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Summary. We demonstrate the use of auxiliary (or latent) variables for sampling non-standard
densities which arise in the context of the Bayesian analysis of non-conjugate and hierarchical models
by using a Gibbs sampler. Their strategic use can result in a Gibbs sampler having easily sampled full
conditionals. We propose such a procedure to simplify or speed up the Markov chain Monte Carlo
algorithm. The strength of this approach lies in its generality and its ease of implementation. The aim of
the paper, therefore, is to provide an alternative sampling algorithm to rejection-based methods and
other sampling approaches such as the Metropolis±Hastings algorithm.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods (Smith and Roberts, 1993; Tierney, 1994)
allow Bayesian inference for highly complex models in which realistic distributional
assumptions can be made. The Gibbs sampler, the most common of the MCMC algorithms,
can often be di�cult to implement, however, because the required conditional distributions
assume awkward forms. In this case the practitioner may turn to the Metropolis±Hastings
algorithm; see, for example, Metropolis et al. (1953), Hastings (1970) and Tierney (1994).
Unfortunately, these algorithms may be di�cult to set up and in particular may require
`tuning' to achieve satisfactory performance (Bennett et al., 1996; Chib and Greenberg, 1995).
Alternatively `black box' random variate generation techniques such as the rejection algo-
rithm (Devroye, 1986), adaptive rejection sampling for log-concave densities (Gilks and Wild,
1992) or the ratio-of-uniforms method (Wake®eld et al., 1991) may be used. The use of
such techniques may be daunting to those who are unfamiliar with their use, however, since
they also frequently require tuning to provide reliable and e�cient algorithms. In this paper
we discuss a novel approach which, after the introduction of strategic auxiliary (or latent)
variables, results in a Gibbs sampler having a set of easily sampled `standard' full conditionals.
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Suppose that the required conditional distribution for a random variable X is denoted f.
The basic idea is to introduce a latent variable U, to construct the joint density of U and X,
with marginal density for X given by f, and then to extend the Gibbs sampler to include the
extra full conditional for U. We demonstrate that in many cases it is possible to introduce a
latent variable so that all full conditionals are standard and can be sampled directly. This is
obviously appealing, provided that there is no dramatic loss in e�ciency compared with the
original chain.

For a historical overview of Markov chain methods and the use of latent (auxiliary) vari-
ables the reader is referred to Besag and Green (1993). In particular, our approach develops
the original idea introduced by Edwards and Sokal (1988) and highlighted in section 5
of Besag and Green (1993). Recent progress with auxiliary variables is reported in Higdon
(1998) and references therein.

The paper is organized as follows. In the next section, we develop the theory underlying the
new algorithm. In particular, we show that our method improves on a Metropolis±Hastings
independence chain. In Section 3 we discuss strategies for choosing latent variables and
in Section 4 we implement the approach for Bayesian non-conjugate models. Section 5
considers hierarchical models, with Section 5.1 dealing with generalized linear mixed models
and Section 5.2 with non-linear mixed models. Section 6 contains a numerical example,
followed by a concluding discussion in Section 7.

2. Preliminaries

The main result on which the algorithm developed in this paper depends is given in the
following theorem.

Theorem 1. Suppose that we wish to generate random variates from a density f given by

f �x� / ��x�QN
i�1

li�x�,

where � is a density of known form and the li are non-negative invertible functions (not
necessarily densities), i.e. if li�x� > u then it is possible to obtain the set Ai

u � fx: li�x� > ug.
Then a Gibbs sampler for generating random variates from f exists where all except one of
the full conditionals are uniform densities, and the remaining full conditional is a truncated
version of �.

Proof. We introduce the latent variables U � �U1, . . ., UN�, with each Ui de®ned on
�0, 1�, such that the joint density with X is given by

f�x, u1, . . ., uN� / ��x�
QN
i�1

Ifui < li�x�g.

Clearly the marginal density for X is f�x�. A Gibbs sampler can now be implemented with
the full conditionals for each Ui being Uf0, li�x�g where U�a, b� denotes the uniform den-
sity on the interval �a, b�. The full conditional for X is given by � restricted to the set
Au � fx: li�x� > ui, i � 1, . . ., Ng.

The decomposition appearing in the theorem is very similar to an expression appearing in
Besag and Green (1993), section 5. However, they did not mention the signi®cant advantages
that an invertible li leads to. They stated that, `When dealing with more complicated models,
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direct simulation from f�xju� is unlikely to be available' (our italics). As a consequence, they
proposed that sampling from � restricted to the set Au may be achieved by sampling
repeatedly from � until the sample falls inAu. Although this method works in principle it will be
ine�cient in many situations. Our aim is to demonstrate that we can introduce latent variables
in complex models in such a way that direct simulation from f �xju� is achieved. The class of
densities having the appropriate decomposition seems to be large, and speci®cally, in the
context of Bayesian models, the decomposition stated in theorem 1 can be readily achieved.

Consider the density given by f �x� / l�x� ��x� and suppose that it is not possible to sample
directly from f. We assume that � is a density. The general idea is to introduce a latent
variable U, de®ned on the interval �0, 1�, or more strictly the interval �0, l�x̂�� where x̂
maximizes l�.�, and de®ne the joint density with X by

f �x, u� / Ifu < l�x�g ��x�.
The full conditional for U is Uf0, l�x�g, and the full conditional for X is �, restricted to the set
Au � fx: l�x� > ug. The decomposition f�x� / l�x� ��x� is not unique, and we can exploit this
fact when constructing the joint density containing the latent variable.

We now show that this approach is more e�cient than a particular independence
Metropolis±Hastings chain. The Metropolis±Hastings algorithm is a Markovian scheme
which may be used for obtaining samples from the posterior f�x� / l�x� ��x�. Consider a
speci®c version of this algorithm that uses ��.� as the proposal and let the sampled point
be denoted ~x and the current point be x�t�. This point is accepted with probability
minf1, l� ~x�=l�x�t��g and this condition is tested by sampling, independently of ~x, a uniform
variate u. Essentially if l� ~x�=l�x�t�� > u then x�t�1� � ~x; otherwise x�t�1� � x�t�. The chain either
`moves on' or `stays where it is'. The convention is that ~x is sampled ®rst, followed by u.
Suppose that we reverse this and sample u ®rst. To move on we need to sample ~x from ��.�
such that l� ~x�=l�x�t�� > u. Suppose, therefore, that we sample ~x from ��.� restricted to the set
Au�t� � fx: l�x� > u l�x�t��g. In this case, the chain will always move on. In fact, we have just
described a Gibbs sampler with standard full conditionals, leading to the Markovian scheme
for generating fx�t�g given by x�t�1� � ��.� restricted to the set Au�t� � fx: l�x� > u l�x�t��g,
where u is U�0, 1�.

If X is multidimensional, and it is not possible to obtain the multivariate set Au, then a
simpli®cation is to sample from f�xju� by sampling from f�xkjxÿk, u�, for k � 1, . . ., p, where
p is the dimension of X. This would involve sampling from ��xkjxÿk� restricted to the set
Ak

u � fxk: l�xk, xÿk� > ug. In this case it is only required that lk�xk� � l�xk, xÿk�, given xÿk, be
invertible for all k. The usefulness of this approach is demonstrated for non-linear mixed
models in Section 5.2.

3. Choosing the latent variable(s)

In this section we discuss ways of introducing latent variables, other than the direct approach
involving a uniform random variable outlined in theorem 1. Let us consider the non-
conjugate case

f �x� / l�x� ��x�,
where we assume that we can sample from truncated versions of �. In all the examples in this
section we are not claiming that the `best' way to sample from f is by using MCMC and latent
variables; we are merely using these cases to illustrate the basic ideas of our approach.
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3.1. Example 1: l(x)� exp{ÿexp(x)}I(ÿ1 < x <1)
We wish to de®ne a joint density in terms of X and a latent variable so that the marginal
distribution for X corresponds to f�.�. The obvious way to achieve this here is via the latent
variable u de®ned through

f�x, u� / I�0 < u < expfÿ exp�x�g� ��x�.
Alternatively, we may introduce the variable V whose joint distribution with X is given by

f�x, v� / exp�ÿv� Ifv > exp�x�g ��x�.
The particular choice of latent variable depends on the context. The method works because
l�x� < 1 for all x and hence ÿ logfl�x�g > 0. In general, if l�x� <M then we can use l*�x� < 1,
where l*�x� � l�x�=M. The conditional distributions for the second suggested choice are given
by

f �vjx� / exp�ÿv� Ifv > exp�x�g
and

f�xjv� / ��x� Ifx < log�v�g.
To perform an iteration of the Gibbs sampler we can take v � exp� ~x� � e, where e is from the
exponential distribution with mean 1 and ~x is the current state of the chain. So the truncation
set for X becomes fx: x < logfexp� ~x� � egg.

3.2. Example 2: l(x)� xm(1� x)ÿn I(x > 0), m < n, and �(x) is a gamma distribution
with shape and scale parameters equal to 1
If we use Ifu < �1� x�ÿng and take xm into the prior, then we have the joint density

f�x, u� / Ifu < �1� x�ÿng �*�x�,
where �* is the gamma distribution with mean m� 1 and scale parameter 1. The conditional
distributions are then given by

f�ujx� � Uf0, �1� x�ÿng
and

f�xju� / �*�x� I�x < 1=u1=n ÿ 1�.
It is of interest to see how the truncation set for X depends on ~x. We can generate log�u�
� ÿeÿ n log�1� ~x� and so the conditional distribution for X can be written as

f�xj ~x, e� / xm exp�ÿx� Ifx < �1� ~x� exp�e=n� ÿ 1g.
There are two considerations here. The size of m will determine the e�ciency of sampling the
truncated gamma distribution and n will control the size of the truncation set for X, but note
that the `minimum' set is fx: x < ~xg. If m is very large, and the sampling of the truncated
gamma distribution becomes ine�cient, then an alternative strategy is to introduce two latent
variables based on l1�x� � xm and l2�x� � �1� x�ÿn. The full conditionals are given by

f�ujx� � Uf0, l1�x�g,
f �vjx� � Uf0, l2�x�g
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and

f �xju, v� / exp�ÿx� I�u1=m < x < vÿ1=n ÿ 1�.
The full conditional for X can be written as

f�xj ~x, e1, e2� / exp�ÿx� If ~x exp�ÿe1=m� < x < �1� ~x� exp�e2=n� ÿ 1g,
where e1 and e2 are independent exponential random variates with mean 1. This chain avoids
the need to sample a truncated gamma distribution, but at the expense of an extra latent
variable. The e�ect of this extra latent variable is evident from the two truncation setsÐone
is obviously smaller than the other. Problems of high autocorrelation will be encountered
with the second chain if both m and n are large, which is clear from the truncation set for X.

If we have l�x� � exp�mx�f1� exp�x�gÿn and ��.� is normal, for example, then a similar
approach can be taken.

3.3. Example 3: l(x)� ax I(x > 0) with a > 0
Here we introduce the latent variable u via I�u < ax�. The truncation set depends on whether
a < 1 or a > 1. If a < 1 the truncation set is given by �0, log�u�= log�a�� and, if a > 1, by
�log�u�= log�a�, 1�.

These examples provide a brief summary ofwhat is to follow.The selection of the appropriate
latent variable(s) is usually self-evident but, in some cases, some thought may be required.

4. Bayesian non-conjugate models

In this section we implement the latent variable approach to sampling from posterior
distributions arising from Bayesian non-conjugate models.

4.1. Example 4: Poisson±log-normal model
Suppose that we observe a random non-negative integer � from a Poisson distribution with
parameter exp�X�. Without loss of generality we assume that the prior for X is N�.j0, 1�. The
posterior density is then given by

f�x� / expf�xÿ exp�x�g exp�ÿ0:5x2�.
We notice that the exp��x�-term can be absorbed into the prior and, therefore, following
example 1, we introduce the latent variable U, de®ned on the interval �0, 1�, such that the
joint density with X is given by

f �x, u� / exp�ÿu� Ifu > exp�x�g expfÿ0:5�x2 ÿ 2�x�g,
which leads to conditional densities given by

f �ujx� / exp�ÿu� Ifu > exp�x�g
and

f�xju� / expfÿ0:5�xÿ ��2g Ifx < log�u�g,
a truncated N�.j� , 1� density. See Devroye (1986) and Robert (1995) for methods for
sampling from a truncated normal density.
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4.2. Example 5: Bernoulli±logistic regression model
Here we consider a Bernoulli logistic regression model for which wi � Bernoulli�pi� where
pÿ1i � 1� exp�ÿ�ÿ xzi� and zi is a known explanatory variable. We assume for simplicity
that � is known. We have

wij�X � x�, zi � Bernoulli�f1� exp�ÿ�ÿ xzi�gÿ1�, i � 1, . . ., n,

with, without loss of generality, X � N�.j0, 1� as the prior. The posterior density for X is
given by

f�x� / exp�ÿ0:5x2�Qn
i�1

l1i�x� l2i�x�,

where

l1i�x� � f1� exp�ÿ�ÿ xzi�gÿwi

and

l2i � f1� exp��� xzi�gwiÿ1:

Using the standard approach, outlined in theorem 1, we introduce the latent variables
U � �U1, . . ., Un� and V � �V1, . . ., Vn�, such that their joint density with X is given by

f�x, u, v� / exp�ÿ0:5x2�Qn
i�1

Ifui < l1i�x�, vi < l2i�x�g:

The full conditional densities f �uijuÿi, v, x� and f�vijvÿi, u, x� are both uniform:

f�uijuÿi, v, x� � Uf0, l1i�x�g
and

f�vijvÿi, u, x� � Uf0, l2i�x�g:
Let S � fi: wi � 1g \ fi: zi 6� 0g and R � fi: wi � 0g \ fi: zi 6� 0g. Then

f �xju, v� / exp�ÿ0:5x2� I�x 2 Auv�,
where Auv � �maxi2Sfaig, mini2Rfbig�, ai � flog�1=ui ÿ 1� ÿ �g=zi and bi � flog�1=vi ÿ 1�
ÿ �g=zi. Note that if S �1 then we replace maxi2Sfaig by ÿ1 and if R �1 then we
replace mini2Rfbig by 1.

4.3. Example 6: Weibull proportional hazards model
The Weibull proportional hazards model is popular for modelling censored survival time
data. The hazard function for the ith individual is given by

�i�t� � �0�t� exp�zi��,
where � � ��1, . . ., �p� is a vector of unknown parameters and �0�t� is the base-line hazard.
The Weibull model arises when �0�t� � �t�ÿ1 for some unknown � > 0. The conditional
posterior distribution for �, given � and taking a normal multivariate normal prior for �, is
given by
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f��j�� / Qn
i�1

expfzi��i ÿ t�i exp�zi��g expfÿ0:5�� ÿ ��0�ÿ1�� ÿ ��g,

where �i � 1 indicates that ti is an uncensored observation, and �i � 0 otherwise. Here,
following example 1, we introduce the latent variable U � �U1, . . ., Un� such that the joint
density with � is given by

f��, uj�� / Qn
i�1

exp�ÿui� Ifui > t�i exp�zi��g expfÿ0:5�� ÿ ��0�ÿ1�� ÿ �� � ��g,

where � � �n
i�1 zi�i has been absorbed into the prior. The full conditional distributions for

each of the ui are independent exponential distributions with unit mean, restricted to the sets
�t�i exp�zi��, 1�. Sampling from f ��kj�ÿk, u, �� requires

Ak
u �

�
�k: �k < min

i

�
log�ui=t�i �

zki
ÿP

l 6�k

zli�l
zki

��
and so involves sampling a normal distribution, truncated to Ak

u. The full conditional for �,
with prior ���� � constant (Dellaportas and Smith, 1993), is given by

� ~n

�Q
�i�1

ti

��

I

�
max
ti<1

�
log�ui� ÿ zi�

log�ti�
�
< � < min

ti>1

�
log�ui� ÿ zi�

log�ti�
��

,

where ~n is the number of uncensored observations. We can sample this density via the
introduction of a latent variable V and de®ne the joint density with � by

f�v, �� / � ~n I

�
v <

�Q
�i�1

ti

���
I��ÿ < � < ���,

where �ÿ and �� are the bounds appearing in the full conditional for �. It is now seen that
both f�vj�� and f��jv� are of standard form and can be sampled by using uniform random
variables; see example 3.

5. Bayesian hierarchical models

Hierarchical models are relevant when the observed variability in the data on a number of
units can be conveniently partitioned, in the simple two-stage model, into within- and
between-unit components. At the ®rst stage of the hierarchy observations from a particular
unit are modelled, whereas at the second stage of the hierarchy between-unit di�erences are
modelled. We consider both

(a) generalized linear mixed models and
(b) non-linear mixed models.

We concentrate on that situation in which the second-stage distribution is speci®ed
parametrically, typically using normal or Student's t-distributions.

5.1. Generalized linear mixed models
5.1.1. The model
Given fbig, a set of q-vector random e�ects, the observations yi, i � 1, . . ., n, are condi-
tionally independent from the exponential family of distributions with mean h�wi� � zibi�,
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where h�.� is a non-negative invertible function, i.e. g � hÿ1 exists, wi is a p-vector of
explanatory variables, � a p-vector of unknown parameters and zi a q-vector of explanatory
variables, for the ith observation. The conditional variances are given by

var�yijbi� � � vfE�yijbi�g
where v is a known variance function and �, if it is not equal to 1, is an unknown dispersion
parameter. The bi are assumed to be independent and identically distributed (IID) from the
multivariate normal distribution with mean 0 and covariance matrix �ÿ1. Within a Bayesian
framework conjugate prior distributions are assigned to the parameters �, � and �. The prior
for � is typically an inverse gamma distribution, the prior for � a multivariate normal prior
N�.j�, �� and the prior for � is a gamma or Wishart prior, depending on whether it is uni-
variate or multivariate.

5.1.2. The algorithm
Here we present a general algorithm for sampling the conditional distributions of the
generalized linear mixed model. The full conditional distribution for � is given by

f��jb� / exp

�P
i

fyiwi� ÿ h�wi� � zibi�g
�
N��j�, ��:

In this form the distribution is not of standard type and so cannot easily be sampled
directly. We could absorb the �i yiwi�-term into the prior and then introduce a single latent
variable. In general, however, this may not be the best strategy; see the discussion of
example 2.

We proceed by introducing the latent variables U � �U1, . . ., Un� and V � �V1, . . ., Vn�
such that the joint (full conditional) distribution with � is given by

f��, u, vjb� /
�Qn

i�1
I�ui < exp�yiwi��, vi < expfÿh�wi� � zibi�g�

�
N��j�, ��:

Clearly the marginal distribution for � is as required. Some simple algebra gives the following
full conditional distributions for each �k, k � 1, . . ., p:

f��k� / N��kj�k*, 1=ekk� I�ak < �k < ck�,
where

�k* � �k ÿ
P
l 6�k
��l ÿ �l�elk=ekk,

elk is the lkth element of �ÿ1, the set (ak, ck) is obtained via the inequalities yiwi� > log(ui) and
h�wi� � zibi� < ÿlog(vi) for i � 1, . . ., n.

The `new' Gibbs sampler includes the sampling of the full conditional distributions for u
and v within each iteration. These are easily seen to be uniform distributions. The full
conditional distribution for bi is given by

f�biju, v, �� / I�ui < exp�yizibi�, vi < expfÿh�wi� � zibi�g�N�bij0, 
�
which, as with the full conditional for �, will lead to a truncated normal distribution.
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5.1.3. Example 7: random e�ects Poisson model
Here we consider the random e�ects Poisson model given by

yij�i � Poissonfexp��i�g
�i � wi� � bi,

bi � N�0, �ÿ1�:
Priors for � and � are taken as in Section 5.1.1. The joint probability distribution of �, b and
� is given by

f��, b, �� / exp

�Pn
i�1
fyi�i ÿ exp��i� ÿ 0:5b2i �g

�
�n=2 ���, ��:

Here we introduce the latent variables U � �U1, . . ., Un� and V � �V1, . . ., Vn� such that the
joint distribution with �, b and � is given by

f��, b, �, u, v� / �n=2 ���, ��
�Qn
i�1

exp�ÿvi� Ifui < exp�ÿyi�i�, vi > exp��i�g exp�ÿ0:5b2i ��
�
:

The full conditional distribution for �k is given by

f��kj�ÿk, b, �, u, v� / ���kj�ÿk� I��k 2 Bk�,
where Bk is the set �

max
wki<0

�
aki
wki

,
cki
wki

�
, min

wki>0

�
aki
wki

,
cki
wki

��
where

aki � log�vi� ÿ
P
l 6�k

wli�l ÿ bi

and

cki � ÿyÿ1i log�ui� ÿ
P
l 6�k

wli�l ÿ bi:

The full conditional distribution for bi is

f�bij�, �, u, v� / exp�ÿ0:5b2i �� I�bi 2 Ai�,
where Ai is the set�

ÿ1, min

�
log�vi� ÿ

P
k

wki�k,ÿ yÿ1i log�ui� ÿ
P
k

wki�k

��
:

The full conditional distributions for the latent variables are given by

f�uij�, b, �� / Ifui < exp�ÿyi�i�g,
f�vij�, b, �� / exp�ÿvi� Ifvi > exp��i�g

and the full conditional for � is

Bayesian Non-conjugate and Hierarchical Models 339



f��j�, b, u, v� / �n=2 exp

�
ÿ 0:5�

P
i

b2i

�
����:

Only minor modi®cations are required for the case when yi � 0.

5.2. Non-linear mixed models
5.2.1. The model
In the following let i index individuals and j index observations within individuals with
i � 1, . . ., n, j � 1, . . ., ni and N � �i ni. Let yij represent the observation. The conditional
probability model for the observations is given by

yijj�i, �2 � Nfyijjg��i, xij�, �2g,
where �i is the random e�ect associated with the ith individual, xij an explanatory variable for
the ijth observation and g a known non-linear mean response function. We shall write
g��i, xij� as gij��i�. The �i are assumed to be normally distributed with mean � and variance±
covariance matrix �. Here �, � and � are the population parameters. Conjugate priors are
assigned to these parameters in a manner described in Wake®eld et al. (1994). As a con-
sequence the conditional distributions for each of these parameters is of known form. The
problem with implementing a Gibbs sampler is with the conditional for each of the �i. The
conditional density for �i is given by

f��i� /
� Qni

j�1
expfÿ0:5 lj��i�=�2g

�
���i�,

where lj��i� � fyij ÿ gij��i�g2 and ���i� is N��ij�, ��. It is not possible to sample this dis-
tribution directly without specialist random number generation techniques. The ratio-of-
uniforms method may be used but requires, in its usual implementation, three numerical
maximizations for each sample (Wake®eld et al., 1991). The adaptive rejection sampling
routine cannot be used since the conditional distributions are typically not log-concave. Gilks
et al. (1995) proposed the Metropolis adaptive rejection sampling algorithm for such cases.
Care must be taken when such chains are constructed, however; see Gilks et al. (1997).

5.2.2. The algorithm
We can write this model in a di�erent way by introducing a (latent) random e�ect uij for each
observation. This latent model is obtained by specifying

yijjuij, �i � Ufgij��i� ÿ u
p

ij, gij��i� � u
p

ijg,
and

uijj� � G�uijj3=2, �=2�,
where G denotes the gamma distribution and � � 1=�2. It is easily seen that integrating over
the uij returns the original normal model.

The full conditional distributions for the �i random e�ects are given by

f��ijui� / ���i� I��i 2 Ai�,
where
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Ai � f�i: lj��i� < uij, j � 1, . . ., nig,
which is

Ai � f�i: yij ÿ uij
p

< gij��i� < yij � uij
p

, j � 1, . . ., nig:
Therefore we can sample �i from � restricted to this set. The full conditional distributions for
the latent variables are given by

f �uijj�i� / exp�ÿ�uij=2� Ifuij > lj��i�g:
The full conditional distribution for �, with prior �ÿ1, is given by

G

�
�

����3N=2,Pn
i�1

Pni
j�1

uij=2

�
:

In the following, for notational convenience, we have removed the subscripts i and put
m � ni. Recall that

f��ju� /
� Qm

j�1
exp�ÿ0:5�uj� Ifuj > lj���g

�
����:

Generally we will not be able to ®nd the set Ai analytically and so instead we sample each
element of � separately.We sample from f��ju� by sampling from f��kj�ÿk, u�, for k � 1, . . ., p,
where p is the dimension of �. This involves sampling from ���kj�ÿk� I��k 2 Ak

u� where
Ak

u � f�k: lj��k, �ÿk� < uj, j � 1, . . ., mg:
Clearly the speci®c form of Au and Ak

u will depend on the likelihood lj�.�.

5.2.3. Example 8: logistic model
For the logistic model we obtain

lj��� � �log�yj� ÿ �1 � logf1� exp��2 � �3xj�g�2:
We shall concentrate on ®nding the sets Ak

u, k � 1, . . ., 3, since once we have done this the
algorithm is straightforward. Now

A1
u �

�
max

j
fajg, min

j
fbjg
�
,

where aj � log�yj� ÿ uj
p � logf1� exp��2 � �3xj�g and bj � log�yj� � uj

p � logf1� exp��2 �
�3xj�g. Let S � f j: expf�1 ÿ uj

p ÿ log�yj�g > 0g. If S 6�1 then

A2
u �

�
max
j2S
f�jg, min

j
f�jg
�
,

where

�j � log�expf�1 ÿ uj
p ÿ log�yj�g ÿ 1� ÿ �3xj

and

�j � log�expf�1 � uj
p ÿ log�yj�g ÿ 1� ÿ �3xj
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(note that �1 � uj
p ÿ log�yj� > 0). If S �1 then

A2
u �

�
ÿ1, min

j
f�jg
�
:

Finally, if S 6�1,

A3
u �

�
max
j2S
f
jg, min

j
f�jg
�
,

where


j � �log�expf�1 ÿ uj
p ÿ log�yj�g ÿ 1� ÿ �2�=xj

and

�j � �log�expf�1 � uj
p ÿ log�yj�g ÿ 1� ÿ �2�=xj:

If S �1 then

A3
u �

�
ÿ1, min

j
f�jg
�
:

6. Numerical example

In this section we consider a non-linear mixed model example and compare our auxiliary
variable Gibbs sampler with a Metropolis±Hastings algorithm.

6.1. Non-linear random effects model
The example is taken from Lindstrom and Bates (1990). Let yij denote the observed trunk
circumference measured on the ith orange-tree, i � 1, . . ., 7, at time xij, j � 1, . . ., 5. The
logistic model (Section 5.2.3) models the relationship between trunk circumference and time:

log�yij� � �1i ÿ logf1� exp��2i � xij�3i�g � �ij,
where yij are the observed trunk circumference measurements and �ij are IID normal with
mean 0 and variance �2. The second stage assumes that �i � N��ij�, �� where �i �
��1i, �2i, �3i�. Conjugate priors are assumed for �2, � and �.

We shall compare our algorithm with a Metropolis±Hastings algorithm which is used for
sampling from the full conditional distribution for �i. A typical MCMC implementation for
this model (see, for example, Bennett et al. (1996)) would be to use a Metropolis±Hastings
chain with a random walk algorithm for �i, i � 1, . . ., n. The proposal prior may be taken as
a multivariate normal distribution, centred at the current point, and with covariance matrix
given by a scalar multiple of the asymptotic covariance matrix evaluated at a point close to
the posterior mean (calculated from an initial run for example) or the maximum likelihood
estimate. The aim is to select the scalar to control the size of the steps in the random walk. If
too large a value is chosen then few moves will be made; if too small a value is taken the walk
will only take small steps.

The lengths of the Fortran code that implemented each algorithm were approximately
equal. Similar run times were obtained for 10000 iterations of each algorithm but the
Metropolis±Hastings algorithm required preliminary runs to obtain a desirable acceptance
probability (54% for the ®nal algorithm; for a discussion of optimal rates see Roberts et al.
(1997)). Finally, we compare the `worst' case of autocorrelation for each of the algorithms. In
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the random walk Metropolis±Hastings algorithm this was with the �3-parameter and with the
auxiliary variable Gibbs sampler this was with the �33-parameter. The lag 1 autocorrelations
of each of these parameters were 0.79 and 0.75 respectively, with the autocorrelations dying
away very slowly for the Metropolis±Hastings algorithm (0.39 at lag 40) but falling to 0 by
lag 9 for the auxiliary variable sampler.

7. Discussion, extensions and conclusions

In Section 6 we presented an example, using the auxiliary variable method, which resulted in
a quick and e�cient MCMC algorithm. Additionally, the algorithm was easy to code,
requiring only standard random variate generation routines. However, we do not claim that
superior e�ciency will be the case in general. If there is an e�cient Metropolis or rejection
algorithm then, rather than introducing latent variables, this may be the preferred choice.

A broad question is `Will a Gibbs sampler with more conditional distributions, all of which
are uniform densities, be more e�cient than an MCMC sampler in which some or all of
the full conditionals have to be sampled via rejection and/or Metropolis±Hastings-type
algorithms?'. We are not aware of a de®nitive answer to this question. However, `e�ciency'
may be measured in several di�erent ways and for many practitioners ease of coding will be
the dominating criterion, particularly in `one-o�' applications.

The assessment of convergence remains a major problem with the use of MCMC
algorithms. Results on rates of convergence are currently only available for narrow classes of
models (Polson, 1996). Latent variables have a long history within the MCMC literature. In
addition to the statistical physics work referred to in Besag and Green (1993) their use has
also been proposed in a variety of models, e.g. with applications involving binary and
polychotomous data (Albert and Chib, 1993), discrete regression models (Carlin and Polson,
1992), Student t-distributions (Wake®eld et al., 1994) and for constructing log-concave
densities (Polson, 1996). In the data augmentation algorithm (Tanner and Wong, 1987) the
latent variables represent `missing' data which combine with the observed data to provide a
`standard' posterior for the parameters.

As far as the resultant Markov chain is concerned, Polson (1996) stated, `Careful use of
latent variables . . . can lead to vast improvements in e�ciency' and the examples in section 4
of Polson (1996) give support to the auxiliary variable approach for two types of distribution.
Polson indicated that there will be improved e�ciency for these cases. That there should be a
signi®cant reduction in e�ciency for all other types of distributions, with the introduction of
auxiliary variables, does not, of course, follow.
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