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Abstract

Decision making often takes place in social environments where other actors influence

individuals’ decisions. The present article examines how advice affects individual learning.

Five social learning models combining advice and individual learning-four based on reinforcement

learning and one on Bayesian learning-and one individual learning model are tested against each

other. In two experiments, some participants received good or bad advice prior to a repeated

multioption choice task. Receivers of advice adhered to the advice, so that good advice improved

performance. The social learning models described the observed learning processes better than the

individual learning model. Of the models tested, the best social learning model assumes that

outcomes from recommended options are more positively evaluated than outcomes from nonrecom-

mended options. This model correctly predicted that receivers first adhere to advice, then explore

other options, and finally return to the recommended option. The model also predicted accurately

that good advice has a stronger impact on learning than bad advice. One-time advice can have

a long-lasting influence on learning by changing the subjective evaluation of outcomes of

recommended options.

Keywords: Reinforcement learning; Social learning; Advice taking; Learning model; Decision

making

Many decisions are made in a social context, where decision makers can observe others’

decisions or receive advice from other people. Accordingly, it has frequently been argued

that we learn how to make decisions from others (e.g., Bandura, 1977; Henrich &

McElreath, 2003; Laland, 2001; Schotter & Sopher, 2003; Simon, 1990). Social information

seems especially valuable in situations of uncertainty (Festinger, 1954), for instance, when
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decision makers have little knowledge about the judgment domain, when choice options’

outcomes seem similar, or when information about choice options needs to be collected

through first-hand experience.

In many real-life situations people learn to make better decisions based on the experi-

enced consequences of their own decisions (Barron & Erev, 2003; Busemeyer & Myung,

1992; Denrell, 2005; Hertwig, Barron, Weber, & Erev, 2004; March, 1996). For exam-

ple, decision makers learn inference strategies to judge companies’ credit worthiness

(e.g., Rieskamp & Otto, 2006) or strategies for social interaction (e.g., Stahl, 1996), con-

sumers choose detergents based on their experience with different brands (e.g., Erdem &

Keane, 1996), and through experience investors learn how to allocate financial resources

(e.g., Goetzmann & Massa, 2002; Rieskamp, 2006a; Rieskamp, Busemeyer, & Laine,

2003).

Empirical evidence suggests that decision makers do not rely exclusively on their own

experience in these situations, but they also learn from others. For instance, employees learn

how to make decisions from their colleagues (Gibson, 2004), consumers can get advice from

friends or publications such as Consumer Reports; and investors are influenced by other

investors’ decisions (e.g., Roider, Drehmann, & Oechssler, 2007). In the present article, we

argue that in decision situations characterized by uncertainty and incomplete knowledge,

advice strongly influences people’s learning processes. Specifically, we examine how one-

time advice from another person influences individual learning processes in repeated choice

tasks.

In the next section, we briefly review research on individual and social learning in

decision making. Then we introduce the experimental paradigm we used and report

whether decision makers follow advice (Experiment 1). We present the learning models and

examine how well they describe behavior of the receivers of advice (henceforth ‘‘receiv-

ers’’). Experiment 2 was designed specifically to test the models that best explained the data

from Experiment 1. We conclude with a general discussion.

1. Experienced-based decision making and learning

In a typical decision-from-experience task, the decision maker repeatedly chooses

between two or more options with unknown expected payoffs (e.g., Hertwig et al., 2004; see

also Shanks, Tunney, & McCarthy, 2002). How people deal with such decision situations

under uncertainty has been studied extensively with various tasks (e.g., Erev & Barron,

2005; Estes, 1962; Gans, Knox, & Croson, 2007; Hutchinson & Meyer, 1994; Meyer & Shi,

1995; Murray, 1971; Vulkan, 2000), and a number of computational models have been pro-

posed to described people’s decisions and learning processes. For instance, Busemeyer and

Myung (1992) described how decision thresholds for categorization decisions change

through experience. Likewise, Busemeyer and Stout (2002) showed that a simple reinforce-

ment learning model describes learning better than a Bayesian learning model in the Iowa

Gambling Task (IGT; Bechara, Damasio, Damasio, & Anderson, 1994), in which people

learn to choose the best out of four risky options. Gans et al. (2007) explored the predictive
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accuracy of various learning models for a two-armed-bandit task with repeated choice

between two options. They showed that an exponential smoothing model, which exponen-

tially weighs past experiences to determine current expectations, best predicted the repeated

choices. Erev and Barron (2005) (see also Rieskamp, 2006b; Rieskamp & Otto, 2006) pro-

posed a learning model which assumes that people learn to choose among cognitive strate-

gies. Yechiam and Busemeyer (2005) examined the various assumptions of learning

models, for example, they compared learning models’ various updating rules for integrating

new experiences with accumulated past experience. They found that learning models that

assume that choice propensities decay as a function of time alone, independently of whether

an option was chosen or not, explained the data better than models which assume that for-

getting old experience is limited to the currently updated option. In sum, this research sug-

gests that decision making from experience can be aptly described by simple learning

models that assume people form choice propensities based on exponentially discounted

experience, and that they then decide based on these propensities.

2. Social learning and decision making

A feature common to all the learning models mentioned above is the assumption

that learning is based exclusively on individual experience. In contrast, theories of social

learning describe how social information influences people’s behavior. Bandura’s (1977)

prominent social learning theory assumes that people learn—simple behavior as well as

complex concepts—by observation and cognitive modeling (Rosenthal & Zimmerman,

1978; Zimmerman & Rosenthal, 1974).

Past research on social learning has examined the impact of social interaction or face-

to-face interaction on learning. Recent research has followed a broader definition of social

learning that includes decision making and learning processes influenced by social informa-
tion gathered from others, and which was not necessarily acquired through any personal

interaction. We follow this broader definition of social learning. Recent social learning

research also places stronger emphasis on computational models of social learning. For

instance, inspired by Boyd and Richerson’s (1985) theory of gene–culture coevolution,

McElreath et al. (2005) proposed a model of imitation learning that combines individual

learning with social learning by assuming that a choice option is reinforced through received

payoffs and through the observation that others choose that option. Apesteguia, Huck, and

Oechssler (2007) examined imitation behavior in repeated social interactions. They reported

that the probability of imitating another person increases with the payoff difference between

the learner and the other person, so that more successful players are more likely to be

imitated (see also Schlag, 1998, 1999).

Another line of research examines how individuals seek and integrate advice when mak-

ing nonrepeated decisions. Luan, Sorkin, and Itzkowitz (2004) examined the influence of

advice in signal detection tasks and found that decision makers are sensitive to the quality

of advice—they give more weight to better advisors—and they search for advice in an adap-

tive manner when they can decide whether, and from whom, to seek advice. Budescu and
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Rantilla (2000) described how decision makers integrate expert opinions with a model that

weights experts’ advice according to the amount of information that advisors had available

to generate advice. Yaniv and Kleinberger (2000) found that decision makers gave too little

weight to others’ advice, and Yaniv (2004b) reported that more-knowledgeable decision

makers discount advice more frequently than less-knowledgeable decision makers. Impor-

tantly, Yaniv (2004a,b) pointed out that advice from independent decision makers generally

improves performance. In sum, while the experimental tasks and objectives of research on

social learning are diverse, a common finding is that people do not rely exclusively on either

their own judgment or on received advice, but they combine both.

We provide a complement to existing models of advice taking by explaining how advice

affects individual learning. Earlier models of advice taking have focused on single decisions

and not on repeated choices, as we do. The work on imitation learning has examined

people’s behavior when others’ behavior can be observed on a trial-by-trial basis. In con-

trast, we focus on a situation in which the decision maker cannot observe and imitate others’

behaviors but solves the task in isolation after receiving an initial piece of advice.

To describe how the individual learning process is affected by advice we propose and test

several learning models. Our social learning models are built upon simple learning mod-

els because these models have been successful in describing people’s decisions in

repeated choice tasks, as described above.

3. Experiment 1

Experiment 1 examined how social learning influences choice. Participants individually

solved a repeated choice task in which they could learn to choose the best alternative.

Additionally the participants received advice on how to solve this task. In the experiment,

the Iowa Gambling Task (Bechara et al., 1994) was presented to participants. The IGT is a

type of armed bandit task in which participants try to obtain high rewards by repeatedly

choosing the best of four choice options, which are associated with different payoff distri-

butions. Participants receive feedback about the outcomes of their choices to learn which

of the several options provides the highest average payoff. The challenge of the IGT lies in

the options’ payoff distributions. The options that lead on average to the highest payoffs

frequently lead to low gains but do not encounter high losses. In contrast, options that lead

on average to low payoffs frequently lead to larger gains but lead to even higher losses.

In our experiment the participants received an initial endowment (10 euros) and then

chose cards from four card decks (A, B, C, D). When a participant chose from deck A or B,

he or she always received a reward of 50 eurocents; when the choice was from deck C or D,

the participant always received 25 eurocents. Importantly, participants sometimes addition-

ally incurred a loss when choosing from a deck. Losses when choosing from decks C and D

(henceforth ‘‘good decks’’) were moderate, so that the expected payoff from those decks

after 100 trials was 12.5 euros. Losses from decks A and B (henceforth ‘‘bad decks’’) were

so large that the expected payoff from these decks was –12.5 euros. The difference between

decks with the same expected payoff was that one deck had frequent but lower losses (low

G. Biele, J. Rieskamp, R. Gonzalez ⁄ Cognitive Science 33 (2009) 209



variance), whereas the other deck had rare but higher losses (high variance). The applied

payoff schedule was identical to the schedule introduced by Bechara et al. (1994), which

has the property that the decks’ average payoffs are maintained for blocks of 10 choices. A

crucial property of this schedule is that losses from the bad decks occur relatively late, so

that the bad decks initially seem to be better. Participants usually need at least 20 trials to

learn which decks are best, and after that they still frequently choose one of the bad decks

(Maia & McClelland, 2004).

Experiment 1 examines whether social learning can improve decision makers’ perfor-

mance by helping them detect the good decks earlier and also by increasing their likelihood

of choosing good decks later in the task. An important property of the IGT is that the two

good decks have identical expected payoffs, so that adherence to advice can be tested by

examining how frequently participants stay with the recommended deck in the presence of

an equally attractive alternative (henceforth ‘‘corresponding deck’’).

3.1. Design

To examine the effect of social learning, participants performed a computerized version

of the IGT with and without advice. Participants in the independent condition performed the

task without receiving or giving advice. Participants in the advisor condition performed the

IGT without receiving advice, then chose one of several predetermined advice strategies for

another participant, and finally performed the IGT again. Participants in the receiver condi-

tion received advice from an advisor and then performed the IGT.1

3.2. Participants and procedure

Ninety participants, mostly students from the Free University of Berlin (54% women;

mean age of 25 years), were randomly assigned to the three conditions. The experiment

was conducted in sessions with two to six participants. In the independent condition, par-

ticipants were instructed that they were taking part in a decision-making experiment in

which they would repeatedly choose cards from four card decks. It was then explained that

drawing a card would always lead to a gain or a loss, which would be depicted on the back

of the card, and that the gain or loss would be added to their account. The instructions also

explained that one could learn during the experiment which payoffs were associated with

which decks.

To inform participants about the stochastic nature of the task, it was explained that the

payoffs from the card decks were determined before the experiment began, and that partici-

pants’ choices could not influence the decks’ payoffs or the order of one deck’s payoffs. To

further clarify the stochastic nature, the last 20 participants in each condition were asked to

imagine that they were choosing from actual card decks. The instructions included no state-

ment about possible time dependencies of the payoff distributions. Behavior (i.e., frequency

of choosing good decks and adherence to advice by receivers) was similar for all partici-

pants, so we will not distinguish between the first 10 and last 20 participants in the

conditions.
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After the introduction of the task, participants were told that they would start the task

with an initial endowment of 10 euros. They were reminded that they would receive their

final account balance minus the 10-euro initial endowment as a variable payment. In addi-

tion to performance-contingent payment, all participants received a show-up payment of 5

euros. In the rare case that the final account balance minus the 10-euro initial endowment

was negative, participants still received the show-up payment of 5 euros, but they only

learned this after the experiment. Finally, participants were briefly instructed about the

graphical user interface (see Fig. 1) used to conduct the experiment. After choosing from a

deck by clicking on it, the display showed participants the gain (in green) and the loss

(in red) associated with the card. At the same time, the overall account was updated with

the payoff of the current choice. Participants clicked the ‘‘continue’’ button to go on to the

next trial. The minimum time interval between two choices was fixed to 3 s; no upper time

limit was set.

Advisors received the same information as the independent decision makers, plus addi-

tional information about their role as advisors. Specifically, they were first informed that

they would advise another participant who would perform the identical task. To be able to

evaluate whether receivers actually followed the advice, a set of four feasible recommenda-

tions was predefined, namely, ‘‘always choose from deck A’’ (or ‘‘B,’’ or ‘‘C,’’ or ‘‘D’’).

The feasible advice was presented to advisors before they made their first 100 choices.

Advisors were not informed that they would encounter the same task again after giving the

advice (henceforth the second 100 choices). Advisor and receiver always participated in the

same session. To communicate advice, an advisor marked his or her advice with a pen on a

form, which was then given to the receiver. To motivate advisors and to make them credible

to receivers, they received an amount equal to 50% of the receiver’s payoff, in addition to

the payoff from their own choices.

Fig. 1. Graphical user interface for participants in Experiments 1 and 2. Participants chose decks by clicking on

the decks. After each choice, feedback was presented, with gains in green and losses in red font (the original user

interface was in German).
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Receivers were first provided with the instructions for the IGT and then with a form

where one of the feasible lines of advice was marked by an advisor in the same session.

Receivers were aware that the advisor was in the same experimental session. To prevent per-

sonal communication between advisor and receiver, they were seated in separate cubicles.

To clarify the experience and motivation of advisors, receivers were informed that the advi-

sor had participated in the same task prior to choosing his or her recommendation, and that

the advisor would receive a payment equivalent to 50% of the receiver’s payment from the

IGT. As in the other conditions, receivers’ payments varied depending on their performance

in the IGT.

3.3. Results

3.3.1. Choices and performance
Participants earned, on average, 5.02 euros (SD = 5.31) in the IGT. Independent decision

makers chose one of the two good decks, on average, in 62% (SD = 14%) of the 100 trials,

which is less than the proportion of 78% (SD = 2%) in which advisors chose one of the

good decks in their last 100 trials, t(29) = 4.13, p < .001, d = 1.06, and less than receivers

with 73% (SD = 17), t(29) = 2.54, p < .001, d = .66. Receivers chose one of the good decks

across their 100 trials more frequently than advisors in their first 100 trials, t(29) = 3.11,

p = .003, d = .8. The advisors chose one of the good decks in 59% (SD = 14) of the first

100 trials and in 78% of the last 100 trials; thus, they improved their performance signifi-

cantly from the first to the second block of 100 trials, t(29) = 4.75, p < .001, d = 1.23.

Fig. 2 shows, in blocks of 10 trials each, the proportion of participants who chose one of

the two good decks. This proportion declined at the beginning (i.e., 10–20 trials) for all

groups, with the exception of the advisors at the beginning of their second 100 trials (i.e.,

postadvice giving). Fig. 2 also shows that in the first 10 trials receivers performed better

than advisors in the beginning of their second 100 trials. However, starting at about trial 15,

the receivers performed worse than the advisors, and only at the end of the 100 trials did

both groups perform equally well again. In sum, advice generally improved performance,

compared to inexperienced participants, with the advantage being especially large in the

early trials.

3.3.2. Giving and following advice
A large majority of participants (28; 93%) in the role of advisors gave good advice. Of

these 28 advisors, 19 proposed the good deck with a high payoff variance (rare but high

losses) and nine proposed the good deck with a low payoff variance (frequent but low

losses). Advisors chose the deck they recommended on average 42% (SD = 19%) of the first

100 trials, indicating that they recommended their preferred deck.

To examine the influence of advice we tested whether receivers chose the recommended

deck (regardless of whether the advice was good or bad) more frequently than the corre-

sponding deck with the same expected payoff. Receivers chose the good deck with low vari-

ance when it was recommended, on average, in 62% of the trials (SD = 9%), whereas the

mean percentage was 10% (SD = 3%) when it was not recommended. The mean percentage
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for the good deck with high variance was 69% (SD = 9%) when it was recommended but

only 7% (SD = 3%) otherwise. Fig. 3 shows the development of choice proportions over the

100 trials and reveals that adherence to advice declined from the first block (all participants

chose the recommended deck in the first round) to the second block and then rebounded to

high adherence rates again. We refer to this sequence as the adherence–exploration–adher-

ence pattern. Altogether, the results show a strong influence of advice on choices because

receivers clearly preferred the recommended deck to the corresponding deck with the same

expected payoff.

The analyses show that participants without advice learned to choose the good decks,

receivers followed the advice they received, and having received advice gave the receivers

an advantage—especially in the early choices. The decline and rebound of the probability

with which receivers chose according to the advice suggests that they combined recommen-

dations with individual experience to determine which choice to make.

4. Models of learning in repeated choice tasks

As reinforcement learning models have been most successful in describing people’s

choices in instrumental learning situations (Busemeyer & Stout, 2002; Bush & Mosteller,

1955; Erev & Barron, 2005; Estes, 1950; Gans et al., 2007; Yechiam & Busemeyer, 2005),

we concentrate our examination on variants of these models. The learning models we

propose are similar to the models suggested by Erev and Roth for learning in experimental

Fig. 2. Participants’ average proportion of choosing one of the good decks in Experiment 1 (in blocks of 10

trials). Proportions were first calculated for each participant and block and then averaged. Receivers perform

constantly better than individual learners and advisors in their first 100 trials, but worse than advisors in their

second 100 trials.
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games (Erev, 1998; Erev & Roth, 1998) and by Busemeyer and colleagues for learning in

the IGT (Busemeyer & Stout, 2002; Yechiam & Busemeyer, 2005).

In the reinforcement learning task the decision maker repeatedly chooses an option i from

a set S ¼ f1; 2; :::; ng with n options. Before making a decision, the decision maker might

receive advice to choose an option or options A ¼ f1; :::;mg, where A is a subset of

S. Generally, advice can consist of one or several options. After choosing option i in trial t,
the decision maker receives a payoff pt(i).

4.1. Individual learning

According to the individual reinforcement learning (RL) model proposed here, the deci-

sion maker enters the situation with initial propensities to choose the different options. After

choosing an option, the resulting payoff is used to update the option’s choice propensity.

Independent of choice, the propensities decay with time. Choice probabilities are an increas-

ing function of the options’ propensities. Formally, the initial propensity of an option is

q1(i) = 0. After choosing an option i, the propensities q(i) of the options are updated by

qtþ1ðiÞ ¼ ð1� /Þ � qtðiÞ þ rtðiÞ; ð1Þ

where / is a free decay parameter determining the weight of past experiences in the updat-

ing process, with rt(i) = pt(i) for the chosen option and rt(i) = 0 for options not chosen.

(a) (b)

Fig. 3. Participants’ choice proportions conditional on advice in Experiment 1 (blocks of 10 trials). The left

panel (a) shows preferences for the recommended deck (m) versus the preference for the corresponding deck

with the same expected payoff (n). Error bars are 1.96 times the standard error of the mean. The right panel (b)

distinguishes between choices after the recommendations to choose a low variance deck versus the recommenda-

tion to choose a high variance deck. Choice proportions were first calculated for each participant and block and

then averaged. The figure shows that the recommended deck was always favored, regardless of whether advice

was to choose a deck with high or low variance. Note that decks with the same expected payoff do not need to

sum up to one because participants can also choose from the two other decks.
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The probability of choosing an option is defined by

ptðiÞ ¼ ek�qtðiÞ=
Xn
j¼1

ek�qtðjÞ: ð2Þ

To capture the variability in participants’ sensitivity to differences in propensities, the

choice rule is augmented by a sensitivity parameter k (e.g., Yechiam & Busemeyer, 2005).

We further assume that participants who received advice will choose the recommended

option in their first trial (28 out of 30 participants in Experiment 1 behaved accordingly).

This makes RL a nested version of the more complex social learning models described next

and also makes the RL model a strong competitor of the social learning models.2

4.2. Social learning

The following social learning models combine information received as advice with an

individual reinforcement learning process and are, therefore, called advice-reinforcement

combination (ARC) models. To specify the ARC models formally, we modify the individual

RL model described above by adding mechanisms to it. Because we assume that receivers

will attempt to evaluate the recommended option before exploring alternative options, all

tested models choose the recommended option in the first trial. Formally, the probability of

choosing an option in the first trial is p(i|i2A) = 1 ⁄ m and p(i|i=2A) = 0.

4.2.1. ARC-Initial
One way to introduce social information into the individual learning process is to assume

that decision makers initially perceive recommended options as more positive than non-

recommended options. This assumption is reasonable because advisors usually have more

knowledge than receivers (Jungermann & Fischer, 2005). To model the initial preference

for the recommended option, we allowed the initial propensity of the recommended option

to be higher than for options that were not recommended. Similarly, Camerer, Ho, and

Chong (2002) and Hanaki, Sethi, Erev, and Peterhansl (2005) modeled a decision maker’s

own past experience by defining initial propensities as a function of the options’ past

payoffs. Formally, the initial propensities for ARC-Initial are defined as q1(i|i2A) = |l|Æi
and q1(i|i=2A) = 0, where i is a free parameter determining the extra initial propensity of the

recommended option, and l is the expected payoff from always choosing the best option,

which allows the interpretation of i independent of the specific payoff distribution.

4.2.2. ARC-Outcome-bonus
Social information could also influence the ongoing evaluation of payoffs. The outcome-

bonus model assumes that the consequences of recommended options are perceived more

positively, compared to the consequences of nonrecommended options. This assumption is

consistent with research on imitation by Miller and Dollard (1941), which shows that imita-

tion in itself can become a secondary reinforcer. Alternatively, one could consider following
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advice to be cooperative behavior, which can also be intrinsically rewarding (Decety,

Jackson, Sommerville, Chaminade, & Meltzoff, 2004).

A generally more positive evaluation of outcomes from recommended options can be

implemented by adding a constant bonus to every payoff from the recommended option.

Formally, reinforcements for recommended options are rt(i|i2A) = pt(i) + |l|Æq, where q is a

free parameter specifying the additional reinforcement for choosing a recommended option.

4.2.3. ARC-Decay
It can be assumed that recommended options have, due to their prominence, stronger mem-

ory traces and are therefore easier to retrieve (Lockhart, 2001). Hence, it should be easier to

retrieve information about the past performance of a recommended option. We implement

this assumption by introducing an additional decay parameter /advice for the recommended

option, which is assumed to be lower than the decay parameter / for all other options. The

important implication of this model is that the accumulation of (negative or positive) propen-

sities of the recommended option will be faster, and their reduction as a function of time

slower. Formally, the different decay process is implemented by modifying Equation 1 to

qtþ1ðiÞ ¼
i =2A! ð1� /Þ � qtðiÞ þ rtðiÞ
i 2 A! ð1� /adviceÞ � qtðiÞ þ rtðiÞ

:

�
ð3Þ

4.2.4. ARC-Certainty
The social learning models presented thus far assume that social information directly

influences the learning mechanism. Alternatively, as proposed by Festinger (1954), people

might generally rely on individual learning and resort to advice only when uncertain about

how to evaluate the available options (see also Henrich & Boyd, 1998; Kameda & Nakani-

shi, 2002, 2003). We implement reliance on social information in situations of uncertainty

by assuming that decision makers choose according to propensities when the variance of

propensities is high and choose the recommended option when the variance of propensities

is low. To make the social learning parameter independent of payoff magnitudes, reliance

on advice is modeled as contingent on the variance of the choice probabilities. Specifically,

the choice probabilities are modified, after they are determined by Equation 2, according to

the following function:

pðiÞ ¼
rðPÞ<s ^ i 2 A! 1=m
rðPÞ<s ^ i =2A! 0
rðPÞ � s! p

;

8<
: ð4Þ

where r(P) is the standard deviation of the choice probabilities in Equation 2 and s is a free

parameter that determines the threshold below which the recommended option is chosen.3

4.2.5. Bayesian advice integration
The learning models described above are based on learning models that have

successfully explained learning in previous experiments. In contrast to a Bayesian
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learning approach they give more weight to recent experiences. It is possible that in

the current experiment, which explicitly demands the integration of the prior informa-

tion of advice with new evidence, a Bayesian approach could provide a good account

of people’s behavior. To investigate this possibility, we also test a Bayesian model

that was explicitly suggested for the IGT by Yechiam and Busemeyer (2005). This

model uses the following Bayesian updating rule:

qtþ1ðiÞ ¼
/B þNt�1ðiÞ
/B þNtðiÞ

� qtðiÞ þ
1

/B þNtðiÞ
� rtðiÞ; ð5Þ

where Nt(i) is the total number of times option i was chosen up to round t, and /B is the

weight given to initial expectations. The influence of advice on learning is incorporated in

the initial evaluation of the choice options, which is, as in ARC-Initial, assumed to be higher

for the recommended deck, q1(i|i 2 A) = |l|Æi and q1(i|i =2 A) = 0. The Bayesian model uses

the same choice rule (Equation 2) as all other models.

4.3. Comparison of social learning mechanisms

Table 1 summarizes the functions used to describe the ARC models and the RL model.

To highlight the differences between the models we examine qualitative and quantitative

aspects of the models’ predictions about learning:

ARC-Initial assumes that advice mainly affects the initial learning process due to

the changed initial propensities of the recommended options. The decay of propensities

implies that the influence of advice can rapidly be negligible (depending on the rate of

decay). As a result, receivers will also learn over time to deviate from a recommended

Table 1

Differences of the learning and choice mechanisms for the individual reinforcement learning (RL) model and

the advice-reinforcement combination (ARC) models: ARC-Initial, ARC-Outcome-bonus, ARC-Decay, and

ARC-Certainty

Mechanism RL Model ARC Models

First choice p(i|i2A) = 1 ⁄ m and p(i|i=2A) = 0 No difference

Initial attraction q1ðiÞ ¼ 0 ARC-Initial: q1(i|i2A) = |l|Æi and q1(i|i =2 A) = 0

Reinforcement rtðiÞ ¼ ptðiÞ ARC-Outcome-bonus: rtðiÞ ¼
i 2 A! ptðiÞ þ jlj � q
i =2A! ptðiÞ

:

�

Updating qtþ1ðiÞ ¼ ð1� /Þ � qtðiÞ þ rtðiÞ ARC-Decay:qtðiÞ ¼
i 2 A! qtðiÞ � ð1� /adviceÞ þ rt
i =2A! qtðiÞ � ð1� /Þ þ rt

:

�

Choice rule pðiÞ ¼ ek�qðiÞ=
Pn

j¼1 e
k�qðjÞ ARC-Certainty: pðiÞ ¼

rðPÞ<s ^ i 2 A! 1=m
rðPÞ<s ^ i =2A! 0
rðPÞ � s! p

:

8<
:

Note: The second column describes the mechanisms in the individual learning model. The third column

shows how the RL model is modified for the respective model to incorporate social learning.
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option when a better alternative is available. The impact of advice depends mainly on

the magnitude of the initial propensity for the recommended option as well as the

decay parameter. The declining influence of advice also implies that ARC-Initial should

have difficulty describing the adherence–exploration–adherence pattern. ARC-Initial

influences the learning process in favor of the recommended option in both the gain

and the loss domains.

According to the outcome-bonus model, the influence of social information accumu-

lates during learning so that its impact is relatively small at first but increases thereaf-

ter. Therefore the outcome-bonus model can predict the adherence–exploration–

adherence pattern. The model also predicts that the choice of the recommended option

increases in the gain and loss domain. With regard to bad advice the outcome-bonus

model predicts constant influence on the learning process because the additional rein-

forcement for the wrongly recommended option makes it continue to appear better than

it actually is. This also implies that when a receiver compares two good options with

an identical expected value, then the recommended option will subjectively be perceived

more positively, that is, the receiver will not become indifferent to the equally good

options.

According to the decay model, advice has a constant influence on the learning process

and can explain why receivers come to prefer the recommended option again after an

exploratory phase and why in the gain domain receivers adhere to the recommended option

in the presence of better alternatives. In the loss domain, the decay model predicts that

receivers will tend to avoid recommended options because the slower decay for propensities

of this option will maintain negative propensities longer, thus strengthening the advantage

of alternative options.

Social learning according to ARC-Certainty depends on the choice options’ similarity,

but not on the amount of individual experience. Generally, the model predicts strong social

influence when the choice options’ expected outcomes do not differ substantially. ARC-

Certainty can predict a preference for the recommended option over a better alternative in

cases where the variance across options’ expected outcomes is low, or when payoff differ-

ences are not perceived due to high within-option payoff variances.

In the long run, the Bayesian model of advice integration makes similar predictions as

ARC-Initial. The important differences are that due to the decay process, ARC-Initial shows

higher sensitivity to recent outcomes and the exponential decay in ARC-Initial means that

the influence of advice diminishes more quickly than in the Bayesian model.

In sum, the comparison of the social learning models shows that they make different

predictions independently of specific parameter values. ARC-Initial predicts that the influ-

ence of advice should be particularly strong at the beginning of the learning phase. In con-

trast, the other models—in particular the outcome-bonus model—assume that advice is

still effective in later stages of the learning process and are thus better able to explain a

robust effect of bad advice and the adherence–exploration–adherence pattern. Of the mod-

els, only the decay model is consistent with faster deviation from advice when the

expected payoff from the recommended option is negative, independently of whether the

advice was good or bad.
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5. Evaluating models of social learning

5.1. Parameter estimation

The first step needed to evaluate the learning models was to estimate their parameters.

We estimated the models’ parameters for each participant separately. We think it is

important to model behavior at the individual level, because false conclusions about the dis-

tribution of model parameters can be drawn when considering only aggregate data (Estes &

Maddox, 2005). A second decision concerned the question of whether the predictions of a

model for a person should rely on the past behavior of that person. When using the one-

step-ahead approach, the propensities of a learning model for a new trial are updated based

on the real choices and payoffs a participant received in the preceding trials. In contrast,

when using the simulation approach, the propensities are updated based on the payoffs of

the predicted choices. The one-step-ahead approach tends to fit the learning process better

because incorrect predictions do not enter the updating process and the model can therefore

describe a broader range of behaviors.4 For this reason, we chose the more demanding simu-

lation approach to estimate the models’ parameters, where real choices are only used to

determine the model fit but not to determine choices, thus providing a more illuminating test

of the model.

For each trial, all models determine the probability with which an individual will

choose any option based on past choices and parameter values. We relied on maximum

likelihood estimation to find the best parameter values; that is, we searched for the

parameter values that maximized the sum of the log likelihood of the observed choices

of the four decks. The sum of the log likelihood is defined as LL ¼
PT

t¼1 ln ptðkÞ, with

T as the number of trials and pt(k) as the probability with which the model predicts the

actual choice k of the participant in trial t. As the logarithm of zero is minus infinity,

we fixed the minimum choice probabilities in the fitting process to .001. To determine a

choice for each trial, one of the options was randomly selected according to the model’s

predicted choice probabilities. Due to this random element the model’s predictions for a

particular set of parameter values were simulated 50 times, and the average learning

process of all 50 simulations was determined. The likelihood of the data was then deter-

mined based on the average choice probabilities over the 50 simulations of the complete

learning process.

The model parameters were constrained to / 2 [0,1] (for Bayesian updating /B 2
[0,100]) and d 2 [0,1] for the decay parameters, k 2 [)5,5] for the sensitivity parameter,

q 2 [0,10] for the additional reinforcement in ARC-Outcome-bonus, i 2 [0,100] for the

higher initial attraction in ARC-Initial, and s 2 [0,.5] for the threshold in ARC-Certainty,

where .5 is the maximum standard deviation over choice probabilities for a choice set with

four options (the best-fitting parameters did not approach the boundaries, with the exception

of the sensitivity parameter of the individual learning model for one participant). To identify

the best parameter values, we first performed a grid search and then used the five best

parameter sets from the search as starting values for the simplex optimization algorithm

(Nelder & Mead, 1965) to determine the best fitting parameter values.
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5.2. Model comparison

To evaluate model performance, each model was first compared to a statistical baseline

model with three parameters that assumed decision makers always choose according to con-

stant choice probabilities, which were determined by the proportion of how often specific

decks were chosen by the participants over the 100 trials (e.g., when a participant had cho-

sen deck A 50 times the baseline model predicted its choice with a constant probability of

.50). Because the baseline model was fitted to the data, it is a strong competitor to the learn-

ing models. A learning model will only do better than the baseline model if it accurately

describes how people change their behavior over time. To account for differences in model

complexity we used the Bayesian information criterion (BIC, see, e.g., Zucchini, 2000) as a

model selection criterion. The BIC is defined as )2 · LL(model) + number of para-

meters · log(N), with N as the number of predicted choices, and leads to positive values

with smaller values indicating a better fit. We compared each model with the statistical

baseline model by determining the baseline model’s BIC value and subtracted the BIC value

of the learning model. This BIC difference of the baseline’s BIC minus the learning model’s

BIC can be expressed as

DBIC ¼ 2 � ½LLðmodelÞ � LLðBaselineÞ� � d � logðNÞ ð6Þ

where d is the difference of a learning model’s number of parameters minus the statistical

baseline model’s number of parameters and with the Log Likelihood computed over all

choices. If the learning model predicts the behavior better than the baseline model, then

positive values for DBIC result. The larger the positive values for DBIC the better the learn-

ing model predicts the observed learning process. Fig. 4 shows participants’ choices of the

four decks and the predicted choices of the five decay-learning models.

As the first step in model comparison we tested whether the learning models were better

than the statistical baseline model. We first examined the merit of the Bayesian advice inte-

gration model. The average negative values of DBIC = )8.29 (Mdn = )5.49, SD = 18.03)

of the Bayesian advice integration model shows that the model does worse in predicting

choices than the statistical baseline model. Moreover, it does worse than any of the decay

models. The estimated average parameter values were / = 51.55 (Mdn = 55.64, SD = 5.52)

for the learning rate; c = 5.52 (Mdn = 6.31, SD = 3.41) for the sensitivity; and s = 26.27

(Mdn = 4.32, SD = 34.25) for the higher initial evaluation of the recommended option. This

result confirms previous findings that Bayesian learning models do worse in predicting

experience-based decision processes in comparison to reinforcement learning models (e.g.,

Busemeyer & Stout, 2002; Gans et al., 2007; McElreath et al., 2005; Yechiam & Busemey-

er, 2005). Due to the poor performance of the Bayesian model we restrict the remainder of

the model analysis to the learning models that assume decay processes. Table 2 shows that

the decay models have, on average, positive DBICs, indicating that they performed better

than the statistical baseline model even when taking their complexity into account. We next

examined whether the social learning models performed better than the individual RL

model, which had a mean DBIC of 2.55. The mean DBICs for the social learning models

were 7.08 for ARC-Initial, 10.77 for the outcome-bonus model, 8.13 for ARC-Decay, and

220 G. Biele, J. Rieskamp, R. Gonzalez ⁄ Cognitive Science 33 (2009)



10.4 for ARC-Certainty (see Table 2 for details). The t-tests (Table 3) illustrate that the

social learning models describe the learning process better than the individual RL model.

Together with the previous finding that the recommended deck was chosen more frequently

Fig. 4. Receivers’ observed and predicted choice proportions for the four decks in Experiment 1 (in blocks of

10 trials). The first panel shows observed choice proportions. The other panels show the models’ predictions

from the simulation. Each participant was simulated with the best parameter set before individual level predic-

tions were averaged (see text for details). The legend at the top is valid for each of the six panels. RL, reinforce-

ment learning model.
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than the corresponding deck, this result supports the assumption that a social learning pro-

cess describes decision makers’ choices better than purely individual learning.

To examine whether one social learning model outperformed the other ARC models, we

conducted t-tests comparing the models’ DBICs (see Table 3). A comparison of the social

learning models shows that the outcome-bonus model has the best fit in describing the

observed learning process in comparison to all other models. However, the fit differences

are small: ARC-Outcome-bonus is not significantly better than ARC-Certainty, and the

effect sizes of the comparisons with ARC-Initial and ARC-Decay are small (d = .19 and

d = .15, respectively). In sum, the social learning models explain participants’ choices better

than a statistical baseline model and, importantly, better than the individual RL model.

Among the social learning models, the outcome-bonus model predicted the observed learn-

ing process best. However, the small effect size of the differences in fit between

ARC-Outcome-bonus and the competing models highlights that ARC-Decay and ARC-

Certainty also did quite well. This is also reflected in the root mean square deviation

(RMSD) as an alternative goodness-of-fit measurement (see bottom of Table 2).

Considering the social learning parameters, the median i for ARC-Initial was 12.05—that

is, according to this model the initial attraction for the recommended decks was approxi-

mately 12 times the average payoff from a good deck (.125 cents); the median q for ARC-

Outcome-bonus was 2.95—that is, every reinforcement from a recommended deck received

a ‘‘bonus’’ that was equivalent to three times the average payoff from a good deck; and the

median /advised for ARC-Decay was .08, clearly lower than the decay rate of .57 for options

that were not recommended. In ARC-Certainty the median of the social learning parameter

s was .13. That is, participants chose the recommended option, on average, when the stan-

dard deviation of the choice probabilities was below s = .13.

The social learning models differ from the individual learning model by assuming addi-

tional social learning mechanisms. However, we did not only estimate the parameter repre-

senting the social mechanism but estimated all parameters for the social learning model to

give the models their full power to describe the observed learning processes. A potential

drawback of this method is that the social learning models potentially were able to predict

the learning process better due to a combination of social and standard learning mechanisms.

Therefore, we examined whether the estimated parameters of the individual learning model

that are also part of the social learning model differ for the two type of models. The average

parameter values for the individual learning model fitted to the independent decision makers

were c = 2.69 (Mdn = 2.32, SD = 2.12) for sensitivity and / = .29 (Mdn = .14, SD = .33)

for the decay rate. Table 4 shows the results of comparing the standard learning parameters

for the independent decision makers with the standard learning parameters for receivers. It

becomes clear that the parameters estimated do not differ substantially. The exceptions are

the sensitivity parameter for ARC-Initial and the learning rate for ARC-Decay.

We also examined individual differences in how people use advice. We found that five

participants made all of their 100 choices consistent with the advice. We also explored for

how many participants a specific model was the best. The outcome-bonus model best

describes most participants (10), followed by ARC-Certainty (seven), RL (six), ARC-Decay

(four), and ARC-Initial (three).
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Apart from comparing the model fits, one can query whether the models can predict char-

acteristic patterns of choices over time. Figs. 2 and 3 show that receivers showed an adher-

ence–exploration–adherence choice pattern. ARC model predictions were calculated by first

simulating each participant 100 times with the best parameters for this participant and then

averaging the resulting choice probabilities over all 30 participants.5 Fig. 5 compares the

probabilities of simulated and real participants choosing one of the two good decks in

the IGT. To evaluate the correspondence of simulated and observed choices, we calculated

the RMSD (see Table 2) between predicted and observed average probabilities on the group

level. The RMSDs for ‘‘good decks’’ indicate that all social learning models predict the

Fig. 5. Receivers’ observed and predicted choice proportions for choosing one of the good decks in Experiment

1 (in blocks of 10 trials). The figure shows that the outcome-bonus model and ARC-certainty are best able to

capture the nonmonotonic trend of choice probabilities.

Table 4

Mann–Whitney U-tests for comparing the estimated parameter values for the independent decision makers with

parameters estimated for the advice receivers

Parameter RL

ARC Models

Initial Reinforcement Decay Certainty

Decay U = 347,

p = .128

U = 343,

p = .114

U = 376,

p = .274

U = 274,

p = .009

U = 429,

p = .756

Sensitivity U = 346.5,

p = .126

U = 332.5,

p = .082

U = 342.5,

p = .111

U = 367.5,

p = .222

U = 414.5,

p = .599

Note: Each cell depicts the test statistics for a comparison of the best-fitting model parameters for advice

receivers for the individual (RL) and the social learning (ARC) models with the best-fitting parameters of the

individual learning model applied for the independent decision makers. Because the distribution of parameter

values was frequently not normal, Mann–Whitney U-tests were applied.
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proportion of choices of good decks similarly well (see also Fig. 5). However, this result

changes when differentiating the recommended from the nonrecommended option(s). Fig. 6

shows the probabilities of simulated and real participants choosing a good or bad deck,

given whether it was recommended or not. For instance, when a participant was advised to

choose the good deck C, we calculated the probability that this deck would be chosen and

the probability that the corresponding equally good deck D would be chosen. Fig. 6 and the

RMSDs in Table 2 show that the ARC models implementing social learning—especially

ARC-Outcome-bonus, ARC-Decay, and ARC-Certainty—can better account for the adher-

ence–exploration–adherence pattern because they are better able to describe the rebound of

choices of recommended options after the exploration phase.

5.3. Discussion of Experiment 1

Experiment 1 illustrated that people use advice to improve their decisions. However,

only a few receivers (i.e., five) followed the advice for all 100 choices. The majority of

receivers chose the recommended option first but then explored the other options,

frequently returning to the recommended option later in the experiment. Still, receivers

performed better than independent decision makers, who made decisions without receiving

or giving advice, and better than participants who had to give advice (advisors). Compared

to these groups, receivers were approximately 10% points more likely to choose a good

deck. However, receivers (73% chose a good deck) performed worse than participants with

their own experience in the same task (78% chose a good deck). In sum, receivers had an

advantage over inexperienced decision makers but did worse than experienced individuals

(i.e., advisors in their last 100 trials). Surprisingly, advisors did not start with the same

deck they recommended to others when they made their decisions in their second 100

(a) (b)

Fig. 6. Receivers’ observed and predicted choice proportions in Experiment 1 for the recommended deck (a) or

the corresponding deck with the same average payoff (b). The individual learning model does not capture the

influence of advice, whereas the ARC-outcome-bonus model and the ARC-decay model do so well.
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trials of the IGT. It could be that due to the break between the two parts of the experi-

ments advisors expected the environment to change, even though they were told by the

experimenters that they would be choosing from the same card decks again. Alternatively,

the participants might have learned that the outcomes of the first several cards of the two

bad decks were not that bad.

The model comparisons showed that the Bayesian advice integration model could not

describe choices well, perhaps because the Bayesian model cannot account for the strong

influence of recent outcomes, which is reflected in the high decay parameters estimated for

the decay models (see Table 2). Examining DBICs, we found that the other social learning

models performed better than the pure individual learning model. Of the social learning

models, we found that ARC-Initial was, on average, least able to describe participants’

choices. This is reflected in the worst fit and more importantly, in the weaker ability of

ARC-Initial to account for the characteristic adherence–exploration–adherence choice pat-

tern of many participants. It is less clear which of the three remaining social learning models

did best in predicting the learning process. Even though ARC-Outcome-bonus had a better

fit than ARC-Decay and ARC-Certainty, the difference was small compared to the ARC-

Initial model. Therefore, we designed Experiment 2 to provide a more specific test of the

best models that emerged in Experiment 1. A peculiarity of Experiment 1 was that partici-

pants rarely received bad advice; therefore, in Experiment 2 we additionally examined how

bad advice influences learning, and whether the social learning models can describe learning

after bad advice.

6. Experiment 2

Experiment 2 focused on a comparison of ARC-Outcome-bonus, ARC-Decay, and ARC-

Certainty by testing their predictions with a strong generalization test (Busemeyer & Wang,

2000). For this test we used the estimated parameter values from Experiment 1 to determine

the models’ predictions for the new learning situation in Experiment 2.

For a test to be strong, it is desirable to find a situation in which the three models make

different qualitative predictions. Such a situation occurs for a task in which all decks have

negative expected payoffs. Specifically, the outcome-bonus model predicts that participants

will still prefer the recommended deck. In contrast, ARC-Decay predicts that individuals

should avoid the recommended option because of the lower decay rate for a recommended

deck. The decay model invokes slower forgetting of negative payoffs, which means that pro-

pensities remain negative for a longer time after losses. Compared to the recommended

option, the other options will appear more attractive because the higher decay rate implies a

short memory for the negative payoffs.

ARC-Outcome-bonus and ARC-Certainty both predict that receivers will prefer the rec-

ommended deck over the corresponding decks. However, only ARC-Certainty explicitly

predicts stronger adherence to advice when receivers are more uncertain about which

options are better. Uncertainty can be expressed by the effect size of the payoff difference

of the good and bad decks. The effect size of the original IGT is d = .24 (see Cohen, 1988),
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calculated as the difference in payoffs from good and bad decks divided by the standard

deviation of the pooled payoffs from all options.

In sum, to create a situation in which the three social learning models make qualitatively

different predictions in Experiment 2, a task was required in which all four options would pre-

dominantly lead to negative payoffs, allowing a distinction between the decay model and the

outcome-bonus model. Additionally, the payoff difference between good and bad decks should

have a small effect size, allowing a distinction between ARC-Certainty and ARC-Outcome-

bonus. In line with these demands we devised a payoff schedule with negative expected

payoffs and an effect size of d = .15 for the payoff difference between good and bad decks.

To determine the models’ quantitative predictions before running the experiment, we

applied a nonparametric bootstrapping procedure. Specifically, the choices of a virtual

participant in Experiment 2 were simulated by using the parameters from one randomly

selected real participant from Experiment 1.6 With these parameter values learning and

choices over the 100 trials was determined 100 times, and the simulated participant’s

expected choice probabilities for each trial were determined as the mean over the 100 simu-

lations. To obtain average choice probabilities for one ‘‘virtual experiment,’’ the parameters

of 30 randomly selected participants (with replacement) from Experiment 1 were matched

with random advice, so that on average 50% of the advice was good. The models’ predic-

tions in Experiment 2 were determined by averaging over 5,000 virtual experiments. Fig. 7

displays the three models’ predictions for adherence to advice in Experiment 2.

Fig. 7. Predicted choice proportions for Experiment 2 according to different social learning models average for

5,000 simulated experiments. For each simulated experiment the parameter values of 30 randomly drawn partici-

pants with replacement from Experiment 1 were used to determine the models’ predictions (see text for details).

The models make different quantitative and qualitative predictions: ARC-certainty predicts high adherence rates,

the outcome-bonus model predicts lower adherence rates, and only the decay model predicts that the recom-

mended deck will be chosen less frequently.
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6.1. Design

Experiment 2 used a learning task similar to that used in Experiment 1. The key differ-

ence was the payoff schedule: average payoffs in Experiment 2 were –10 eurocents for the

bad decks and –7 eurocents for the good decks, with a standard deviation of 20 eurocents

for all decks. Payoffs were randomly drawn from a discrete approximation of a normal dis-

tribution, and mean and standard deviation of payoffs were maintained in blocks of 15 trials;

we call this the standard payoff schedule. Participants started with an initial endowment of

12.5 euros and made 105 choices.

One result from Experiment 1 was that participants rarely received bad advice. Pilot tests

for Experiment 2 revealed that it was difficult to find a payoff schedule under which approxi-

mately half of the participants would learn which were the better decks and, hence, give good

advice. Therefore, we made the task for 20 of the 30 advisors in Experiment 2 more difficult

by manipulating their payoff schedule (henceforth, nonstandard advisors) so that approxi-

mately half of the participants would receive good advice and the other half bad advice. The

manipulation consisted of subtracting 5 eurocents from every payoff from a good deck in the

first 30 trials, and adding 5 eurocents to the same deck in 30 randomly selected trials from the

last 75 trials.7 As in Experiment 1, the task was performed by advisors, receivers, and inde-

pendents, with the latter two always choosing from the standard payoff schedule.

6.2. Participants and procedure

Eighty participants, mostly students from the Free University of Berlin (55% women,

mean age 25 years), were randomly assigned to the three conditions. Thirty participants

were advisors, 30 were receivers, and 20 were independents. As in Experiment 1 partici-

pants received information only about the stochastic nature of the payoff distribution, and

no information about the domain (gain or loss) or variability of the payoffs. With two excep-

tions, the experimental procedure was identical to Experiment 1. First, the similarity of

decks for advisors and receivers was expressed as decks having the same average payoff,

instead of describing them as being identical, because in the case of the advisors, the good

decks started with lower expected outcomes and thereafter improved. Second, participants’

variable payoff was calculated without subtracting the initial endowment because the

expected payoff for all decks was negative.

6.3. Results

6.3.1. Choices and performance
Participants earned, on average, 3.83 euros (SD = 1.9). Fig. 8 shows the proportion of

participants who chose one of the two good decks and shows that the task in Experiment 2

was more difficult for most participants because the average proportion of participants

choosing a good deck was, compared to Experiment 1, lower throughout the task. The 10

standard advisors chose a good deck, on average, in 60% (SD = 17%) of their first 100 trials

and in 69% (SD = 10%) of their second 100 trials. The 20 nonstandard advisors chose a
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good deck, on average, in 39% (SD = 12%) of their first 100 trials and in 42% (SD = 40%)

of their second 100 trials. This poorer performance of nonstandard advisors was expected

because their task was more difficult. Of the receivers, 13 received the good advice to

choose from the good decks and the remaining 17 received bad advice. The 13 receivers of

good advice chose a good deck, on average, in 69% (SD = 15%) of their trials, the 17

receivers of bad advice chose a good deck 48% (SD = 20%) of the time, and the

independents chose a good deck in 63% (SD = 12%) of their trials. Comparing advisors,

receivers, and independents, we found that receivers of good advice performed better than

those who received bad advice, t(28) = 3.08, p = .005, d = 1.1, but not better than indepen-

dents, t(31) = 1.25, p = .22, d = .45, or advisors in their second 100 trials, t(21) = .03,

p = .97, d = .01. Receivers of bad advice performed worse than independent decision

makers, t(35) = 2.73, p = .01, d = .9.

Over all trials, independent participants chose one of the good decks, on average, in 67%

(SD = 13%) of the trials, which is significantly higher than 50%, t(19) = 4.71, p < .001,

d = 1.05, and suggests that they learned which decks produced lower losses. They also

chose one of the good decks in 70% (SD = 9%) of the last 50 trials, which suggests the same

conclusion. In sum, participants’ choices show that the manipulation successfully made the

task more difficult for nonstandard advisors. In the more difficult task in Experiment 2, the

receivers benefited less from the advice, due to frequent bad advice. Independents still

learned to choose the good decks.

6.3.2. Giving and following advice
Three of 10 standard advisors and 14 of 20 nonstandard advisors (with a more difficult

task) recommended choosing a bad deck. Most advisors recommended the deck they had

(a) (b)

Fig. 8. Participants’ average choice proportions of choosing one of the good decks in Experiment 2. (a) Compari-

son of independents, advisors, and receivers. (b) Comparison of independents and receivers of good or bad

advice.
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chosen most frequently (on average in 35%, SD = 14%, of the trials), indicating that they

recommended the deck they preferred themselves. Fig. 9 displays the proportion of receivers

who chose the recommended or the corresponding deck (see also Table 5). To test the influ-

ence of the quality of advice, we performed a repeated measures analysis of variance, with

the quality of advice (good vs. bad) as a between-subjects factor, advice (recommended

deck vs. corresponding deck) as a within-subject factor, and the choice frequency of recom-

mended and corresponding decks as a dependent variable. Participants who received good

advice chose the recommended deck in on average 55% of all trials (SD = .19) and the cor-

responding deck in only 15% of all trials (SD = .13). When receiving bad advice the corre-

sponding choice proportions were 37% (SD = .19) for choosing the recommended option

and 15% (SD = .08) for choosing the corresponding deck.

The statistically significant main effect for advice, F(1,28) = 47.51, p < .001, g2 = .63,

shows that the recommended deck was chosen more frequently than the corresponding deck.

The statistically significant main effect for quality of advice, F(1,28) = 6.38, p = .017,

g2 = .19, shows that receivers adhered more to advice when it was good. The interaction

between quality of advice and advice was not statistically significant, F(1,28) = 3.78,

p = .063, g2 = .12, and the small effect size suggests that the probability of choosing the

corresponding deck was not substantially influenced by the quality of advice. The larger

effect size for advice in comparison to the effect of the quality of advice, indicates that par-

ticipants’ choices were more influenced by advice than by the payoffs from choosing the

decks.

Fig. 9. Proportion of participants choosing a deck conditional on advice in Experiment 2 (blocks of 10 trials).

Even for participants who received bad advice a strong influence of advice on choice was observed.
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6.3.3. Model comparison
According to the outcome-bonus model, participants who received bad advice should

choose a bad deck more often than participants who received no advice. This can also be

assumed for the certainty model, because the high variance of payoffs from decks was high,

so that participants should rely on advice. In contrast, the decay model predicts that receiv-

ing bad advice should decrease the probability that receivers will choose the recommended

bad deck. As Fig. 8 depicts, unlike the prediction from the decay model, participants who

received bad advice chose the good decks less frequently than independent decision makers.

Further, as predicted by the outcome-bonus model and ARC-Certainty, receivers chose a

nonrecommended deck less frequently than the recommended deck, contrary to the decay

model’s prediction. Finally, the proportions of choices of the recommended decks did not

increase substantially from Experiment 1 to Experiment 2, as predicted by the certainty

model. Hence, the examination of the qualitative predictions speaks in favor of the out-

come-bonus model.

Additionally, to compare the models quantitatively, we examined how well they pre-

dicted participants’ choices. The models’ predictions were simulated as described above,

except that parameter values from participants in Experiment 1 were randomly matched

with real recommendations from Experiment 2. To compare the models, we examined how

well the models predicted the choices of the recommended deck and the corresponding deck

with the same expected payoff. Fig. 10 shows the observed and simulated choice propor-

tions and illustrates that the outcome-bonus model (RMSD = .048) predicted the preference

for the recommended decks better than ARC-Decay (RMSD = .22) and also better than

ARC-Certainty (RMSD = .133). ARC-Certainty overestimated the influence of social

(a) (b)

Fig. 10. Receivers’ observed and predicted choice proportions in Experiment 2 for (a) the recommended deck

or (b) the corresponding deck with the same average payoff. Only the outcome-bonus model predicts choices

well, whereas the decay model overestimates the preference for the not-recommended deck and ARC-Certainty

overestimates the preference for the recommended deck.
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learning in Experiment 2. Table 5 shows that ARC-Outcome-bonus predicted mean choice

proportions better than ARC-Decay and ARC-Certainty and also predicted the standard

deviations of choice proportions within a group observed in Experiment 2. Thus, the

generalization test supports the outcome-bonus model as the best social learning model

considered.

To investigate whether good advice is treated differently from bad advice, we performed

the same bootstrapping procedure as above, separately for receivers of good and bad advice.

Table 5 shows the results of these simulations, which demonstrate that with good advice the

outcome-bonus model predicted adherence to advice well, whereas the decay model under-

estimated adherence as well as the proportion of choices of good decks, and ARC-Certainty

overestimated both. With bad advice ARC-Decay again underestimated adherence to advice

and again chose—as predicted—a nonrecommended deck more frequently than the recom-

mended deck. ARC-Certainty clearly overestimated adherence to advice and, hence, pre-

dicted low proportions of choices of the good decks. To a lesser degree this was also true

for the outcome-bonus model, which, nevertheless, still correctly predicted stronger adher-

ence to good than to bad advice, even though the predicted difference of 4% is smaller than

the observed difference of 18%. In sum, the comparison of the models’ predictions for good

and bad advice also shows that the outcome-bonus model is the best social learning model

among the set of tested models.

6.3.4. Discussion of Experiment 2
Experiment 2 allowed us to examine social learning in a situation in which the best social

learning models from Experiment 1 made different predictions. We found again that receiv-

ers generally used advice. Supporting the results in Experiment 1, we found that advice had

a greater impact on receivers’ choices compared to the payoffs they received from their

choices. Furthermore, good advice improved performance and bad advice harmed perfor-

mance.

Experiment 1 showed that advisors did not choose the decks that they had recommended

when they started with their second 100 trials. In contrast, advisors in Experiment 2 did do

so. This suggests that participants trusted the instructions, and that advisors in Experiment 1

had learned that one could choose from the bad decks in the early trials without risking high

losses.

Experiment 2 rejected the qualitative prediction of the decay model: participants receiv-

ing bad advice chose bad decks more frequently than independent participants. Further,

receivers chose the recommended deck more frequently than the corresponding deck with

the same expected payoff. These results are in line with the predictions from the outcome-

bonus model and ARC-Certainty. The simulated predictions of the models in Experiment 2

favored the outcome-bonus model because ARC-Certainty predicted a too high adherence

to advice. Only the outcome-bonus model correctly predicted receivers’ adherence to advice

and predicted more adherence to good than to bad advice, even though the predicted differ-

ence is smaller than the observed difference. Finally, the variance in participants’ probabil-

ity of choosing a good deck simulated with the outcome-bonus model using parameter

estimates from Experiment 1 is similar to the observed variance in Experiment 2.

G. Biele, J. Rieskamp, R. Gonzalez ⁄ Cognitive Science 33 (2009) 233



Experiment 1 showed that different participants are best modeled by different learning

models. As the models were not fitted to participants in Experiment 2, it is not possible to

classify participants by model. We nevertheless suggest that of the models considered, the

outcome-bonus model is not only best on average but also best describes most participants.

This argument is consistent with the finding that participants who received bad advice did

not chose the bad decks less frequently at the end of the experiment; instead the choice pro-

portion of the bad decks stayed constant for the last 70 trials. In contrast to this empirical

observation, ARC-Initial and ARC-Decay predict a decreasing choice probability. Interest-

ingly, in contrast to Experiment 1, no participant in Experiment 2 followed the advice in all

100 trials. While this could be a coincidence, participants in Experiment 2 experienced

losses in most trials, and this might have stimulated a stronger exploration of alternative

options. In sum, Experiment 2 clearly supports the outcome-bonus model as the best of the

models considered to describe the social learning process because it predicted adherence

to advice, conditional on the quality of advice, and also predicted the variance of choice

proportions.

7. General discussion

We examined social learning in the context of repeated choices from experience. We

aimed to answer three questions: Do people use advice? Does taking advice improve deci-

sion performance? How can social learning be best described? To answer these questions,

we observed choices in tasks with repeated choice among four options and tested one model

of individual and five models of social learning.

First, we found that receivers used advice as evidenced by the fact that they chose the rec-

ommended deck more frequently than the corresponding deck with the same average payoff.

Moreover, in Experiment 2, receivers even followed the bad advice to choose decks with

the lowest expected payoff. The influence of advice was also visible in task performance: as

in Experiment 1, receivers of good advice performed better than independent decision mak-

ers, who were, in turn, better than participants receiving bad advice. The poor performance

of receivers of bad advice in Experiment 2 shows that social influence can distract people

from solving a task on the basis of individual learning. However, participants adhered more

to good advice than to bad advice, showing that individual learning still played a role. Over-

all, this suggests that individual experience was combined with the social information to

inform choices.

7.1. Social learning models

We proposed and tested five models of social learning and compared them with an

individual learning model. The individual learning model represents a simple reinforce-

ment model (e.g., Erev, 1998; Yechiam & Busemeyer, 2005). Four social learning

models are modifications of the individual learning model and one social learning model

represents a Bayesian approach. ARC-Initial assumes that the recommended options are
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initially evaluated more positively, compared to alternative options. ARC-Outcome-

bonus assumes that payoffs from recommended options lead to stronger reinforcement.

The decay model assumes that propensities of recommended options decay more slowly.

ARC-Certainty assumes that people choose the recommended options when the propen-

sities of options are similar. Finally, the Bayesian model assumes that the recommended

choice option has a higher prior expected reward and uses Bayes’ rule to integrate new

information.

Experiment 1 showed that three of the five social learning models—ARC-Outcome-

bonus, ARC-Decay, and ARC-Certainty—described choices better than the statistical base-

line model and the individual reinforcement learning model. The Bayesian model did worse

than the statistical baseline model and all other social learning models, so it is disqualified

as an appropriate description of the observed learning process.

In Experiment 2 ARC-Outcome-bonus, ARC-Decay, and ARC-Certainty were further

tested against each other using a modified version of the IGT with negative average payoffs

and high payoff variance between and within choice options. In this situation, the three best

models identified in Experiment 1 made diverging predictions. In accord only with the pre-

dictions of ARC-Outcome-bonus and ARC-Certainty, participants consistently chose the

recommended option, which in the case of bad advice means that they did not find the best

option. Whereas ARC-Certainty generally overestimated adherence to advice, the outcome-

bonus model correctly predicted that adherence to advice is higher when advice is good and

also predicted the variance of choice proportions in Experiment 2. In sum, the experiments

show that decision makers adhere to advice, that good advice helps and bad advice harms

learning, and that the outcome-bonus model provides the best description of the social

learning process.

When social learning diverges from individual learning, social information ought to influ-

ence individual learning in a different way than one’s own experience. The finding that

ARC-Initial and the Bayesian model did not adequately model the learning process indicates

that accurate models do not assume that advice only influences the decision makers’ initial

preference, as assumed by models of individual learning that account for decision makers’

prior experience (Camerer et al., 2002; Hanaki et al., 2005). The conclusion that advice

influences learning differently from one’s own experience is also supported by the finding

that advisors in their second 100 trials behaved differently from receivers. As Figs. 2 and 8

show, receivers explored alternative options longer than advisors did in their second 100

choices.

How does social learning differ from individual learning? The outcome-bonus model pro-

vided the best account of the observed learning process. According to this model, social

learning differs from individual learning by evaluating the outcome of recommended

options more positively in comparison to the outcome of nonrecommended options. Thus,

the outcome-bonus model predicts that individuals subjectively experience an outcome of a

recommended option more positively than the identical outcome of a nonrecommended

option. Because the advice bonus accumulates in the options’ propensities, the impact of

social information on the choice probabilities does not diminish but rather increases over

time. Importantly, a bad recommendation, due to its influence on the learning process, leads
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to poorer performance than an individual learning process under no social influence. In sum,

social information determines choices briefly at the beginning of a task, and more strongly

and persistently after the exploration phase.

As the results in Experiment 2 show, participants’ dependence on the quality of advice

has the disadvantage of impairing performance when advice is bad. Hence, decision makers

should possess mechanisms to attenuate the effect of bad advice; for instance, they should

be very selective when choosing advisors. Whereas our study was arranged so that

participants could assume that advisors were competent, the experiments of Yaniv and

Kleinberger (2000) and Luan et al. (2004) showed that, if possible and necessary, receivers

reacted sensitively to the quality of advice. They disregarded advice from advisors who

repeatedly gave bad advice, thus hedging the sensitivity of their social learning mechanism

to bad advice. Experiments by Celen, Kariv, and Schotter (2005), Kameda and Nakanishi

(2003), and Yaniv (2004a) showed that even naı̈ve participants tend to give useful advice,

and that social learning generally improves performance.

7.2. Limitations of the learning models

Our models describe the social learning process at the computational level, but some

questions remain open due to limitations in our experiments. One unresolved issue is

whether all decision makers can be described with the same model or whether people have

qualitatively different learning processes. Results in Experiment 1 suggest that different

participants are best described with different models, whereas the analysis of Experiment 2

suggests the ARC-Outcome-bonus model predicted the behavior of most receivers well. The

good performance of ARC-Outcome-bonus in predicting mean and variance of choice prob-

abilities in Experiment 2 suggests that this model is sufficient to predict most individuals’

behavior. To explore whether stable individual heterogeneity in learning processes exists,

for which different learning models are required, it will be necessary to examine partici-

pants’ behavior when performing the same basic task repeatedly.

Experiments in which participants perform tasks with different payoff distributions could

also help remedy a second limitation, namely, that our selection of ARC-Outcome-bonus is

based on two specific payoff distributions. These distributions vary important payoff charac-

teristics (positive and negative expected values and different levels of payoff variance), but

many other distributions exist and for some of them ARC-Outcome-bonus makes counterin-

tuitive predictions. For instance, if the payoff for option A is always 20 and for option B in

99% of the cases is 21 and in 1% of the cases )1,000, then an advisor with enough experi-

ence would recommend choosing option A. Here ARC-Outcome-bonus makes the counter-

intuitive prediction that people would converge to choose option A after a short exploration

phase, whereas ARC-Certainty would predict that choices converge on option B (until the

first negative payoff is experienced). These counterintuitive predictions are worth studying

in order to generalize the reported findings.

A third limitation concerns ARC-Outcome-bonus’s overestimation of adherence to

advice after receiving bad advice. While this suggests that the individual learning compo-

nent of participants’ behavior in Experiment 2 was underestimated, this is probably not due
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to the general inability of ARC-Outcome-bonus to explain their behavior. Rather, underesti-

mation occurred because nearly all participants in Experiment 1 received good advice, and

so individual and social learning usually pointed in the same direction, allowing for rela-

tively high values for the social learning parameters. The high social learning parameter val-

ues might then have suppressed ARC-Outcome-bonus’s individual learning component in

the simulations used to predict behavior in Experiment 2.

A final limitation concerns all the learning models tested. As Figs. 5 and 6 illustrate, the

models predicted (to different degrees) the general trend of participants’ choices but were

less able to account for local fluctuations in choice probabilities that also characterized the

learning process. The smoothness of the models’ predicted curves results, in part, from aver-

aging across 5,000 simulations. Beyond that, the higher variance in the observed data might

indicate that learning includes more than simple reinforcement processes.

7.3. Generalization to other learning situations

The generalizability of these results depends partly on how advice is given in other con-

texts and the incentives involved. In the experiments presented here, receivers were advised

to choose a particular option and were aware that advisors were paid according to the receiv-

ers’ performance. One might question whether advice that is less strict might lead to less

adherence to advice. Using a similar task, Biele, Rieskamp, Krugel, and Heekeren (unpub-

lished data) found that when participants were advised to ‘‘mostly choose’’ one particular

option, adherence to advice was still generally high even though fewer receivers exclusively

chose the recommended option. Furthermore, in our experiments the receivers were aware

that the advisors benefit from receivers’ decisions. We used the advisors’ performance-

dependent payment to signal the advisors’ motivation to receivers, but we cannot exclude

the possibility that this manipulation led to a specific evaluation of outcomes consistent with

ARC-Outcome-bonus. However, we argue that the outcome-bonus model describes a rea-

sonable mechanism to incorporate advice, even when advisors are not rewarded. According

to ARC-Outcome-bonus, social information will especially influence behavior in difficult

learning situations where the difference in payoffs between available options is smaller than

the additional reinforcement through advice following. Additionally this model will, for

good advice, also speed up learning when the payoff difference between options is already

large. By contrast, the second-best model, ARC-Certainty will increase the probability of

choosing the recommended option only when learning is difficult. Assuming additionally

that people usually receive good advice or quickly identify bad advisors (Yaniv, 2004a), this

suggests that integrating individual and social information according to ARC-Outcome-

bonus would be more adaptive than according to ARC-Certainty, because it speeds up learn-

ing even when learning is not particularly difficult.

The specific situation in which we examined social learning is characterized by several

aspects other than the formulation of advice and advisor incentives: participants were

always only informed about the payoffs from chosen options; they received social informa-

tion only once; and the social information was given as explicit advice instead of being pro-

vided as the opportunity to observe others’ choices. We argue that the ARC models,
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especially ARC-Outcome-bonus, can be applied to different situations with minor modifica-

tions. First, when participants are informed about forgone payoffs, ARC-Outcome-bonus

could simply be modified to allow for the updating of nonchosen options, for instance, as

described by Camerer and Ho (1999). An interesting prediction is that when forgone pay-

offs are also used to update propensities, the impact of advice on the learning process

should be smaller. ARC-Outcome-bonus could also be used to model ongoing advice in

every trial by adding a constant to payoffs when reinforcing the currently recommended

options, just as we did for a single piece of advice. Finally, observational learning might

also be modeled in the ARC framework by assuming that the options chosen by the major-

ity receive additional reinforcements, or by adding reinforcement to options proportional to

the frequency of others who were observed choosing these options (for an implementation

of such a model, see McElreath et al., 2005). However, we expect the influence of advice to

be stronger than the influence of observed choices (Gonzalez, 1994; Gonzalez & Tversky,

1990). Finally, when decision makers are informed about others’ choices and payoffs,

choice options could be reinforced by their own and by others’ (discounted) payoffs. In

sum, the ARC-Outcome-bonus social learning model that we propose can be applied to var-

ious social learning situations and we consider it an exciting endeavor to explore the model

in these contexts.

8. Conclusion

At the outset of this article, we suggested that many decisions people make are based on

their own experiences and the advice from other individuals. Of course, consumers’ deci-

sions or investors’ portfolio allocations can be more complex than the repeated choice task

we examined. Nevertheless, links to real-life decisions can be proposed from our paradigm

of one-time advice prior to repeated choices from experience. For instance, the fact that con-

sumers consistently choose expensive brand-name products when equally good but cheaper

store brands are available could be explained by different evaluations of recommended

and nonrecommended options (McClure et al., 2004). Similarly, the prominence of mutual

funds in the presence of generally more successful index funds might be caused by banks’

advice to buy mutual funds.

More generally, the research presented here suggests the following insights of practical

relevance. First, our results indicate that people combine reinforcement and advice to make

choices. Only a minority of participants in Experiment 1 relied exclusively on advice.

Hence, advisors who want their advice to be followed should ensure that the recommended

behavior is also associated with some immediate reward. Second, our results indicate that a

one-time recommendation has a long-lasting influence on behavior. Thus, generalizing from

our findings, repeated advice seems not to be necessary to guide behavior in a particular

direction. Combining these two insights, successful advice for repeated decisions could

focus on a single convincing recommendation and the association of immediate reward for

the desired behavior, and less on repeated appeals to the decision maker. This observation

may have implications in several domains where advice is typically given, for example, in
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medical settings when adherence to recommended medical treatment affects possible out-

comes.

The aim of this research was to investigate how advice influences learning in repeated

decision making. In these studies people neither ignored nor blindly followed advice.

Instead, they combined advice with their individual experience when making their choices.

By integrating advice with an individual learning process people do not follow advice mind-

lessly but use the advice to accelerate the individual learning process, providing quicker

solutions to decision problems.

Notes

1. We also assessed participants’ risk preferences (cf. Holt & Laury, 2002), risk attitudes

(e.g.,. Johnson, Wilke, & Weber, 2004; Weber, Blais, & Betz, 2002), and indecisive-

ness after the IGT. We found no meaningful correlations between these measures and

adherence to advice or differences in model fits and parameters, so we do not report

these data.

2. Yechiam and Busemeyer (2005) proposed a similar model that makes use of a utility

function to transform received payoffs, which, owing to two additional parameters for

gains and losses, makes their model more complex, and it employs a choice rule that

increases sensitivity as a function of time. We also tested a one-parameter utility func-

tion and time-dependent sensitivity. As these more complex models did not achieve a

substantially better fit, we only report on the results of the simpler models. The

described RL model differs from Erev and Roth’s (1998) model by assuming zero ini-

tial propensities, allowing negative propensities, and using an exponential choice rule

with a sensitivity parameter instead of a simple proportional choice rule.

3. For instance, the vector of choice probabilities .4, .13, .13, .13 or .36, .36, .14, .14 have

standard deviations of .133 and .127, respectively.

4. For instance, when using participants’ observed choices to update propensities, the

model can achieve a good fit for participants with alternating streaks of the same

choice by setting the decay parameter to 1. In this case, propensities will always be

zero, except for the option chosen in the last trial. Accordingly, the model would

always predict that a participant repeats his or her choice of the last trial (given payoffs

are positive) and, hence, would achieve a good fit without actually describing a learn-

ing process.

5. Note that we used the parameters obtained from the fitting procedure as described

above. While the parameters were fitted to describe the choice of all decks, Figs. 5 and

6 show, for reasons of clarity, choice proportions for the decks that are relevant for the

respective analyses.

6. As the influence of social learning in ARC-Initial and ARC-Outcome-bonus is defined

as a function of the expected payoff of the best option in the set, the parameters in

Experiment 1 can be applied without scaling them.
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7. Participants were not made aware of this manipulation. This should not be considered

as deception because receivers were not instructed that payoff distributions were

stationary.
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