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Summary. Asthma is an important chronic disease of childhood. An intervention programme
for managing asthma was designed on principles of self-regulation and was evaluated by a ran-
domized longitudinal study. The study focused on several outcomes, and, typically, missing data
remained a pervasive problem. We develop a pattern—mixture model to evaluate the outcome
of intervention on the number of hospitalizations with non-ignorable dropouts. Pattern—mixture
models are not generally identifiable as no data may be available to estimate a number of
model parameters. Sensitivity analyses are performed by imposing structures on the unidenti-
fied parameters. We propose a parameterization which permits sensitivity analyses on clustered
longitudinal count data that have missing values due to non-ignorable missing data mechanisms.
This parameterization is expressed as ratios between event rates across missing data patterns
and the observed data pattern and thus measures departures from an ignorable missing data
mechanism. Sensitivity analyses are performed within a Bayesian framework by averaging over
different prior distributions on the event ratios. This model has the advantage of providing an
intuitive and flexible framework for incorporating the uncertainty of the missing data mechanism
in the final analysis.

Keywords: Gibbs sampling; Longitudinal data; Non-linear mixed effects models; Poisson
outcomes; Randomized trials; Transition Markov models

1. Introduction

In longitudinal studies complete follow-up data are often not available for all subjects. Sev-
eral approaches are available for analysing these incomplete data, e.g. mixed effects models or
imputation-based techniques. Using such methods, however, inferences are only valid when the
missing data mechanism is ignorable, i.e. we can correctly condition on variables that are neces-
sary to yield a missingness at random (MAR) mechanism. When the missing data mechanism
is non-ignorable, inferences based on only the observed data will not be valid. Thus, analysing
such data requires more complex models which incorporate the missing data mechanism in the
analysis. Two broad approaches are available: selection models and pattern—mixture models
(Little and Rubin, 2002). These two approaches arise from different partitions of the observ-
ables y and the missing data indicator R. Selection models partition the joint distribution of
Pr(Y, R) as the product of Pr(Y) and Pr(R|Y) (Heckman, 1979; Little, 1995; Kenward, 1998).
They require explicit modelling of the missing data mechanism where the probability that a sub-
ject would drop out depends on the unobserved values. Pattern—mixture models (Little, 1993;
Little and Rubin, 2002), in contrast, express the joint distribution as the product of Pr(Y|R)
and Pr(R). Then they stratify the data by dropout patterns and allow distinct model parame-
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ters for each stratum. The marginal estimates in pattern—mixture models can be derived as a
weighted average across pattern-specific estimates (Little, 1995) or by using multiple imputation
(Demirtas and Schafer, 2003). Regardless of which partition is used, additional assumptions or
data are needed to identify the parameters in the joint distribution. Pattern-mixture models are
commonly used as they do not require specific modelling of the dropout mechanism and the
estimates of the identified parameters are not affected by the nature of the dropout mechanism.

Little (1995), Little and Wang (1996), Molenberghs et al. (1998), Daniels and Hogan (2000)
and Kenward ef al. (2003) identified parameters in the pattern—mixture model by using con-
straints. In a model with no constraints, Demirtas (2005) used a Bayesian smoothed pattern—
mixture model for normal outcomes. Other approaches for identifying the parameters in pattern—
mixture models have been proposed by Wu and Carroll (1988), Little (1994), Hogan and Laird
(1997), Albert and Follmann (2000) and Guo et al. (2004), who all used latent random effects
to relate the response and the missing data indicator. For a detailed literature review see Little
(1995), Kenward and Molenberghs (1999) and Thijs ez al. (2002).

Here we propose a Bayesian pattern—mixture model for analysing clustered longitudinal count
data with non-ignorable dropouts. The model is identified by using easy-to-understand param-
eters, namely, ratios of event rates across missing data patterns with the observed data pattern
as the reference group. Each parameter, which we refer to as an ignorability index, provides
an intuitive way to capture the effect of a non-ignorable missing data mechanism and is easily
used for sensitivity analyses. We have used similar parameters previously in pattern—mixture
models for ordinal outcomes (Kaciroti, 2002, Kaciroti et al., 2006). Now we extend the use of
such ignorability index parameters for Poisson outcomes. Because the ignorability index cannot
be defined by using only the observed data, we introduce an informative prior distribution,
whereby the prior distribution reflects the nature of the missing data mechanism. By using a
prior distribution we can incorporate in the final inferences any uncertainty, as well as prior
knowledge related to the missing data mechanism. Within this framework, models with missing
data generated by an ignorable missing data mechanism are a special case, where the ignorabil-
ity index parameters are set equal to 1. An additional feature of the particular application that
is considered in this paper is clustering of subjects. We account for clustering by introducing
random-effects parameters. Bayesian inferences are constructed by using Markov chain Monte
Carlo simulations.

The model proposed is motivated by, and fitted to, data from an asthma intervention study,
which is described in Section 2. In Section 3 the complete-data model is defined and the pattern—
mixture model with a potentially non-ignorable missing data mechanism is proposed. A Gibbs
sampling algorithm for fitting such models is described in Section 4. The model is then applied
to the asthma data in Section 5. A conclusion is given in Section 6.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://www.blackwellpublishing.com/rss

2. Asthma intervention study

Asthma is the most common chronic disease of childhood; for example in the USA it affects an
estimated 9 million children under age 18 years (National Center for Health Statistics, 2002).
Thus, managing asthma is important for both reducing the medical costs as well as for improv-
ing quality of life. The intervention that is considered here focused on educating physicians
about establishing strong partnerships with asthma patients and their families. The interven-
tion took the form of an interactive seminar between general practice paediatricians and their



Bayesian Model for Longitudinal Count Data 523

asthma patients and was based on the theoretical principles of self-regulation (Clark et al.,
1998). The efficacy of the intervention was evaluated by using a randomized study with the
following outcomes:

(a) treatment practices and communication behaviour of physicians;
(b) health status and medical care use by their asthma patients;
(c) satisfaction of the patients’ parents with the medical care.

The intervention programme has already been shown to decrease health care usage over a 2-year
period (Clark et al., 2000).

In this paper we explore in more detail how the intervention mechanism accomplished a
decrease in health care use over time. We focus on three important questions.

(a) Does the effect of the intervention vary between the first and the second year and, if yes,
how?

(b) Does the effect of the intervention vary with the initial severity?

(c) Are the results sensitive to the missing data assumptions?

Answering such questions should result in a better understanding of how the intervention works
and could be a starting point to improve future interventions. We address these questions by
using a transition Markov model with random effect, as described in Section 3. Our broader
methodological aim is to develop statistical models for clustered longitudinal Poisson outcomes
with incomplete data.

In this study, physicians were randomized into either an intervention group (38 physicians)
or a control group (36 physicians); both groups were compared at two post-intervention fol-
low-ups. The time between each wave was up to 12 months and varied between subjects. Out
of the 74 physicians, seven (with a total of 20 patients) decided not to participate (four in the
intervention group and three in the control group). Data on hospitalizations were available for
74 physicians and 635 patients at baseline (= 1), 67 physicians and 446 patients at first follow-up
(t=2) and 67 physicians and 302 patients at second follow-up (#=3). No information was avail-
able about the reasons why patients dropped out during the first follow-up period, other than
for 20 patients who dropped out because their physicians withdrew. For the 144 patients who
dropped out after first follow-up, 68% was due to disconnected telephones or families moving,
22% no longer had asthma symptoms and about 10% reported other reasons, such as dislike of
the research study.

Although the missing data pattern was essentially monotone, the methods that are developed
here could be generalized into any pattern of missing data. We classified the subjects into one of
three broad patterns: r =1 (n = 189) for patients with observed data only on y;; r =2 (n = 144) for
patients with observed data only on y; and y,; r =3 (n =302) for complete cases who provided
data on yq, y; and yj3.

The study was subject to considerable missing data; therefore, it is important to investigate the
nature of the missing data mechanism. Following Ridout (1991) and Diggle et al. (2002) we used
a logistic regression model to predict the probability of dropout at first and second follow-up.
All demographic factors (i.e. parental income, age, education, sex and race), treatment indicator
and medication use were initially included in each model. In addition, the number of hospital-
izations at baseline and at first follow-up, and the change from baseline to first follow-up, plus
their interaction with treatment, were used as independent variables.

For the first follow-up period only parents’ income and baseline medication intake predicted
the dropout during this period. Patients whose parents had lower incomes or were not taking
medication at baseline were more likely to drop out between the baseline and first follow-up.
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During the first to second follow-up period patients who were not taking prescription medica-
tion at first follow-up were more likely to drop out during this period. The dropout process was
different between the two groups. In the control group, patients whose number of hospitaliza-
tions increased at first follow-up compared with baseline were more likely to drop out, whereas,
in the intervention group, patients whose number of hospitalizations increased at first follow-up
compared with baseline were more likely to remain in the study. Such findings show evidence that
dropouts differ from the subjects who remained in the study. Therefore, when performing data
analysis, it was important to investigate the sensitivity of the results to potentially non-ignorable
missing data mechanisms.

3. The model

To evaluate the intervention effect over time on y, the number of hospitalizations, we propose
a transition Markov model of first order with random intercept, similar to the model that was
proposed by Zeger and Qaqish (1988). The random intercept is used to model the correlation
across subjects having the same physician. The within-subject serial correlation is modelled by
the transition Markov model, in which the expected response at a given time depends not only
on the associated covariates but also on past responses. The analysis addresses the per-protocol
question, under an ignorable missing data mechanism where all the randomized subjects comply
with the treatment assigned.

3.1. Complete-data model

We model the number of asthma-related hospitalizations at each follow-up time by using Pois-
son regression. Let y;j; be the number of asthma-related hospitalizations for patient j who is
under the care of physician i (cluster) at time r=1,2,..., T. Lety;;, = (Viji, yij2, - - - » yije) be the
collection of the responses up to, and including, time ¢. Let x;; be the set of fixed covariates;
then the joint distribution of the follow-up responses (y;;2, yij3, - .., yijr) for subject j in cluster
i conditioned on x;; and the baseline measure y;;; can be factorized as

T
Pr(yijo, yij3, - yijrlxij, yij1, B, 00) = [ [ Pr(yijelxij, Yiji—1, Br, bir),
=2

where 3=(0,, B3, ..., Or) is the collection of regression coefficients, and b; = (b;3, b;3, . . ., biT) 18
the collection of random effects. We assume that the distribution of y;; forr=2,3,...,T, con-

ditional on u;j = (x;,yij+—1), and the random effects, b;, is Poisson with mean p; ; modelled
by

log(pije) =uijt By +bis + 0 9]

where ;= (80,51, ..., 0B:p) and p is the number of predictors. Since the observation period
may not be the same across all the individuals, an offset term o;j; is introduced. Specifically,
o0;jt =log(n;j;) where n;;; is the number of months (or any time unit) over which y;;; events
have been reported. Random effects b;; are introduced to account for the correlation due to
clustering. We assume that random effects b; = (b2, b;3, . . ., biT) are independently identically
multivariate normally distributed with mean 0 and covariance matrix 3, fori=1,..., K, where
K is the number of physicians. Let b= (b1, by, ...,bk); thus the joint posterior distribution
is
K T nj

Pr(B,%,bly,x) o [T IT TT Pr(yijeluije, By, bir) ¢(bi) x p(8,%), )

i=11=2 j=I
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where ¢(b;))=Q2m)~"1/2|x|71/2 exp(—biZ_lbiT/Z) and n;, is the number of patients who are seen
by the ith physician at time ¢. To complete the model specification, a diffuse but proper prior
distribution for 5 and X, p(f3, Y), is assumed, with 8 having a diffuse normal prior with mean
0 and some large variance. The prior for variance—covariance matrix, Y, follows an inverse
Wishart distribution, ¥ ~IW(R, v/), where R is a prior guess of the magnitude of ¥, and vis a
number larger than dim(3) 4 1 (Spiegelhalter et al., 2003). The primary parameter of interest
is 3, but other parameters (%, b;) are also of interest. Given the complexity of the model, infer-
ences are based on simulation techniques. For example, Gibbs sampling or other Markov chain
Monte Carlo methods can be used to construct inferences on the basis of values drawn from
the posterior distribution (2).

When there are missing values in y, and if the missing data mechanism is ignorable, Gibbs
sampling for the complete-data model can be easily modified as described in Section 4.2.

3.2.  Pattern—mixture model for non-ignorable missing data mechanisms
When the missing data mechanism is non-ignorable we use pattern—mixture models to derive
inferences. Thus, we assume that model (1) applies to each missing data pattern but allow -
parameters to differ across patterns. Let B,(r) denote the parameters of model (1) for missing
data pattern r at time z, where r indicates the time of last measurement w1th r=T corresponding
to completers. Because there are no data to estimate all parameters @ for r < t, the pattern—
mixture model is underrdentrﬁed Thus, restrictions or prior 1nformat10n about parameters in
the model are required. Let @ 9 be the identified parameters at time ¢ corresponding to the
observed data pattern at time 7 (r > ). Following Little and Rubin (2002), we specify a prior
distribution p(g(r) | B,( )) on the unidentified parameters, 6, , r<t,conditioned on the identified
parameters B, . We have used a similar approach previously to identify pattern—mixture models
with a non-ignorable missing data mechanism for ordinal outcomes (Kaciroti et al., 2006). In
that situation the prior distribution was constructed by relating the distribution of the missing
data to the distribution of the observed data on the basis of the differences in the cumulative
odds. Here we extend the same method for Poisson outcomes with non-ignorably missing data
by relating the event rates in the missing data patterns with the event rate in the observed data
patterns.

Spe01ﬁcally, let 11" = EQY" |uy, ﬁ,(r) b,) for pattern r at time ¢. Then, there is some function
of uy, )\, (uy), such that, forr=1,2,...,t—1and ¢t >2,

where M§°) is the mean at time ¢ for the observed data at time ¢. Here S\fr) (u;) 1s the ratio between
the event rate in the rth missing data pattern and the event rate in the observed data pattern
at time ¢; and it measures the departure for ignorable dropout. Further, it can be seen as a
relative risk of the rth mlssmg data pattern with the observed data pattern as the reference
gro (p We assume that )\, (u;) has a log-normal distribution with mean l,r) (u;) and variance
(ul) where c¢ is the coefficient of variation. In this approach, the uncertainty in the rela-
tlonshlp between the distribution of the missing data and the distribution of the observed data
is captured by the prior distribution (probabilistic range) that is given to )\ (u,)
The dlstrlbutlon p(BD18©) is derived on the basis of the prior distribution of \\". Let
(r) = (B, ﬁtl ), where 3, is the set of parameters that are the same in missing data pattern
r and the observed data pattern at time ¢ and Btl is the set of parameters in pattern r that are
different from the corresponding parameters in the observed data pattern. Let u,y be the set of
covariates that are associated with 3,, and u;; be the set of covariates that are associated with
ﬁ( . Thus, we have
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exp(ui08y0 +un BY +bi +00) =" () expuin By +un BY +bi +0y), )
Y 0
exp(un BY) =N (un) exp(u BY).

We then consider the case where u;; is a vector of dummy variables, u,1 = (u/11,up1, ..., usp1),
and where each dummy indicator corresponds to a subgroup. Continuous variables can be cate-
gorized into groups, and then we can proceed as in the case of categorical variables. We assume
that for each subgroup that is identified by u,kl =1,k=1,..., p, the number of subjects with
observed values at time ¢ is non-zero. Let )\ r) = /\(r (ug1 =1) be the ratio between the event
rates of the missing data pattern and the observed data pattern at time ¢ for the subgroup that
is identified by uy1 =1fork=1,..., p. Then

exp(8y)) =AY exp(3y) (5)
or
B =log A} + 3y (©)

From equation (6), the prior distribution p(ﬁ(r) 6(0)) is defined on the basis of the distribution of
A 3, -parameters. Thus the identifiability of the pattern—-mixture model is translated into deﬁnlng
a dlstrlbutlon on A\ B for each subgroup, identified by uy 1, k=1,2,..., p,attimer=2,3,.

Giving a distribution to A? . 1s easy to understand rather than working directly with @k For
instance, let u;; be the indicator for intervention, which corresponds to (3;;. Then )\3 log-
normal with mean /=0.5 and ¢ =0.1 indicates that in the intervention group, on average, for a
subject who was in missing data pattern r, the adjusted event rate of y; is half (95% confidence
interval CI =(0.41,0.61)) of that for a subject in the observed data pattern. Then inferences
derived on the basis of this A would be approximately valid even when the missing data mech-
anism is non-ignorable but is within the range that is identified by A0 K . The c-parameter captures
the uncertainty that is related to the mlssmg data mechanism, i.e. the range of )\X) Thus, in the
above example, if ¢=0.5, the 95% CI of)\;) would be wider, CI = (0 16,1.16).

The log-normal distribution family is an attractive ch01ce for \?) 5, asityields a normal prior
distribution for ﬂ(r) although other dlstrlbutlons for A¥ 5, are poss1ble Under the log normal
dlstr1but10n for A\ 5, the distribution p(ﬂtk | ﬁtk ) is N {E (ﬁl(,g), var(ﬂt(,g)} where E(f3 k]) and
Var(ﬂtkl) are derived by using equations (5) and (6). On the basis of equation (5) we obtain

exp{ E(B}) +var(3))/2} =1 exp(3y)
or
E(BY)=log(l) —var(3y)/2+ 3}

Alternatively, takmg expectations on both sides of equation (6), after using Taylor series expan-
sion for log()\ﬁ ), we obtain

E@BY) ~logl]) —c?/2+ B (7)

from which var(ﬁt(,:)) ~ ¢

For ¢ =0, the model proposed is equivalent to a deterministic constraint. The MAR model
under this pattern—-mixture framework is a special case with A\;;’ =1 (I=1;¢c=0) for all t > 2,
r<tand k. Indeed, the Poisson distribution is uniquely defined gy its mean structure, so )\gk =1
fort>2, r<t, and k is equivalent to f(y;|y;—1,x,r =) = f(y|y—1,x, v =1), Vt >2,Vj<t. The
latter are the available case missing value restrictions that were defined by Molenberghs et al.
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(1998), which are equivalent to MAR. Thus, 5\,(r) (u;) can be seen as an ignorability index that is
equivalent to 1 if the missing data mechanism is ignorable and different from 1 when the missing
data mechanism is non-ignorable.

4. Computations: Gibbs sampling

The posterior distribution of the parameters in model (1) is analytically intractable; hence sam-
ples from the posterior are obtained by using Gibbs sampling (Gelfand and Smith, 1990).

4.1. Complete-data inference
With no missing data, draws from Pr(3, b, X|y, x) are generated via Gibbs sampling based on
the following conditional distributions:

(@) [6.b, %1y, .
i) (81, %, y, ],
(iD) (618, %, y. ],
(iid) [£16. 5, y, x].

Distributions (i) and (ii) do not have a closed form and draws from them are based on the Metrop-
olis algorithm (Metropolis et al., 1953) or the Metropolis—Hastings algorithm (Hastings, 1970);
the draws for distribution (iii) are obtained from an inverse Wishart distribution.

4.2. Inference under ignorable missing data

Under ignorable missing data mechanisms for y, inferences can be made by drawing values
from Pr(3, b, 3| yops, x), which is equivalent to drawing from Pr(3, X, b, ymis| Yobs, X) fixing [ =1
and ¢=0. These draws are obtained by using Gibbs sampling based on the ‘data augmentation’
algorithm (Tanner and Wong, 1987) as applied in the following conditional distributions:

(@) [8.5, 3]y, x],
@) [B1b,%,y,x],
(i) [b|3, %, y, x],
(ii1) [X] 8, b, y, x];

(b) [ymis|6’b32’y0b85x]'

The two blocks (a) and (b) represent an ‘outer’ Gibbs sampling from which draws from
Pr(53, %, b, ymis| Yobs, X) are obtained. The first block represents the posterior distribution of the
parameters from the outcome model, and the second the posterior distribution of the missing
values.

4.3. Inference under non-ignorable missing data

Under non-ignorable missing data mechanisms for y, the Gibbs sampling that was just described
is modified to suit pattern—mixture models. The posterior distribution Pr(3, 2, b, ymis| Yobss X, I, ¢)
is identified by introducing informative prior distributions on p(ﬂ,(’) | ﬂ,( )) forr=1,2,...,t—1
and ¢ > 2. The draws from the posterior are obtained by using Gibbs sampling in the following
conditional distributions:

(@) 6.5, %y, x.1cl,
i) 8155, y,x. ¢l
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(i) [b13, %, y,x,1,c],
(iii) [X18, b, y, x, L, c];
(b) [)’mls|ﬁa ba Zﬂ yObSD-xn la C].

For a given prior distribution on )\(r) the prior distribution p(ﬁ(r)| BIO)) is fully determined
(described in Section 3. 2) and hence SO are the correspondmg posterlor distributions. A log-
normal distribution for )\q is used with mean 1 B ) and variance c? Step (1) is then modified
to 1ncorporate this 1mp0rtant prior distribution by conditioning on l the vector of all /3, g and c.
Values of 1) i and c are varied to explore the sensitivity of the conclusions across different l ) and
c. WlnBUGS software is used to implement the draws and to derive inferences on parameters
of interest (Spiegelhalter et al., 2003; Gilks et al., 1996).

Pattern—mixture models and selection models are two paths leading to the same joint distribu-
tion. Ekholm and Skinner (1998) used a pattern—mixture model and a selection interpretation
for their sensitivity analysis. Similarly here, we shall relate the pattern—mixture model to a selec-
tion model, which will offer some reassurance that the assumed pattern—mixture models provide
sensible implications about the selection mechanism. This can be easily derived in WinBUGS
by adding a logistic regression that relates the missing data indicator to the full data (observed
and imputed in step (b)). We implement this part in WinBUGS by using the cut(y) function as
a valve to control the flow of the information from the pattern—mixture model to the selection
model, but not vice versa.

5. Application to the asthma study

We now apply the model that was described in Section 3 to evaluate the effect of the asthma
intervention programme on reducing the number of asthma-related hospitalizations over time,
as well as the sensitivity of the results to different missing data mechanisms.

5.1. Inferences under an ignorable missing data mechanism
We fit the following transition Markov model of first order for =2, 3:

log{ E(ijilli, yiji—1,b0) } = Bio(1 = 1) + By Ii + Bio log{ (mi jr—1 + 1) /2}
+ B3l log{ (1 ji—1 +1)/2} + bis + 041 (8

7;jr—1 18 the yearly hospitalization rate at time 7 — 1; I; is the intervention indicator, and o, ; =
log(n;js) is the offset variable for the number of months #n;;; over which the hospitalizations
are counted. We use log{(n;j—1 4+ 1)/2} as a predictor because it fits the model better and is
defined when 7; ;1 =0. In equation (8), 3,0 and 3;; estimate the adjusted event rate at time ¢, for
both the control and the intervention group. Thus, testing the average intervention effect over
time corresponds to estimating 511 — 819 and 321 — 820, Which represent the treatment effect on
hospitalizations during the first and second follow-up period respectively when 7,_; = 1.
Inferences under MAR are derived by using a pattern-mixture model (Section 3.2) and assum-
ing that all \”s are 1. The missing values of the offset variable are set at o; i+ =log(12 months) =
2.48. Model (8) is fitted by using a Bayesian approach implemented through WinBUGS soft-
ware. Parameter inferences are derived on the basis of five chains of 20000 iterations, each
with different random starting points and following a burn-in of 5000 iterations. The conver-
gence of iterations for each parameter is monitored by using the Gelman and Rubin (1992)
univariate scale reduction factor (SRF), with all being less than 1.01. The overall convergence
is monitored by using the Brooks and Gelman (1998) multivariate SRF, which equals 1.05,
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Table 1. Bayesian estimates of parameters under an
MAR mechanism¥

Parameter Posterior mean
(posterior standard deviation)
5o (C) —4.43 (0.31)
B30 (C) —3.60 (0.39)
51 () —4.46 (0.28)
631 (D —5.27 (0.70)
Br1 — Bao (I versus C) —0.03 (0.40)
B3 — B30 (I versus C) —1.67 (0.76)
Br:1log(ng) 2.31(0.47)
B3:1og(n)) 3.05(0.57)
0Ba3: 1 x log(ng) —0.10 (0.62)
B33: 1 x log(ny) —1.68 (1.15)
ai 0.38 (0.28)
o5 0.60 (0.66)
o2 —0.14 (0.28)

+C stands for control group and I stands for intervention
group; Monte Carlo simulation errors range 0.002-0.015.

indicating that no gain will result if the iterations continue. The results under an MAR mech-
anism are shown in Table 1. For hospitalizations, no intervention effect occurs during the first
follow-up period (611 — Bo1 = —0.03; p=0.94), but a significant effect occurs at second follow-
up (812 — Bpa = —1.67; p=0.03). When the intervention group is compared with the control
group, the rate of hospitalization is reduced by 71% (95% CI=(27-96%)) between the first and
second follow-up. The interaction between intervention and previous hospitalization is non-
significant at either time point. The variances of the random intercepts are comparable with
their standard errors, which reflect a weak clustering within physician once conditioning on the
previous response. As expected, inferences that are derived by using a pattern—mixture model
that assumes that all \s are 1 are the same as inferences that are derived on the basis of only
observed data.

5.2. Inferences under a non-ignorable missing data mechanism

For the pattern—mixture model, dlfferent parameters for each mlssmg data pattern are used in
model (8) for the control group ﬁ o and the intervention group 6[1 , at both follow-ups. The
effect of the other covarlates is held the same across the missing data patterns Prior distribu-
tions on the parameters A0 o and \7 5, are log-normal with means 1 o ) and l and coefficient of
variation c. The overall ﬁ-parameters are derived by averaging across the rmssmg data patterns
(Little, 1995), i.e. 5, =% w,,ﬂ, , Where 7, = Pr(R;; =r) is the proportion of subjects in missing
data pattern r at time ¢. The 7, is estimated by my/n where m,, is the number of subjects in
pattern r at time ¢ and # is the total number of subjects. The uncertainty in 7 is negligible and
is ignored.

The missing data mechanism is determined primarily by mean parameters lé) and / (r)l with
dlfferent values of l (r) and l o representmg different dropout mechanisms. Several values of lg)
and [ | are used for sensmVlty analyses. Because the treatment effect at =2 is highly non-sig-
nificant we focus the sensitivity analyses on the missing data at t =3. We assume that the rates
of hospitalizations between the patients in the m1ss1ng data pattern and those in the observed

data pattern at =2 are the same on average, i.e. [ o ) =17 q =1. We also let 1(2) =1 o —lﬂgo and



530 N. A. Kaciroti, T. E. Raghunathan, M. A. Schork and N. M. Clark

lg})l 21533;)1 =1g,,. With this assumption the sensitivity analyses are based on different values of

ls,, and {g,,, which represent the relationship between the missing values across all the missing
data patterns at t =3 (r < 3) and the observed values at time t =3 (r > 3). We consider several
values for /gy, and g, including a combination that would make the treatment effect at =3
non-significant. Initially we set c =0.1, which corresponds to a 95% CI for Ag, neither too narrow
nor too wide. For example, for 5\3[1 =0.5 the 95% CI is (0.41,0.61).

Our primary parameter of interest is 31 — (3,0, which estimates the average intervention effect.
Inferences on this parameter are affected by the ratio 7, —g,, = Ag,, /A3, Which is the ratio of
the relative risks (intervention versus control) between patients in the missing data pattern r and
patients in the observed data pattern, i.e.

o E@I=1Y.b)/Eu”|1=0,Y,b) A,
Bi—Bw — 0 0 -3
00 B WO =1,Y b JEUO 1T =0,Y,.b) Ag,

This follows a log-normal distribution with mean log(/s, /l5,) and variance 2c>. With this
parameterization the inferences on the treatment effect would be the same across different spec-
ifications of /5, and I3, as long as the distribution of their ratio is the same. Without loss of
generality, we set /g,, =1 and we vary /g, to perform sensitivity analyses on the (831 — [330)-
parameter for a range of Ig,,/13,,.

Choosing lg,, /l3,, =1.76 yields an estimate for 331 — 339 that is borderline significant (95%
CI (0.05-1.00)). Several other combinations of /g,, and Ig,,, including lg,, /I3, =1, are used for
sensitivity analyses. In addition, for each pattern—mixture model, a logistic selection model is
fitted to relate the missing data indicator (at = 3) to intervention group variable, current and
previous ys, and their interaction:

lo {w} =90+ 7vdi +72yi2 + 731l X yio + 741 = i) X yiz +751i X yiz + gi-
1 —Pr(R;=3)

The random effect for the physician is g;, normally distributed with mean 0 and variance 05.
Inferences for each model are derived from five chains with different random starting points of
20000 iterations each following a burn-in of 5000 iterations. The convergence of iterations is
monitored by using the SRF; all univariate SRFs are less than 1.02 and all multivariate SRFs
are less than 1.09, indicating that the iterations converged. The results for both pattern-mix-
ture model and logistic selection model are shown in Table 2. Dependence of the missing data
indicator R3 on yj3 in the intervention group (vs) becomes stronger as the /g, is further from
1. The parameter estimates that are derived for the logistic selection model are consistent with
assumptions in the pattern—mixture model. Thus, in the pattern—mixture model with /5, =1
and Ig,, =4, the selection model yields a positive estimate of s =1.26. Both models indicate
that, in the intervention group, subjects with a higher number of hospitalizations are more likely
to drop out. For the control group, no difference is assumed on the rate of hospitalizations at
t =3 between subjects who are missing and subjects who are observed. This is consistent with
the close-to-zero estimate of 74 =0.01.

Next, other values of ¢ are used for sensitivity analyses. These evaluate how the boundary
ratio g, /lg,,, for which the intervention effect at second follow-up is just significant, relates
to c¢. A graphical display of this relationship is shown in Fig. 1. As the coefficient of variation
increases, the boundary ratio decreases. This is mainly related to having larger CIs on the esti-
mate of 831 — (330 as the prior on X is less informative (high ¢). We fixed ¢ =0.1 for sensitivity
analyses that are shown in Table 2, but other choices of ¢ can be used if deemed appropriate.

Finally, the sensitivity analyses show that the parameter estimates for intervention effect at
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Table 2. Sensitivity analyses (¢ =0.1)}

Parameter Posterior mean and standard deviation
Jor the following I3, /13, ratios:
111 1.76/1 2.5 41

Pattern—-mixture model

B0 (C) —4.44 (0.31) —4.43 (0.31) —4.44 (0.31) —4.44 (0.32)
B30 (C) —3.60 (0.39) —3.58 (0.38) —3.60 (0.40) —3.60 (0.40)
61 (D —4.46 (0.30) —4.46 (0.29) —4.46 (0.29) —4.46 (0.29)
831 (1) —5.26 (0.69) —4.97 (0.70) —4.79 (0.70) —4.55(0.71)
Br1 — B30 (I versus C) —0.03 (0.40) —0.03 (0.40) —0.02 (0.40) —0.03 (0.40)
331 — B30 (I versus C) —1.66 (0.76) —1.38 (0.76) —1.19 (0.77) —0.95(0.77)
B22:10g(no) 2.31(0.47) 2.31(0.47) 2.31(0.47) 2.30 (0.47)
B3a:1og(n1) 3.05(0.57) 3.05(0.57) 3.06 (0.57) 3.04 (0.58)
Bo3: I x log(np) —0.10 (0.62) —0.10 (0.61) —0.11 (0.62) —0.10 (0.62)
B33: 1 x log(ny) —1.67 (1.15) —1.69 (1.15) —1.68 (1.15) —1.68 (1.16)
ai 0.39 (0.29) 0.39 (0.28) 0.39 (0.27) 0.39 (0.28)
a5 0.59 (0.62) 0.56 (0.60) 0.61 (0.68) 0.60 (0.66)
o012 —0.15(0.30) —0.15(0.29) —0.16 (0.29) —0.15(0.30)
Logistic selection model

~o- intercept 0.26 (0.18) 0.25(0.17) 0.25(0.17) 0.25 (0.18)
vi: 1 —0.22(0.24) —0.23 (0.24) —0.27 (0.24) —0.30 (0.24)
) 0.05 (0.48) 0.04 (0.49) 0.01 (0.47) 0.04 (0.49)
Y3 I X yp —0.05 (0.56) —0.08 (0.58) —0.09 (0.57) —0.19 (0.60)
Y4 (1—=1) X y3 —0.01 (0.46) —0.01 (0.46) 0.01 (0.46) 0.01 (0.47)
~v5: I X y3 —0.23(1.01) 0.41 (0.83) 0.61 (0.68) 1.26 (0.67)
ag 0.60 (0.15) 0.59 (0.15) 0.59 (0.15) 0.60 (0.15)

tMonte Carlo simulation errors range 0.002-0.01.

2 L
[ ] °
[ ]
1.5} ¢
°
1g31 °
Ig30
1 °
St
0 .1 2 3 4 5 .6
c

Fig. 1. lllustration of how the value of the ratio [331 //ﬁ at which the estimated intervention effect is just
significant declines as the coefficient of variation ¢ credSes
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second follow-up differ across missing data mechanisms. However, the evidence of an interven-
tion effect at second follow-up is robust to a range of missing data mechanisms. It becomes
non-significant only when the relative risk of hospitalization for intervention versus control
at =73 is on average 1.76 or higher among the missing subjects compared with the observed
subjects, assuming that ¢ =0.1. No variation appeared on the other parameters. This is con-
sistent with the fact that in all analyses we assumed that these parameters did not vary by
missingness patterns. As a result, the overall estimates will be the same as the estimates by using
an MAR mechanism.

6. Conclusions

In this paper we have developed a Bayesian model to fit clustered longitudinal data from Pois-
son outcomes with potential non-ignorably missing observations. The model for non-ignorably
missing values was developed by using a pattern—-mixture model that was identified on the basis
of easy-to-understand assumptions about mlssmg data. These assumptions used prior distribu-
tions on an ignorability index parameter A0 B0 which represents the ratio of event rates between
the missing data pattern r and the observed data pattern (condltloned on other covariates and
previous responses), for group k at time . The distributions of A0 5, are unknown and cannot be
derived from the data. However, it is possible for an investigator to give a range for each )\ ,and
then to explore the sensitivity of statistical inferences over that range. Such a parametenzation
is intuitive and easy to understand. It contains the MAR mechanism as a special case where all
S\g; are 1. The method was implemented by using WinBUGSI1 .4 software and applied to the
asthma intervention study for evaluating the effect of the interactive seminar on the hospitaliza-
tion outcome. WinBUGS gives added strength because it can relate the pattern—mixture model
and its assumptions to a logistic selection model. Such flexibility provides additional assurance
and validity to the sensitivity analyses.

In the asthma study following per-protocol analysis, under an ignorable missing data mecha-
nism, intervention did not show a significant effect in reducing the overall rate of hospitalizations
during the first follow-up period. During the second follow-up period the overall rate of hospi-
talizations in the intervention group compared with the control group was reduced by 71% (95%
CI (27-96%)). The intervention showed similar beneficial effects across patients with different
rates of hospitalizations in either period. The sensitivity analyses showed that the parameter
estimates for the intervention group variable differ across missing data mechanisms. However,
the evidence of an intervention effect at second follow-up was fairly robust to possible departures
from an ignorable missing data mechanism.

Finally, although the model that was used answered specific questions for the asthma study,
it can also be applied more generally, e.g. to impute non-ignorably missing values on count out-
comes. Then, once the missing data have been imputed, additional analyses can be performed
on the complete-data set by using standard statistical techniques.
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