM approach equaled 1.68�C and 2.15�C. The
KRIG approach was the least accurate modeling
approach. The mean MAE and RMSE for the KRIG
approach was 2.07�C and 2.63�C, respectively.

For Wisconsin streams, the mean MAE for the
modeling approaches ranged from 1.83�C to 2.36�C,
while the mean RMSE ranged from 2.32�C to 2.95�C
(Figure 5). As with Michigan, the similarity in RMSE
and MAE for the modeling approaches suggested that
each avoided large outliers in predicted temperatures
(Figure 5). The performance of the modeling
approaches for Wisconsin streams were similar to
what was found for Michigan streams; the LMM-
Smooth approach resulted in the most accurate
stream temperature predictions (mean MAE = 1.83�C
and mean RMSE = 2.32�C), but was followed closely
by the LMM-Spherical (mean MAE = 1.89�C and
mean RMSE = 2.40�C), MLR (mean MAE = 1.92�C
and mean RMSE = 2.45�C), and GAM (mean MAE =
1.96�C and mean RMSE = 2.48�C) approaches. The

FIGURE 4. Prediction Accuracy Based on Mean
Absolute Error and Root Mean Square Error for

Different Modeling Approaches Used to Predict July
Mean Water Temperature in Michigan Streams.

FIGURE 5. Prediction Accuracy Based on Mean
Absolute Error and Root Mean Square Error for

Different Modeling Approaches Used to Predict July
Mean Water Temperature in Wisconsin Streams.
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KRIG approach yielded the least accurate tempera-
ture predictions (MAE = 2.36�C and RMSE = 2.95�C).

Statewide Temperature Predictions

Based on the prediction accuracies for the different
modeling approaches, we chose to use the LMM-
Smooth approach to predict statewide stream temper-
atures for Michigan and Wisconsin. The fixed
parameter coefficients for the LMM-Smooth models
that were fit to the full set of Michigan and Wiscon-
sin stream temperature datasets were similar in
direction and magnitude (Table 2). For Michigan, the
coefficient estimates for all variables used to model
the mean function were significantly different from
zero (p < 0.004). For Wisconsin, the coefficient esti-
mates for percent forest land use in local catchments

and mean network catchment slope were not signifi-
cantly different from zero (p ‡ 0.05); the coefficient
estimates for all other variables were significantly
different from zero (p < 0.003). Predicted tempera-
tures were slightly more accurate when all variables
were included in the model. For this reason, we kept
percent forest land use and catchment slope in the
Wisconsin model.

The statewide July mean stream temperature pre-
dictions ranged from 5.2�C to 26.9�C for Michigan
and from 7.6�C to 29.4�C for Wisconsin. The intercept
and slope for the regression of observed vs. predicted
stream temperatures were not significantly different
from 0 and 1, respectively (Table 3). The intercept
and slope for the regression of predicted vs. observed
stream temperatures for the Wisconsin dataset also
were not significantly different from 0 and 1 (Table 3).
Thus, for both datasets, model predictions and
observed values were linearly related and the models
were unbiased. These findings were supported by the
Theil partial inequality coefficients that were calcu-
lated for both datasets. In both cases, Uerror was
greater than 0.99, meaning that almost all of the pre-
dictive error resulted from unexplainable variance
rather than from predictive error associated with
model bias (Ubias) or deviation from the 1:1 line
(Uslope). Both the Michigan (R2 = 63%) and Wisconsin
(R2 = 60%) stream temperature models explained
similar levels of variation in the observed stream
temperature data (Figure 6).

DISCUSSION

The modeling approaches evaluated in this study
varied considerably. Some methods incorporated spa-
tial structure in stream temperatures as part of the
mean function (MLR and GAM approaches) and error
process (KRIG approach) separately, while others
incorporated spatial structure in stream tempera-
tures as part of both the mean function and
error process (LMM-Spherical and LMM-Smooth
approaches). With the exception of the KRIG
approach, differences in performance among modeling
approaches were relatively minor. The LMM-Spheri-
cal and LMM-Smooth approaches resulted in slight,
albeit consistent, improvements in predictions for
both states, suggesting that it may be somewhat
advantageous to incorporate spatial structure in both
the mean function and error process when trying to
predict stream temperatures. However, the question
remains whether additional model complexity is
worth only marginal improvement in stream
temperature predictions. The LMM-Smooth approach

TABLE 2. Standardized Coefficients for Fixed Effects for the
LMM-Smooth Models That Were Fit to the Full Set of Michigan

and Wisconsin Stream Temperature Measurements.

Variable

Michigan Wisconsin

Estimate SE Estimate SE

AREA 45.414 2.198 32.644 2.493
FOREST )10.469 3.117 )1.941 3.636
JULAIR 24.265 2.924 17.741 3.214
PERM )8.667 3.024 )9.377 3.146
SLOPE )9.393 2.719 )5.466 4.728
WATER 9.766 2.155 8.057 2.485

Notes: Coefficient estimates in bold font were significantly different
from zero (p < 0.0001). [AREA = loge network catchment surface
area (km2), FOREST = percent forest land use ⁄ type in local catch-
ments, JULAIR = July mean air temperature (�C), PERM = mean
soil permeability in network catchments (cm ⁄ 100 h), SLOPE =
mean network catchment slope (�), and WATER = percent water
in network catchments.] LMM, linear mixed modeling.

TABLE 3. Regression Parameter Estimates and
Significance Testing Results for the Regression of

Observed vs. Predicted Stream Temperatures for the
Michigan and Wisconsin Stream Temperature Datasets.

Michigan Wisconsin

Intercept
Estimate )0.38 )1.48
t 0.71 1.45
p 0.48 0.15

Slope
Estimate 1.02 1.07
t 0.72 1.44
p 0.47 0.15

Note: The null hypotheses that were tested were intercept = 0 and
slope = 1, the results of which can be used to evaluate prediction
consistency and bias.
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performed slightly better than the LMM-Spherical
approach, which likely stemmed from the spherical
covariance structure not accurately accounting for
the spatial dependency in temperatures among
streams. The LMM-Smooth approach allows for the
incorporation of spatial dependency in temperature
among streams, without requiring explicit specifica-
tion as to how streams are interrelated. The LMM-

Smooth has the additional advantage of being compu-
tationally simpler than the LMM-Spherical approach
because fewer observations are used to model the
spatial correlation among streams (Ruppert et al.,
2003).

Our finding that the KRIG approach resulted in
the least accurate temperature predictions may have
stemmed, in part, from our use of Euclidean distance
for assessing spatial dependence among streams.
Euclidean distance is based on the shortest distance
between locations and, as a result, does not account
for the spatial variability in temperature due to flow
path and position in the stream network. Gardner
et al. (2003) found that using network distance and
position resulted in more accurate KRIG predictions
than using Euclidean distance in a study of the
Beaverkill watershed in New York. The lack of ade-
quate data coverage in our datasets precluded the
use of network path distances for the KRIG approach.
In some cases temperature would have been interpo-
lated from fewer than 10 measurements for water-
sheds with more than 1,000 confluence-to-confluence
stream reaches at a spatial scale of 1:100,000. With
more observations, it is likely that the accuracy of
the stream temperature predictions from the KRIG
would have improved. It remains uncertain, however,
whether using KRIG alone would be more beneficial
than accounting for spatial variability as part of both
the mean function and error. The ability to use model
covariates such as large ground-water input at partic-
ular locations may result in more accurate tempera-
ture predictions even when there is sufficient data to
use network distances as the KRIG basis.

Our finding that the LMM-Smooth and LMM-
Spherical approaches consistently resulted in the
most accurate stream temperature predictions sug-
gests that there may be important landscape or cli-
mate variables that were not included in the
prediction model (Peterson et al., 2007). These vari-
ables could be related to regional patterns in land
use, surficial geology, ground-water loading, or air
temperature variability. Identifying additional vari-
ables that would improve model prediction likely
would be a very time consuming process. As a result,
accounting for spatial autocorrelations in stream tem-
peratures may be an efficient alternative to searching
among a large number of stream attributes. When
attempting to model stream temperatures based on
regional landscape variables, we encourage analysts
to consider incorporating spatial dependence among
streams as a way of improving temperature predic-
tions regardless of whether dependency is modeled
using Euclidean or network path distances.

Although LMM using low-rank thin-plate smooth-
ing splines to measure the spatial autocorrelation in
stream temperatures was the most accurate modeling

FIGURE 6. Scatterplots of Predicted vs. Observed July Mean
Stream Temperatures for the LMM-Smooth Models Developed for
Michigan and Wisconsin. The dashed line on the plots indicates 1:1
agreement between predicted and observed temperature. The solid
line on the plots indicates the fitted values from a regression of
observed vs. predicted temperatures.
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approach; overall, there were only slight differences in
prediction accuracy among the evaluated approaches.
One implication of this is that it permits substantial
flexibility in choosing among modeling approaches
without sacrificing a substantial amount of accuracy.
Thus, researchers and managers can choose a method
with which they are already experienced. A second
implication is that in order to develop more accurate
stream temperature predictions, it will likely require
finer-scale hydrologic (e.g., volume of water in the
channel and travel time) and physiographic features
(e.g., riparian shading, location and volume of

springs, and substrate type) (Risley et al., 2003; John-
son, 2004). Because obtaining measurements of these
finer-scale factors will require substantially more
effort, researchers and managers will need to con-
sider the tradeoffs between increased model accuracy
and the costs associated with obtaining this finer-
scale information.

The scale at which conservation planning and
resource assessment can be carried out is ultimately
limited by data availability. Statistical temperature
models based on landscape features provide a cost-
effective means to generate critical habitat data at
sites across large regions, such as several watersheds
or even across an entire state. Although our tempera-
ture predictions are relatively coarse, they do provide
the best available information to policy makers and
managers who often must develop and implement
strategies in the absence of field observations (Sowa et
al., 2007). In this study, the number of inter-confluence
reaches that had temperature measures represented
less than 2% of the total number of reaches across
Wisconsin and Michigan, and in the Huron River
watershed, MI, measured temperature data were
available at only 5 out of 547 inter-confluence reaches
(Figure 7). By linking temperature predictions to
inter-confluence stream reaches, we were able to
predict water temperature for the majority of stream
reaches across Wisconsin and Michigan (Figure 7).
The ability to identify and assess stream ecosystems
across this region is greatly enhanced by having com-
prehensive, albeit coarse, temperature information.
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