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A robust, visual masking test that was developed to be feasible with functional
magnetic resonance imaging (fMRI) was used to examine the visual cortical inhib-
itory function in migraine patients with visual aura at both psychophysical and
cortical levels. The study showed that the decreased visibility of a visual target
was associated with a reduction in cortical activation in the primary visual cortex.
The suppression of the transient on-response and after-discharge of neurons to
the target was most likely to be responsible for reducing cortical activation, ren-
dering the target less visible or invisible. The migraine patients were equally
susceptible to visual masking and showed no difference in cortical activation
when compared with age- and sex-matched non-headache controls, demonstrat-
ing that visual cortical inhibitory function was not impaired under the experimen-
tal conditions. Although these results are not in conflict with the general cortical
hyperexcitability theory in migraine, they provide evidence to show the limitation
to the theory. [ Cortical hyperexcitability, cortical inhibition, functional MRI, migraine
with aura, visual masking
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that black-white grating patterns with spatial fre-
quency close to 1.2 cycle-per-degree (cpd) provoked

Numerous studies have concluded that the visual
cortex of migraine patients is functionally hyperex-
citable, particularly in those with associated aura
(MA). An epidemiological study of 1044 women
with migraine revealed that those with aura showed
a high prevalence of visual sensitivity and that their
attacks could be evoked by visual environmental
stimuli (1). Sustained visual stimulation can promote
a migraine attack in MA patients (2, 3). Certain
stripe-like patterns that elicited epileptiform electro-
encephalographic (EEG) abnormalities in photosen-
sitive epileptic patients produced intensive visual
discomfort and illusion in individuals with frequent
headache or migraine (4, 5). Our recent functional
magnetic resonance imaging (fMRI) study elicited
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illusions of colours, moving lines/spots and three-
dimensional effects, and produced an increase in
neuronal visual activity in migraineurs with aura (6).
The hyperexcitability of the visual cortex in migraine
has been suggested to be responsible for an increase
in the amplitude of visual evoked potentials (7) and
fast response time during visual attention tasks (8).
Furthermore, phosphenes were elicited by occipital
transcranial magnetic stimulation (TMS) at a lower
threshold in migraineurs with aura than in non-
headache controls (9). Migraine symptoms were
also induced by repetitive visual stimulation in
migraineurs with aura (2, 10). The significant corre-
lation between the phosphenes induced by TMS and
the headaches triggered by visual stimulation in the
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same group of migraineurs with aura suggests a
common mechanism—the cortical hyperexcitability
hypothesis underlies both observations (11).

Although the hyperexcitability hypothesis is
supported by many studies, several studies re-
ported contradictory results, including increased
visual after-effects following pattern adaptation in
migraine (12), a low prevalence of TMS-elicited
phosphenes in MA (13) and an increased threshold
of phosphene production for migraineurs both with
and without aura (14).

The underlying mechanisms responsible for the
visual cortex hyperexcitability in migraineurs, how-
ever, remain unclear. This cortical hyperexcitability
could be caused by overactivity of the excitatory
amino acids, glutamate, and possible aspartate (15).
Another possible mechanism is that a deficit in
cortical inhibitory processing causes the hyperexci-
tability in MA (16). In the primary visual cortex,
GABAergic neurons form a diffuse horizontal net-
work in lamina IV (17) and provide the intracortical
inhibition to modulate the response of the primary
visual cortex efferent to afferent excitatory informa-
tion (18). Chronicle and Mulleners suggested that
these neurons are very likely to be selectively dam-
aged due to hypoperfusion/hypoxia occurring
during the late phase of migraine aura (16). The
degeneration of these neurons could lead to im-
paired visual inhibitory function in migraineurs
with aura.

A novel psychophysical test, called visual mask-
ing, provides a unique technique to examine visual
cortical inhibitory function in migraineurs. A briefly
displayed visual target stimulus that is visible when
presented alone can be rendered less visible or in-
visible if it is immediately preceded or followed by
another stimulus (mask), known as forward or back-
ward visual masking effect. A recent study of multi-
unit recordings, which were taken from the primary
visual cortex (V1) in awake and anaesthetized mon-
keys during the presentation of visual stimuli that
give rise to visual masking in humans, demonstrated
that a forward mask suppressed the transient on-
response of neurons to the target in V1 and a back-
ward mask inhibited the transient after-discharge of
neurons, the excitatory response that occurred right
after the disappearance of the target (19). It is plau-
sible to assume that the visual cortical inhibitory
function is responsible for the suppression of these
transient on-response and after-discharge of neurons
to the target in V1, thus providing a means of exam-
ining the function in migraineurs. Impairment in
the inhibitory function in V1, in migraneurs, could
reduce inhibition of these transient on-response and
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after-discharge of neurons to the target, rendering
the migraineurs less susceptible to visual masking.
A recent psychophysical test that used a backward
masking protocol reported that MA patients were
significantly less susceptible to visual masking than
patients with migraine without aura and non-
headache controls, suggesting that it is the deficit in
cortical inhibitory processing in the MA patients that
was responsible for the cortical hyperexcitability
(20). We recently developed a robust, fMRI-feasible
visual masking protocol which produced a strong
visual masking effect (21). Our preliminary study
showed that the decreased visibility of a visual target
is associated with a reduction in cortical activation
in V1. In the present study, we utilized the protocol
to examine the visual cortical inhibitory function in
a group of MA patients and a group of age- and sex-
matched non-headache controls at both psychophys-
ical and cortical levels.

Methods and materials

Subjects

Ten migraineurs with visual aura (MA) (nine female,
one male, age 24-50years with mean=*SD
=37.6%8.9) and 10 age- and sex-matched non-head-
ache controls (NHC) (nine female, one male, age 24—
51 years with mean + SD = 36.4 £ 9.8) participated in
the study. The migraine patients were recruited
locally and were diagnosed according to the diag-
nostic criteria of the International Headache Society
(22). The inclusion and exclusion criteria for both
MA and NHC were described previously (6). In
the migraineurs, self-reported migraine attack fre-
quency varied from three episodes per month to
12 per year in the preceding 12 months, and aura
was described as scintillation and scotoma. All
migraineurs reported that most of their migraine
attacks were preceded by visual aura and migraine
headaches had occurred previously without aura.
All but one of the migraineurs reported photophobia
during migraine attacks and were sensitive to bright
light. The University Committee on Research Involv-
ing Human Subjects at Michigan State University
approved the study. Written informed consent was
obtained from all subjects prior to the study.

Psychophysical test

Stimuli

A robust, fMRI-feasible three-pulse stimulus
sequence, in which one mask stimulus preceded and
another mask stimulus followed the display of a



556 | Huang et al.

Press Key

To Begin

Forward Time
mask delay

Start Fixation

Choose

Target Time
delay

Backward Fixation End

mask

Figure 1 Stimuli flow chart for the psychophysical test. Each trial consisted of the sequence: fixation—forward-mask-time delay—
target—time delay-backward-mask-fixation. The forward-mask was displayed for 100 ms, the target 84 ms and the backward-
mask 84 ms also. Four values of 0, 34, 100 and 500 ms were chosen for the time delay.

visual target stimulus, was developed and tested
(21). This three-pulse stimulus sequence produces a
strong visual masking effect, presumably by sup-
pressing both transient on-response and after-
discharge of neurons to the visual target. The time
sequence of stimulus presentation consisted of fixa-
tion—forward mask-time delay—target-time delay-
backward mask-fixation (Fig. 1). The forward mask
(M) was displayed for 100 ms, and the target (T) and
the backward mask (M,) were displayed for 84 ms.
The time delay (interstimulus interval) was varied to
0, 34, 100 or 500 ms. The fixation comprised a 0.3°
cross white mark at the centre of the black back-
ground field. The target consisted of two vertical
bars having the same spatial dimension, being offset
to left or right from the centre of the display with an
equal distance from the fixation, and being either in
white (9.78 cd/m?) or light grey on a black back-
ground. The width and height of the bars was 1.5°
and 7°, respectively. The distance between the cen-
tres of the two bars was 6.5°. Forward and backward
masks had the same spatial dimension and were
comprised of two white rectangular boxes with their
inner surfaces coincident with outer surfaces of the
targets. The width and height of the boxes was 2.5°
and 8°, respectively. The stimulus presentation was
programmed on a PC by using E-Prime (Psychology
Software Tools Inc.), and displayed on a LCD, of
which contrast and luminance were calibrated and
set within a 5% error of the LCD used during fMRI.

Test

The subjects were seated 0.76 m from the PC monitor
and were instructed to focus their eyes on the fixa-
tion mark. During the test, two different types of the
targets were used: one target with both bars in white
and the other with one bar in white and another bar
in light grey. The subject was asked to detect whether
or not the two bars were at the same grey level. Each
condition was administered for 20 trials. The subject
entered an answer by pressing one of two keys on

the PC keyboard at the end of each trial, and the
result was recorded automatically. Prior to the test,
each subject had a pretest to establish the grey level
of the light-grey bar for the experiment. During the
pretest, only a target was displayed in each trial. Five
different grey levels for the grey bar in the target
were used and a total of 40 trials for each level were
presented. The order of the trials was selected ran-
domly. The grey level of the light-grey bar that was
selected for the experiment was as close as possible
to the grey level of the white bar while the subject
was still able to detect the targets (error rate <10%).

Functional MRI study

FMRI protocols

The fMRI scan included three protocols: (i) a retino-
topic mapping, (ii) a corticotopic mapping, and (iii)
a visual masking protocol. The retinotopic mapping
used phase-encoded polar coordinate stimuli that
have been demonstrated to be an objective and reli-
able methodology to determine the borders of visual
areas (23-25). During the retinotopic mapping, a
half-field black-white checkerboard with contrast-
reversing rate 4 Hz was presented. The checker-
board rotated around a fixation at the centre of the
visual field and completed a cycle every 36 s. It first
rotated counterclockwise 3.5 cycles, followed by an
18-s fixation, and then rotated clockwise for another
3.5 cycles.

The corticotopic mapping protocol attempted to
determine the cortical regions activated by the target
independently. During the corticotopic mapping, a
target that had the same spatial dimension as the one
used in the psychophysical experiment was dis-
played for 4 s followed by an 18-s long fixation in
each trial, and a total of seven trials was presented.
In order to increase the magnitude of cortical activa-
tion that was induced by the target, a square-wave
grating pattern was created in the vertical direction
on each of the two bars. The pattern had a spatial
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frequency 2 degree-per-cycle with a contrast 35%
and was contrast-reversing at the rate of 4 Hz.

The visual masking protocol consisted of five dif-
ferent trials: (i) target only (T) displayed for 84 ms;
(if) masking condition (M;IM,) in which a 100-ms
forward mask preceded a 84-ms target and a
84-ms backward mask followed the target; (iii) mask
only (M{FM,) in which a 84 ms long fixation (F)
period replaced the target in the masking condition;
(iv) unmasking condition (MtTtM,) that was similar
to M{IM, except that a 500-ms time delay (t) was
placed between the target and each of the two
masks; and (v) second mask-only condition (Mt-
FtM,,) in which a 84 ms long fixation period replaced
the target display in the unmasking condition. The
first mask-only condition served as a control condi-
tion for the masking condition, while the second
mask-only condition served as a control condition
for the unmasking condition. During each trial, a
fixation mark followed the stimulation sequence,
resulting in a 20 s long trial. We limited the number
of trials performed in anticipation that a prolonged
fMRI protocol could increase eye stress and fatigue,
increase the probability of head movement, and
degrade image quality. In addition, we needed to
have sufficient numbers of trials for each condition
in order to average functional signals and to have
statistical power for differentiation of the functional
signals for the different conditions. As a trade-off, we
used only one of the two targets that were used in
the psychophysical test: both two bars in white. All
five conditions were pseudo-randomly presented in
one scan with three trials for each. Each subject had
six scans, resulting in a total of 18 trials for each
condition. During scanning, subjects were instructed
to focus their eyes on the fixation mark at the centre
of the visual field at all times.

MRI parameters

Six axial-oblique sections, perpendicular to Cal-
carine Fissure, were acquired on a GE 3.0-T clinical
scanner using a gradient-echo echo-planar imaging
pulse sequence (GE-EPI) with TE/TR=40ms/
500 ms, flip angle 70°, field-of-view 200 mm, matrix
size 64 x 64, and slice thickness 5mm. Thus, 40
images per anatomical section were acquired for
each trial in the visual masking protocol.

Data analysis

Pre-processing All functional images were corrected
for possible in-plane translation and rotation within
each scan and between scans (26). Signal intensity
time course was corrected for possible slow baseline
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drifts using 0, 1st and 2nd orders of polynomials,
and normalized to allow signal averaging over
voxels, over scans, and across subjects (27).

Retinotopic map Images that were acquired during
the first half cycle of each rotation were discarded,
leaving one volume of images of three whole cycles
for the counter-clockwise rotation and another
volume for the clockwise rotation of the stimulus,
respectively. The discrete Fourier transformation of
the time course for each volume was computed
voxel by voxel, and the phase angle of the time
course was further calculated. Due to the time delay
of the BOLD response to the stimulus, the temporal
phase of the time course of the BOLD signal intensity
in a voxel was shifted relative to the polar phase of
the periodic stimulation corresponding to the spatial
location of the checkerboard, and the magnitude of
the shift is uncertain. This uncertain phase shift due
to the delayed BOLD response, however, is identical
in both the counter-clockwise and clockwise rota-
tions, and therefore can be removed by subtracting
them from the measured phase angles for the
counter-clockwise and clockwise rotations (23),
yielding a corresponding one-to-one relationship
between the temporal phase of the BOLD signals
and the polar phase of the periodic stimulation.
Finally, the phase was colour-coded and overlaid
onto Tl-weighted anatomical images. The ventral
(dorsal) border of V1/V2 was determined by the
polar angle phase reversal in the activation of the
first band when the centre of the stimulus was
within 45° of the superior (inferior) vertical
meridian.

Corticotopic regions of the target Corticotopic regions
of the target were determined from functional
images that were acquired during the corticotopic
mapping (images of the first dummy trial were dis-
carded). The time series of the functional images was
correlated voxel by voxel, with sine and cosine wave
functions having periodicity equal to the trial dura-
tion of 225, and then the magnitude and phase of
cross-correlation coefficient were computed (28, 29).
A threshold level of significance for the magnitude
of the cross-correlation coefficient, equal to or
greater than 0.35 with phase range of [-100, 50], was
chosen to yield an estimated Type I error rate of
P <0.0005/voxel. The activated voxels, coincident
with the primary visual cortex (determined by the
retinotopic mapping), defined the region of interest
(ROI) for analysis.

Visual masking After preprocessing, all functional
images that were acquired during the visual
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masking experiment were sorted according to the
five stimulation sequences. For each stimulation con-
dition, signal intensity time courses of the functional
images were averaged over the voxels within the
ROI and over the trials. The area under the time
course of signal intensity changes was integrated
and used as a metric for activation for the stimula-
tion condition.

Results

Psychophysical test

Without the forward- and backward-masks, all
subjects could detect the target correctly with an
error rate of 5.3 +3.2% (mean = SEM) for MA and
4.0+1.1% for NHC, indicating that the target was
clearly visible. The presentation of the forward- and
backward-masks affects the visibility of the target.
The magnitude of this effect depends upon the time
delay between the target and the two masks (Fig. 2).
When the forward mask was placed immediately
before the target and the backward mask followed
the target without a time delay, the presentation of
the masks decreased the visibility of the target. This
rendered an increase in errors for detection of the
target with an error rate of 48.0 +2.3% for MA and
43.3+3.4% for NHC (50% error rate for random
choice), significantly greater than without the masks
(P <0.0001, t-test). Adding time delays between the
forward mask and the target and between the target
and the backward mask reduced the masking effect
(Fig. 2). With a 500-ms time delay, the masking effect
had almost vanished, as reflected in the error rate
being reduced to 14.3 + 14.0% for MA and 9.8 +1.9%
for NHC. Comparing the masking condition (no
time delay between the masks and the target) with
the unmasking condition (a 500-ms time delay
between the masks and the target), the error rates
were significantly different (P <0.001) for both MA

Visual masking effect
50 A

ﬁ Nm

T
500 ms

Error rate (%)

T 0ms 34 ms 100 ms
Figure 2 Psychophysical results. T, Target only. Delay time: 0,
34,100 and 500 ms. [J, Migraine with aura; M, non-headache

control.

and NHC. However, no significant difference was
observed between MA and NHC (P > 0.2).

Activation in V1

The group-averaged integrated areas of signal inten-
sity changes in V1 for the five stimulation conditions
are plotted in Fig. 3. Significant cortical activation
was produced by the target T in both the migraine
patients and non-headache controls, and is reflected
in the measured area of the BOLD response 3.8 + 0.5
(mean = SEM, % x s) for MA and 3.6 0.4 (% X s)
for NHC. The unmasking stimulation MtTtM, pro-
duced the maximum cortical activation in V1 as
expected for both MA and NHC, and similar cortical
activations for the five stimulation conditions were
observed between MA and NHC (Fig. 3). Cortical
activation that was induced by the unmasking stim-
ulation MtTtM, was bigger than that produced by
its control condition MdFtM,, in which the fixation F
replaced the target T, reflecting the additional con-
tribution of T in MtTtM, compared with MtFtM,,.
Cortical activation that was induced by the masking
stimulation M{TM,, however, was smaller than that
produced by its control stimulation M{FM,, indicat-
ing an overall strong suppression to the underlying
neuronal activation in M;TM,. For NHC, the dif-
ference of cortical activations between MgTtM,
and M¢FtM, was significantly greater than zero
(P <0.002), but not between M{TM,, and M{FM,,. The
difference of cortical activations between M{TtM,
and MTM, was 3.0 £ 0.5 (% x s), and the difference
between MgFtM, and M{FM, was 0.6 +0.5 (% X s).
These two differences were significantly different
from each other (P < 0.002, paired t-test). No signifi-
cant difference was observed between MA and

Activation in V1
g -
8 -
7 -
6 -

4 -

3 4

2

1A

0 - T T T T
T MM MTM MtM

Area (% x S)

MtTtM

Figure 3 Cortical activation results. T, Target only; MTM,
masking condition; MtTtM, unmasking condition; MM
(MtM), control condition for the masking (unmasking)
condition; [J, Migraine with aura; M, non-headache control.
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NHC. This result is self-consistent with the psycho-
physical test (Fig. 2).

Discussion

The result of the psychophysical test showed that
both groups of MA and NHC were equally suscep-
tible to visual masking; no one group performed the
task better than the other under the same conditions
(Fig. 2). When there was no time delay between the
masks and the target, the task performance error
rates for the two groups were close to the error rate
for random choice, indicating that the provided
answers were mainly based on guessing and the
target was almost invisible. The error rate decreased
with increased time delay, indicating increased visi-
bility of the target with increasing the time delay.
Both groups showed a similar pattern of task perfor-
mance. The fact that the error rate for MA was sys-
tematically bigger than that for NHC showed that
the MA consistently performed worse than the NHC
even if their performance for each condition was
not significantly different (Fig.2). It demonstrates
that the MA was equally, if not more, susceptible to
visual masking when compared with the NHC.

Cortical activation in V1 showed a similar pattern
for both groups of MA and NHC (Fig. 3), and no
significant difference was observed between the two
groups. The unmasking condition MdTtM, provided
more visual stimulation, and hence, produced a
bigger cortical activation when compared with its
control condition MtFtM,. Despite the more visual
stimulation that was provided by the masking con-
dition M{IM, when compared with its control con-
dition M{FM,, the former produced less cortical
activation then the latter. This indicated a strong over-
all suppression of on-response and after-discharge of
neuron firings (19). During the masking condition,
the forward mask M; suppressed the on-response of
neurons to the target T, the target inhibited the after-
discharge of neurons to M; and suppressed the on-
response of neurons to the backward mask M,, and
the backward mask inhibited the after-discharge of
neurons to T. These suppressing interactions among
M;, T and M, counteracted the additional stimulation
provided by Tin M{TM,. As a result, M{TM, provoked
less activation in V1 than M{FM,,. It is probably the
suppression of on-response and after-discharge of
neurons to the target that rendered the target invisible
during the masking condition.

The results of the psychophysical test and the
fMRI study are consistent. The target was visible
when it was unmasked, but invisible when it was
masked. When the target was unmasked, cortical
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activation was maximal. When the target was invis-
ible, cortical activation was reduced, which demon-
strated that the decreased visibility of the target was
associated with the reduced cortical activation in V1.
The reduction in cortical activation and in the visi-
bility of the target was probably due to the inhibition
to the transient on-response and after-discharge
of neurons to the target. These similarly consistent
results from both the psychophysical test and the
fMRI study, when compared with the NHC, showed
no observable impairment in visual cortical inhibi-
tory function in the MA. It is consistent with the
conclusion of normal inhibition function in migraine
from a visual contrast gain control study (30), but
contrary to the statement of dysfunction of inhibi-
tion in migraine that was reported in the psycho-
physical study (20). The MA also did not show any
significant hyperneuronal activity when compared
with the NHC (Fig. 3). We conclude that if, indeed,
there is a deficit in inhibition that is responsible for
the cortical hyperexcitability in MA patients, as sug-
gested in the study (20), the inhibitory function must
be specifically impaired and is disrupted for only
certain specific conditions. This conclusion is consis-
tent with our recent fMRI study, in which we found
that hyperneuronal activity induced by a black-
white grating in the MA patients occurred only for
a specific range of spatial frequency (6). Although
these conclusions are not in conflict with the general
cortical hyperexcitability theory in migraine, they
provide evidence to show the limitation to the
theory. In addition, a recent review of the studies of
evoked potentials and transcranial magnetic stimu-
lation in migraine favoured the concept of cortical
hypo- but not hyperexcitability in migraine, and
concluded deficient habituation and decreased pre-
activation cortical excitability as the predominant
interictal dysfunctions (31). More studies are needed
to uncover the mechanisms responsible for the cor-
tical dysfunctions in migraine.
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