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This study concerns list augmentation in direct marketing. List
augmentation is a special case of missing data imputation. We
review previous work on the mixed outcome factor model and apply it
for the purpose of list augmentation. The model deals with both
discrete and continuous variables and allows us to augment the data
for all subjects in a company’s transaction database with soft data
collected in a survey among a sample of those subjects. We propose
a bootstrap-based imputation approach, which is appealing to use in
combination with the factor model, since it allows one to include
estimation uncertainty in the imputation procedure in a simple, yet
adequate manner. We provide an empirical case study of the
performance of the approach to a transaction data base of a bank.
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1 Introduction

Observations that are missing due to the design of studies are the rule rather than the
exception in marketing. Examples occur in data fusion, split questionnaires, time
sampling and sub-sampling. Figure 1, taken from KAMAKURA and WEDEL (2000),
presents the structure of these missing data-designs. In each of these conditions, data
are missing intentionally, i.e., they are specified missing in the design of the study to
reduce respondent burden, increase the response rate or reduce costs of data
collection. When data are intentionally missing, they are usually MAR (Missing at
Random) and the Missing Data Generating Mechanism is ignorable (LITTLE and
RUBIN, 1987, SCHAFER, 1997).

In this paper we focus on the particular problem of sub-sampling; a problem that
often occurs in Database Marketing (DBM). DBM involves building, organizing,
supplementing and mining customer transaction databases to increase the accuracy
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Fig. 1. Marketing data missing by design.

of marketing efforts (GOODMAN, 1992). Many companies nowadays record their
transactions with each individual customer and store those in customer transaction
databases. Such practice is quite common among firms in the financial, leisure and
telecommunications sectors, and in particular among online (Internet) companies. A
properly compiled, cleaned and maintained transaction database can be used as a list
for targeted marketing efforts. For those purposes, transaction data are enriched
with supplementary data. ZIP-level geo-demographic and life-style data are often
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used for that purpose. Customer transaction records, often consisting of purchase
indicators or counts, are linked to the additional data at the individual customer
level based on ZIP-codes. In many cases data on the use of products and services
from competitors, and “‘soft data” such as customer satisfaction, provide important
additional insights to the company, but are lacking in the transaction database and
need to be collected in separate surveys. Due to the survey costs, such data are
usually only collected from a sample of customers in the database. The required set
of supplementary variables is measured on a sample from the database, frequently
using metric or rank-order measurement scales. Such sub-sampling for soft data
collection is applied regularly in direct marketing, and a similar situation occurs
when test-mailings are conducted for a sub-sample of the house-list. The information
from these surveys or test mailings, however, is needed for all customers and the list
needs to be augmented with the auxiliary data.

List augmentation is a special case of missing data imputation, or data fusion.
From a statistical perspective, problems in list augmentation are presented by the
enormous amount of missing data and by the vastly different measurement scales of
the data. Usually the sub-sample is small relative to the size of the database.
However, as is apparent from Figure 1, the structure of the list augmentation
problem may yet lend itself to effective imputation. The reason is that the quality of
the imputations is strongly dependent on the common fusion variables, the variables
that are present in both the complete and incomplete data records. Unlike in
traditional data fusion problems where one has to rely on relatively weak
demographic fusion variables, in list augmentation the customer transaction data
themselves serve as fusion variables, since they are often strongly associated with the
partially observed auxiliary data.

Extensive overviews of methods for imputing missing data have been presented
by, for example, LITTLE and RUBIN (1987) and SCHAFER (1997). State-of-the art
imputation methods are model-based, and involve multiple imputations, drawn from
the predictive distribution of the data, given the model estimates. Thus imputation
models need to be specified, which allows one to impute the missing data multiple
times, where multiple imputation allows one to gauge the accuracy of the imputation
procedure.

Model-based imputation using regression-type models suffers from the drawback
that the model needs to be tailored to the particular data in question on a case-by-
case basis, which has limited the use of (designed) incomplete data in large-scale
marketing problems. SCHAFER (1997) provided a general set of approaches to
imputation, based on the full covariance matrix of the observed variables. Along
these lines, we present an approach to impute high-dimensional data based on a
parsimonious factor representation. LITTLE and RUBIN (1987, pp. 148-149) already
addressed the problem of missing data in factor analysis. Our approach builds upon
LittLE and RUBIN (1987), SCHAFER (1997), KAMAKURA and WEDEL (2000) and
WEDEL and KAMAKURA (2001). The latter authors proposed to use a factor model
for data imputation. We conjecture that the factor model parsimoniously captures
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the covariance of completely and partially observed data, required for augmentation,
while it deals with the mixed measurement scales for the observed data. We first
review the factor model and propose a nonparametric Bootstrap-based imputation
approach. The Bootstrap approach is appealing to use in combination with the
factor model, since it allows one to include estimation uncertainty in the imputation
procedure in a simple, yet adequate manner. We apply the imputation model and
procedure in a case study on list segmentation.

2 Mixed outcome factor model for list augmentation

2.1 Model description

We assume that a firm has conducted a survey among a random sample of its
customers. Data from this sample survey is collected to augment the customer list.
Let n = 1,..., N denote customers and j = 1,...,J variables. The J variables are
measured on different scales, such as ordinal scales, ratio-scales, counts, and binary
scales. We assume the J observations, y; = (y,), to be realizations of random
variables, distributed according to a member of the exponential family (McCULLAGH
and NELDER, 1989). This allows us to accommodate the types of data encountered in
house-lists in a single framework, by assigning each observed variable j its own
distribution, optimally matching the support of the selected distribution to the
measurement scale of each of the transaction variables.

We aim at providing a low dimensional map of the observed variables y, = (¥,
from subject n. We assume that the J observations on each individual, y,;, are
conditionally independent given factor scores x,,, and specify the conditional distri-
bution as fy(yaln(x.)) = [Lfy,0uln(x)). with ELY,lx,] = hyn(x,). where A is
the canonical link function’/for variable j, and

n(xn) = 2 +x, . (1)

In equation (1) x, is the nth row of an unobserved vector of i.i.d. normally
distributed (N x P) factor scores X, A a (J x P) matrix and 4q a (J X 1) vector of
fixed, but unknown, weights. The expectation of the random outcome vector for
each subject is mapped onto a lower P-dimensional subspace, #(x,) defining that
map, its dimensionality being unknown a priori. We specify the map to have a prior
normal distribution across subjects: x,~ Np(0,1). The use of the standard normal
distribution for the latent variables alleviates scale and translation invariance of the
factor model. They arise because one can add a vector of scalars to x, and subtract it
from 4g. Rotation invariance arises because one can post-multiply x, and A with an
orthogonal rotation matrix 7. Without imposing further constraints on A (i.e.,
setting a (P x P) sub matrix to the identity matrix), the factor model is not identified.

Our model fits in with recent work in factor analysis for non-normal variables, in
particular that by BARTHOLOMEW and KNOTT (1999), KAMAKURA and WEDEL
(2000), MousTAakl and KNOTT (2001), and WEDEL and KAMAKURA (2001). Note that
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the distribution in (1) presents the conditional distribution of Y, given the latent
variables X. For the sake of illustration, assume that there are J=Jy +
Jg + Jp + Jg variables, with respectively a Normal, Bernoulli, Poisson and rank-
order Binomial distribution, occurring in the application below. Then the conditional
distribution of the observed data is

5 5 Intls eXP Vi)

IntJstJp exp[ynjn,, i — €xp[n,]]

J=In T+ I’

Intlgtletle gL exp[(ynj — 1)1,]
(M—JawmmW“

X

X

(2)

J=Iv+Jg+Jp+1
Here, n,; = o + an where /4; is the jth row of A, and K is the number of scale
points of rank-order rating scale ;.

2.2 Estimation and selection

We partition the observation vector as y, = (,, »,), with the corresponding sets of
variables being C = Cﬂz’, where we assume the first subset of variables to be
observed. Also, without loss of generality, we assume the customers to be ordered
such that for the first M subjects complete data are available, while for the remaining
N-M subjects the data are incomplete. The observed data likelihood is obtained as

L@ﬂzﬁ/ﬁﬁ@Mm@ﬁmm. 3

Note that in (3) we ignore the missing data generating mechanism and replace the
product over N (all subjects in the /isf) by a product over M (all subjects in the
sample). We may use only complete data because the missing data are MAR (LITTLE
and RUBIN, 1987). Our estimator is not efficient compared with one based on all N
observations, but we consider the loss in efficiency less important than the
substantial gain in ease and speed of estimation, which is particularly important in
analysing large business transaction databases for imputation purposes, in particular
when applied in combination with the Bootstrap as detailed below.

The estimation of the factor model is not feasible with standard numerical
algorithms for maximizing the likelihood function, given the potentially high-
dimensional integration involved in the likelihood. Development of simulated
likelihood (SML) estimation has made the approximation of such integrals possible.
Such simulation methods were introduced by MCFADDEN (1989), an overview is
provided by STERN (1997). In SML based estimation one draws S values z, from
fx(x,) and uses the simulated log likelihood

i(El?) iﬁmZH (yn,ln E)/S (4)
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as an approximation to (3). The value of £ that maximizes (4) is the SML estimator.
It holds that L E|I? — L E|I? as S — oo, from the strong law of large numbers.
SML provides consistent estimators if S — oo as M — oo, since the simulated
likelihood (4) is a consistent simulator of the likelihood (3). The bias is of order 1/S.
However, finite values of S are sufficient to obtain good properties of the estimates
(LEE, 1995, WEDEL and KAMAKURA, 2001).

Models with different values for P cannot be compared using likelihood ratio (LR)
tests, since the asymptotic Chi-square distribution of the LR test of the P-factor
model versus the P+ 1-factor model does not hold (ANDERSON, 1980). We therefore
compare models with different values for P on the basis of the BIC information
statistic: BIC = —2ln1':gé| Y) + K{In(N)}, with K the effective number of
parameters (SCHWARTZ, 1978).

2.3 Bootstrap-based imputation

In order to augment the transaction database, we draw each missing observation
repeatedly from its posterior predictive distribution, given the model estimates, and
the values of the observed data for the subject in question. The posterior distribution
of the missing data is

fy(}/n|§n) = /fy(j;nm('%n)?‘é)fX('%ﬂ|;n)fE(E|;n)dxndé (5)

Here, %, is the vector with the posterior estimates of the factor scores for customer
n. As explained above, the factor model is not identifiable without further
restrictions on the matrix A, so that fz(&|y,) can then not be obtained. Rather
than resolving this issue by imposing identification constraints, we use a nonpara-
metric bootstrap procedure (EFRON and TIBSHIRANI, 1994). To that end, we draw
b=1,..., B sub samples from the original data with replacement and re-estimate the
model for each sub sample, yielding estimates of the parameters Z” and posterior
estimates of the factor scores 2. We then draw from fx(%|»), centred around the
posterior mean of the factor scores and generate an imputation by drawing from
fy(valn (%), E?). We use a single imputation for each Bootstrap sample. Note that in
this procedure it is not needed to evaluate the bootstrap estimate of the covariance
matrix of the estimates, and it is also not needed to impose identifying constraints on
the model. In the application we may use a fairly small number of bootstrap samples,
in the range B = 5-10, since such numbers of imputations are generally considered
sufficient (LITTLE and RUBIN, 1987).

3 Application

3.1 Data and study design
In order to illustrate the proposed approach for list augmentation, we apply and test
it on a sample of 5,550 customers of a major commercial bank in Brazil. These data
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were previously analyzed in part by KAMAKURA et al. (2002). We have data gathered
from personal interviews, as well as transaction data from the bank’s internal
records, for each of these customers. We are interested in investigating the quality of
the multiple imputations and therefore, rather than using the entire transaction
database, we use the complete data only. Starting from the complete data, we
simulate the situation of list augmentation by deleting the survey data for a subset of
the subjects. We use the following variables from the bank’s internal records
(assumed distribution in parenthesis):

e Number of transactions per month (Poisson)

o Contribution of the account (Normal)

e Volume of deposits in the bank (Normal)

e Number of years using the bank (Normal)

e Number of visits to the bank in the past 6 months (Poisson)

o Age (rank-order Binomial)

o Gender (Bernoulli)

e Usage indicators for 22 financial services within the bank (Bernoulli).

We estimate the proposed mixed data factor analyzer on a random sample of
2,000 customers, for whom we assume that we have full information about their
transactions with the bank, as well as external (survey) information on two variables:

e Share of wallet — bank’s percentage of the customer’s total financial applications,
usually known as “‘share of wallet” (Normal, after logit transform)

e Whether the customer would recommend the bank to a friend, as an indicator of
“customer satisfaction” (4-point rank-order binomial).

After calibrating the model on the internal and external data for these N = 2,000
customers, we then apply the estimated model to the remaining customers, for whom
we assume the survey data (share of wallet and customer satisfaction) to be missing.
We do that for B = 10 bootstrap samples drawn randomly with replacement from
the calibration sample. Based on the parameter estimates from each of the bootstrap
samples, we impute “‘share of wallet” and customer satisfaction in the holdout
sample of 3,550 customers, based solely on their internal records. Since we have
the survey data for the holdout customers as well, this allows us to investigate the
performance of the imputation procedure, by comparing the imputed values to the
“true” values of the survey variables.

Our objective is to demonstrate that once the model is estimated on a combination
of internal and external data, it can be applied to augment the entire list. This
exercise is particularly important to the bank, because banks usually have good
information about their relationships with their own customers, but they have
limited information on the relationships these customers might have with competing
banks, as well as on their satisfaction. We demonstrate how the bank would be able
to use the proposed factor model to identify customers who are ““at risk,” or with low
levels of satisfaction.
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3.2 Results

Estimation of the factor model from the complete calibration data (N = 2,000) for
P =1 to 4 factors lead us to choose the model with P = 3 factors (P = 2:
BIC = 82472.0, P = 3: BIC = 81981.8, P = 4: BIC = 82012.0). Parameter esti-
mates of the P = 3 model are shown in Table 1. The three factors show a distinct
pattern of variable weights. The first factor has large weights for the number of
transactions and for the satisfaction variable to be imputed (Would you recommend
the bank?). The second factor has large negative weights for typical banking services
such as loans, savings, checking, debit/credit cards, as well as insurance services. This
second factor also has a large negative weight for the satisfaction variable, indicating
that customer with a high score on this second factor are less likely to recommend
the bank to friends. The third factor shows many large weights, in particular for
investment and insurance services, but also for traditional banking services such as
installment loans, savings, credit card, special checking, private manager and safety

Table 1. Parameter estimates for the complete data (N = 2,000)*.

Variable Type n G ;Ijl /ijz ijg

Number of transactions per month Counts 3.58 0.58 -0.46 -0.60
Contribution of the account Continuous (standardized) -0.01 0.59 -0.18 0.08 -0.24
Volume of deposits in the bank Continuous (standardized) —0.03 0.51 -0.12 0.04 -0.24
Number of years using this bank Continuous (standardized) 0.04 0.87 -0.07 -0.16 -0.50
Percentage of total applications" Continuous (standardized) —0.02 0.94 0.05 -0.20 0.28
Number of visits to branch Counts 0.03 0.00 =0.72 -0.01
Would you recommend your main branch' Ordinal 1.08 -0.95 -1.14 -0.49
Age Ordinal 0.48 -0.44 -0.01 -0.53
Gender Binary 0.71 -0.02 -0.30 -0.57
Savings Binary 0.32 -0.21 -0.42 -0.70
Credit card Binary -1.79 0.16 -0.86 —0.85
ATM card Binary 1.63 0.31 -0.31 -0.01
Phone banking card Binary -1.68 0.06 -0.16 -0.64
CD Binary -1.51 -0.31 -0.50 -1.78
Special checking Binary 0.73 0.32 -1.05 -1.57
Safety box Binary -3.73 -0.20 -0.33 -1.33
PC banking Binary -3.53 0.06 -0.20 -0.83
Auto bill payment Binary -2.31 -0.05 -0.56 0.32
Personal loans Binary -2.93 0.29 -1.26 -0.30
Mortgage Binary -5.37 0.00 -1.23 -0.26
Installment loan Binary -5.76 0.05 -1.86 -0.86
Farming credit Binary -6.53 0.10 0.00 -2.13
Mutual fund Binary -3.22 0.14 -0.45 -1.35
Investment fund Binary —-0.86 0.19 -0.56 -1.33
Commodities fund Binary -2.25 0.07 -0.03 -1.56
Annuities fund Binary -3.51 -0.23 -0.37 -1.56
Private manager Binary -3.94 -0.26 =0.59 -0.97
Gold Binary -3.62 -0.23 =0.77 -1.10
Car insurance Binary -3.26 0.23 -1.57 -1.52
Home insurance Binary -3.63 0.18 -1.61 -1.19
Life insurance Binary -1.34 0.26 -1.19 -0.45

“Boldface type indicates large (> 0.5]) factor weights.
'Survey variable, to be imputed.
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box. Customers using a wide range of services offered by this bank are likely to have
a negative score on this factor. A negative score on this factor is also related to a
large number of transactions per month and long tenure as customer of this bank.
This third factor is not strongly associated with the two imputation variables
“satisfaction” and ‘‘share of wallet” (percentage of total applications).

The pattern of weights of the two imputation variables shows that the satisfaction
variable has large weights for the first two factors, while share of wallet is not
strongly associated with any of the three factors. This indicates that satisfaction
measurements from the survey correlate stronger with the internal transaction
records from the banks database, which may leverage in imputations of higher
quality as compared with share of wallet. This illustrates the diagnostic value of the
mixed outcome factor model for data imputation: inspection of the weights of the
variables to be imputed diagnoses the potential quality of the imputations.

We simulate the application of the model for list augmentation, using the
bootstrap-based imputation procedure described above. We impute the share of
wallet variable and the probability of being dissatisfied (would not recommend the
bank to friends) based on the factor model using the eight bootstrap samples (we
report the imputed probabilities rather than the 0/1 outcome variable itself, since we
found that to be more informative). We focus on the probability of not
recommending, because this helps the bank identify customers “at risk” who should
be contacted to prevent attrition. Figure 2 shows the distribution of the standardized
imputations across the ten bootstrap samples, with the true frequency distribution in
the imputation sample. In each of the bootstrap samples, the distribution of the
imputed values covers the true frequencies of being satisfied/dissatisfied fairly well
for both variables. The figure suggests, however, that the imputations for the share
of wallet variable may exhibit too little variability.

For the two imputed variables we compute measures of imputation performance.
For share of wallet, the correlations between the true and imputed values range from
0.261 to 0.271, with an average of 0.265. These correlations are somewhat low, which
may be partially caused by the variability in the imputations, the measurement error
in the “true values” in the imputation sample, and by the fact that the factor model
does not show a strong relationship between any of the latent factors and share of
wallet. For satisfaction, as a measure of selectivity of the predictive model, we
generate power curves of the cumulative proportion of customers who actually said
they would not recommend the bank to friends against the cumulative proportion of
customers according to the imputed probability for not recommending the bank.
These power curves are shown in Figure 3 for the ten different bootstrap-based
imputations. A power curve on the 45-degree line indicates a lack of predictive
power, while perfect predictive power is obtained if the model sorts all customers
perfectly in decreasing order of true likelihood of usage. The graphs are all well
above the 45° line, underlining the quality of the multiple imputations in this case.
These results indicate that the proposed factor model could be useful in identifying
potentially dissatisfied customers, based solely on internal records.
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Fig. 2. Distribution of the share of wallet (top panels) and satisfaction (bottom panels), observed values
(shaded bars) and imputations (transparent bars) across the B = 10 bootstrap samples.

4 Discussion

In database marketing, list augmentation has become increasingly popular.
Companies’ customer transaction databases are increasingly used for marketing
rather than for only accounting purposes. However, the information in the
transaction base is often too limited and companies conduct market research
among samples of customers to enrich their databases. We propose the use of a
mixed outcome factor model for purposes of data augmentation that enables one to
impute the survey data, collected among a sample, for all customers in the database.

The proposed procedure offers the advantages of accommodating the different
measurement scales of variables usually encountered in transaction databases, of
providing a low dimensional representation of the variables, and of enabling one to
diagnose the extent to which the model may provide adequate imputations, based on
the factor weights of the imputation variables. We have proposed a bootstrap-based
imputation approach, which is appealing to use in combination with the factor
model. It allows one to include estimation uncertainty in the imputation procedure
in a robust manner, without the need to impose identifying constraints on the
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Fig. 3. Power curves for the cumulative proportions of customers who actually would not recommend
the bank against that according to the imputed probability for not recommending the bank, for
B = 10 bootstrap samples.

(primarily) exploratory factor model nor the need to obtain (invert) the information
matrix of the parameters. We provide an empirical case study of the approach and
we apply it to a transaction data base of a bank. We simulate a list augmentation
problem, by deleting part of the data and imputing them with our factor model. This
allows us to illustrate the diagnostic value of the factor model for and its
performance in list augmentation. However, our investigation of the quality of the
imputations in terms of the distribution of the imputed values is somewhat limited.
Subsequent research should address the issue of objective validation further by
investigating the properties of the resulting inferences based on the imputed data, as
in RUBIN (1987, Ch. 4). A drawback of the approach is the estimation time involved
in the bootstrap procedure including simulated likelihood estimation. However, we
believe this problem to further decrease over the years as computation power of
desktop computers increases.
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